Advanced Message Queuing Protocol (AMQP) Management Version 1.0
Working Draft 01
10 May 2013
Technical Committee:

OASIS Advanced Message Queuing Protocol (AMQP) TC
Chairs:

Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft
Robert Godfrey (robert.godfrey@jpmorgan.com), JPMorgan Chase & Co.
Editors:

Robert Godfrey (robert.godfrey@jpmorgan.com), JPMorgan Chase & Co.
David Ingham (David.Ingham@microsoft.com), Microsoft
Rob Dolin (RobDolin@microsoft.com), Microsoft
Related work:

This specification is related to:
· OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0 Part 0: Overview. 29 October 2012. OASIS Standard. http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.
Abstract:

AMQP Management is layered on top of the AMQP protocol. Management operations are performed by sending command messages to management nodes. Management commands are sent in the body of messages, encoded using the AMQP Type System. The results of management operations are returned using the AMQP Request/Response pattern. This specification defines four standard operations which are expected to be common to all types of manageable entities: Create, Read, Update and Delete. Additionally manageable entities may support entity specific operations.
Management nodes also support discovery operations. These operations allow discovery of: manageable entities, the operations which can be performed on them, and other management nodes within the system.

Status:

This Working Draft (WD) has been produced by one or more TC Members; it has not yet been voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and re-approve it any number of times as a Committee Draft.
Initial URI pattern:

http://docs.oasis-open.org/amqp/amqp-man/v1.0/csd01/amqp-man-v1.0-csd01.doc
(Managed by OASIS TC Administration; please don’t modify.)
Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents
41
Introduction

41.1 Terminology

41.2 Normative References

41.3 Non-Normative References

52
Concepts

52.1 Summary

52.2 Manageable Entity Type

52.3 Management Nodes

62.4 Manageable Entities

62.4.1 Attributes

73
Operations

73.1 Request Messages

73.2 Response Messages

83.3 Standard Manageable Entity Operations

93.4 Standard Management Node Operations

114
Request / Response Pattern

125
Examples

125.1 Attach to the Management Node

125.2 Create a Resource

135.3 Read a Resource

155.4 Update a Resource

165.5 Update a Resource (but fail)

175.6 Delete a Resource

185.7 Delete a Resource (but fail)

195.8 Read All Resources

205.9 Discover

225.10 Discover Management Nodes

246
Conformance

25Appendix A.
Acknowledgments

26Appendix B.
Non-Normative Text

26B.1 Subsidiary section

26B.1.1 Sub-subsidiary section

27Appendix C.
Revision History

287
TODO

1 Introduction
[All text is normative unless otherwise labeled]
TODO: Write introduction

1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
1.2 Normative References

[AMQP]
Godfrey, Robert; Ingham, David; Schloming, Rafael, “Advanced Message Queueing Protocol (AMQP) Version 1.0”, October 2012. OASIS Standard. https://www.oasis-open.org/standards#amqpv1.0

[BCP47]
Phillips, A., Ed., Davis, M., Ed., "Tags for Identifying Languages", September 2009. http://tools.ietf.org/html/bcp47.
[RFC2119]
Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.
[RFC2606]
Eastlake, D., Panitz, Al, "Reserved Top Level DNS Names", RFC2606, June 1999. http://tools.ietf.org/html/rfc2606.
[RFC2616]
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., "Hypertext Transfer Protocol -- HTTP/1.1", RFC2616, June 1999. http://www.w3.org/Protocols/rfc2616/rfc2616.html.
 MACROBUTTON NoMacro [Reference]
 MACROBUTTON NoMacro [Full reference citation]

1.3 Non-Normative References

 MACROBUTTON NoMacro [Reference]
 MACROBUTTON NoMacro [Full reference citation]
NOTE: The proper format for citation of technical work produced by an OASIS TC (whether Standards Track or Non-Standards Track) is:
[Citation Label]
Work Product title (italicized). Approval date (DD Month YYYY). OASIS Stage Identifier and Revision Number (e.g., OASIS Committee Specification Draft 01). Principal URI (version-specific URI, e.g., with filename component: somespec-v1.0-csd01.html).
For example:
[OpenDoc-1.2]
Open Document Format for Office Applications (OpenDocument) Version 1.2. 19 January 2011. OASIS Committee Specification Draft 07. http://docs.oasis-open.org/office/v1.2/csd07/OpenDocument-v1.2-csd07.html.
[CAP-1.2]
Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard. http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html.
2 Concepts

TODO: Intro para required here.
2.1 Summary

TODO: introduce concept of base and concrete Manageable Entity Types.

	Concept
	Description

	Manageable Entity Type
	A class of entities that can be managed, e.g., "queue".

	Manageable Entity
	An object on which management operations can be performed, e.g., a queue "q1".

	Management Operation
	An action that can be performed on a Manageable Entity, e.g., "DELETE".
Management Operations have a unique case-sensitive name.

	Management Node
	A Node which executes Management Operations.

	Management Address
	An Address of a Management Node.
TODO: Add a reference to the AMQP Global Addressing spec when available.

2.2 Manageable Entity Type
A Manageable Entity Type defines a class of entities that can be managed using the protocol defined in this specification. All entities of the same type MUST support the operations, and have the attributes, defined by that Manageable Entity Type.

Each Manageable Entity is an instance of a specific Manageable Entity Type, e.g., “com.example.broker.priorityqueue.” However, this Manageable Entity Type MAY extend other Manageable Entity Types, e.g., an entity with Manageable Entity Type "com.example.broker.priorityqueue" could extend the Manageable Entity Types: "org.amqp.queue", "com.example.broker.queue" and "org.amqp.priority."
Manageable Entity Types are named using a string. Manageable Entity Types without a reverse domain name prefix and those prefixed with "org.amqp.*" are reserved. Implementers MAY define their own Manageable Entity Types which MUST be named using a reverse domain name (e.g., "com.microsoft.servicebus.priorityqueue") for a domain name owned by the implementer.
2.3 Management Nodes

A Management Node acts as a service which processes Management Operations. Management Operations are transferred to, and responses are received from, a Management Node using the request/response pattern.

Each AMQP container MUST provide a Management Node with an address $management. A container MAY provide other Management Nodes with arbitrary addresses.

2.4 Manageable Entities

A Manageable Entity MAY be an addressable Node (e.g., a queue), or may be a type of entity that is not addressable (e.g., a user). The operations permitted on a Manageable Entity will depend on its type. This specification does not define the collection of supported Manageable Entity Types. This specification does define a set of standard Management Operations which MAY be augmented with additional type specific operations.

Every Management Node MUST contain a Manageable Entity named “self” and of type “org.amqp.management”. This entity represents the Management Node itself.

2.4.1 Attributes

Manageable entities SHOULD have the following common attributes:

	Attribute
	Value Type
	Description

	name
	String
	A label for the entity.

	identity
	String
	A unique immutable name for the entity.

	type
	String
	The manageable entity type for the entity.

3 Operations

All manageable entities SHOULD support standard manageable entity operations such as create, read, update, and delete.
Implementers of manageable entities SHOULD use these generic operations (ex: “CREATE”) rather than defining their own entity-specific operations for similar tasks (ex: “CreateNewTopic”.) Builders MAY extend with their own operations.
3.1 Request Messages

A request message MUST have the following application-properties:
	Key
	Value Type
	Description

	operation
	String
	The management operation to be performed.
This is case-sensitive and SHOULD be in ALL UPPERCASE.

	Type
	String
	The Manageable Entity Type of the Manageable Entity to be managed.
This is case-sensitive so “org.amqp.queue” and “org.AMQP.Queue” are different.

	Name
	String
	The name of the Manageable Entity to be managed.
This is case-sensitive so “MyQueue” and “myqueue” are different.

A request message MAY have the following optional application-properties:
	Key
	Value Type
	Description

	locales
	List of Strings
	A list of locales that the sending peer permits for incoming informational text in the form of IETF language tags as defined by [BCP47]. This list SHOULD be ordered in decreasing level of preference. The receiving partner will choose the first (most preferred) incoming locale from those which it supports. If none of the requested locales are supported, "en-US" MUST be chosen. Note that "en-US" need not be supplied in this list as it is always the fallback.

Other application-properties MAY provide additional context. If an application-property is not recognized then it MUST be ignored.
The body, if present, MUST be an amqp-value section containing a single undescribed AMQP map. The semantics of the data in the map is operation specific.

3.2 Response Messages
The correlation-id of the response message MUST be the correlation-id from the request message (if present), else the message-id from the request message.

A response message MUST have the following application-properties:

	Key
	Value Type
	Description

	status-code
	Unsigned Integer
	HTTP response code [RFC2616]

	status-description
	String
	(Optional) description of the status.

The presence or absence of the body and its content is dependent on the operation.
3.3 Standard Manageable Entity Operations

	Operation name
	Request/ response
	Description

	CREATE
	request
	Create a new Manageable Entity with type and name provided in the application-properties.

The map in the body of the message consists of key-value pairs where the key represents the name of an attribute of the entity and the value represents the initial value it SHOULD take.

The absence of an attribute name implies that the entity should take its default value, if defined.

If the map contains a key-value pair where the value is null then the created entity should have no value for that attribute, overriding any default.

A map containing attributes that are not applicable for the entity being created, or invalid values for a given attribute, MUST result in a failure response.

	
	response
	If the request was successful then the status-code MUST contain 201 and the body of the message MUST contain a map containing the actual attributes of the entity created. These MAY differ from those requested.
Additional application-properties:

Key
Value Type
Description
type
String
The Manageable Entity Type of the Manageable Entity that has been created. This MAY differ from the requested type. This application-property will only be set if the operation was successful.
If the request was unsuccessful then the body MUST be empty. Details of the error MUST be provided through the status-code application property. Further information MAY be provided in the status-description application property.

	READ
	request
	Retrieve the attributes of the Manageable Entity with the type and name provided in the application-properties. Any message body MUST be ignored.

	
	response
	If the request was successful, then the status-code MUST contain 200 and the body of the message MUST contain a map containing the attributes of the Manageable Entity. Note that in certain situations the map might not contain the full set of attributes due to security considerations.
If the request was unsuccessful then the body of the message MUST be empty. Details of the error MUST be provided through the status-code application property. Further information MAY be provided in the status-description application property.

	UPDATE
	request
	TODO: include description that updates may modify multiple properties and that responses will only be successful if all requested changes can be performed. Otherwise an error code will be returned with the details in the description.

Update a new Manageable Entity with type and name provided in the application-properties.
The map in the body of the message consists of key-value pairs where the key represents the name of an attribute of the entity and the value represents the new value it SHOULD take.

The absence of an attribute name implies that the entity should retain its existing value.

If the map contains a key-value pair where the value is null then the updated entity should have no value for that attribute, removing any previous value.

A map containing attributes that are not applicable for the entity being created, or invalid values for a given attribute, MUST result in a failure response.

	
	response
	If the request was successful then the status-code MUST contain 200 and the body of the message MUST contain a map containing the actual attributes of the entity updated. These MAY differ from those requested.

If the request was unsuccessful then the body of the message MUST be empty. Details of the error MUST be provided through the status-code application property. Further information MAY be provided in the status-description application property.

	DELETE
	request
	Delete the Manageable Entity with type and name provided in the application-properties. The body of the message MUST be empty.

	
	response
	If the request was successful then the status-code MUST contain 204 and the body of the message MUST be empty.

If the request was unsuccessful then the body of the message MUST be empty. Details of the error MUST be provided through the status-code application property. Further information MAY be provided in the status-description application property.

3.4 Standard Management Node Operations

A Management Node SHOULD support the below operations.
	READALL
	request
	Retrieve the attributes of all Manageable Entities that can be read at this Management Node.

The name provided in the application-properties MUST be “self” and the type MUST be “org.amqp.management”. The body of the message MUST be empty.

// TODO: Should we allow passing of an entity type to limit the response?
// TODO: If we allow passing of an entity type, must this be exact match?

Any message body MUST be ignored.

	
	response
	If the request was successful, then the status-code MUST contain 200 and the body of the message MUST contain a list of maps containing the attributes of the Manageable Entities. Note that in certain situations these maps might not contain the full set of attributes due to security considerations.

If the request was unsuccessful then the body of the message MUST be empty. Details of the error MUST be provided through the status-code application property. Further information MAY be provided in the status-description application property.

TODO: add more description on message format.

	DISCOVER
	request
	Retrieve the following from this Management Node: (a) the list of ManageableEntities on which Management Operations can be performed; (b) the list of Manageable Entity Types which can be managed; and (c) the set of Management Operations that can be performed.

The name provided in the application-properties MUST be “self” and the type MUST be “org.amqp.management”. The body of the message MUST be empty.

TODO – do we need to support the ability to restrict the entities that are being discovered based on type?

	
	response
	If the request was successful then the status-code MUST contain 200 and the body of the message MUST contain a map. The keys in the map MUST be the set of Manageable Entity Types on which Management Operations can be performed. For any given key, the value MUST be a map of the following form:

Key (of type symbol)
Value (of type list)
NAMES

A list of strings representing the names of Manageable Entities of this Manageable Entity Type.

TYPES

A list of strings representing the Manageable Entity Types that this Manageable Entity Type implements.

TODO: more explanation.

OPERATIONS

A list of strings representing the Management Operations that can be performed against this Manageable Entity Type via this Management Node.

TODO: more explanation.

If the request was unsuccessful then the body of the message MUST be empty. Details of the error MUST be provided through the status-code application property. Further information MAY be provided in the status-description application property.

	DISCOVER-MGMT-NODES
	request
	The name provided in the application-properties MUST be “self” and the type MUST be “org.amqp.management”. The body of the message MUST be empty.

	
	response
	If the request was successful then the status-code MUST contain 200 and the body of the message MUST contain a list of addresses of other Management Nodes known by this Management Node.

If the request was unsuccessful then the body of the message MUST be empty. Details of the error MUST be provided through the status-code application property. Further information MAY be provided in the status-description application property.

	REGISTER
	request
	Register a Management Node with type and name provided in the application-properties. The type provided in the application-properties MUST be “org.amqp.management”. The body of the message MUST be empty.

	
	response
	If the request was successful then the status-code MUST contain 200 and the body of the message MUST be empty. Upon a successful registration, the name of the registered Management Node will be present in the list of known Management Nodes returned by the DISCOVER-MGMT-NODES operation.

If the request was unsuccessful then the body MUST be empty. Details of the error MUST be provided through the status-code application property. Further information MAY be provided in the status-description application property.

	DEREGISTER
	request
	Delete the registration of the Manageable Entity with type and name provided in the application-properties. The body of the message MUST be empty.

	
	response
	If the request was successful then the status-code MUST contain 200 and the body of the message MUST be empty. Upon a successful deregistration, the name of the unregistered Management Node will not be present in the list of known Management Nodes returned by the DISCOVER-MGMT-NODES operation.
If the request was unsuccessful then the body of the message MUST be empty. Details of the error MUST be provided through the status-code application property. Further information MAY be provided in the status-description application property.

4 Request / Response Pattern
AMQP Management Operations follow a request response pattern using Transfer messages after a Connection, Session, and Links have been established

TODO: Is this section sufficiently documented in “Attach to the Management Node” (5.1) ?

· Create link to request node

· attach(src=null; tgt=”q1”)

· Link to response queue/creating the back channel

· attach(tgt=<client_container>$<client_generated_id>; src=”q1”)

· Message.reply_to=”<client_container>$<client_generated_id>”

· Separator is a “topological separator”

· Need to define separator, $ is a placeholder

· Note this is not synchronous correlated request/response. This is not only for RPC.

· Multiple “response” messages may be initiated for a single “request”

5 Examples
This section is non-normative.
The following examples use pseudo code. AMQP performative and type names correspond to definitions in the [AMQP] specification.

5.1 Attach to the Management Node

// create a link to the management node for sending management requests

requestLink = session.attach(

role: SENDER,

target: { address: "$management" }
)

// create a link for receiving responses from the management node

responseLink = session.attach(

role: RECEIVER,

target: { address: "$management" },

source: { address: "/myaddress" }
)
TODO: need explanation of /myaddress address; refer to global addressing.
5.2 Create a Resource
The below example illustrates successful creation of a resource.

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

correlation-id: 1,
to: "$management",
reply-to: "/myaddress"
},

application-properties: {

"name" -> "newQueue",

"operation" -> "CREATE",

"type" -> "org.example.queue"
},

application-data: AmqpValue(
Map(

// type specific properties

"max_size" -> "2000Mb"

)
)

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()
// responseMessage will be of the form:

//
Message(

//

properties: {

//

correlation-id: 1,

//

to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "CREATE",

//

"status-code" -> 201,

//

"status-description" -> "Created",

//

"type" -> "com.example.broker.queue"
// },

//

application-data: AmqpValue(
//

Map(

//

// type specific properties

//

"name" -> "newQueue",
//

"identity" -> "1234567",

//

"type" -> "com.example.broker.queue",
//

"num_priorities" -> 4,

//

"max_size" -> "2000Mb"

//

)
//

)

//
)
//)

5.3 Read a Resource

The below example illustrates successful reading of a resource.

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

message-id: 73,

to: "$management",

reply-to: "/myaddress"
},

application-properties: {

"name" -> "myQueue",

"operation" -> "READ",

"type" -> "com.example.broker.queue"
},

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()
// responseMessage will be of the form:

//
Message(

//

properties: {

//

correlation-id: 73,

//

to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "READ",

//

"status-code" -> 200,

//

"status-description" -> "OK",

// },

//

application-data: AmqpValue(
//

Map(

//

// type specific properties

//

"name" -> "myQueue",

//

"identity" -> "9876543",
//

"type" -> "com.example.broker.queue",
//

"num_priorities" -> 4,

//

"max_size" -> "2000Mb"

//

)
//

)

//
)

5.4 Update a Resource

The below example illustrates successful updating of a resource.

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

correlation-id: 3,

to: "$management",
reply-to: "/myaddress"
},

application-properties: {

"name" -> "myQueue",

"operation" -> "UPDATE",

"type" -> "com.example.broker.queue"
},

application-data: AmqpValue(
Map(

"max_size" -> "3000Mb"

)
)

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()
// responseMessage will be of the form:

//
Message(

//

properties: {

//

correlation-id: 3,

//

reply-to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "UPDATE",

//

"status-code" -> 200,

//

"status-description" -> "OK",

// },

//

application-data: AmqpValue(
//

Map(

//

// type specific properties

//

"name" -> "myQueue",

//

"identity" -> "9876543",
//

"type" -> "com.example.broker.queue",
//

"num_priorities" -> 4,

//

"max_size" -> "3000Mb" // the max_size is updated

//

)
//

)

//
)

5.5 Update a Resource (but fail)
The below example illustrates a response if an update operation fails.
In this case, the user attempts to change the number of priorities allowed by the queue.
// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

correlation-id: 37,

to: "$management",
reply-to: "/myaddress"
},

application-properties: {

"name" -> "myQueue",

"operation" -> "UPDATE",

"type" -> "com.example.broker.queue"
},

application-data: AmqpValue(
Map(

"num_priorities" -> "5"

)
)

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()
// responseMessage will be of the form:

//
Message(

//

properties: {

//

correlation-id: 37,

//

reply-to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "UPDATE",

//

"status-code" -> 400,

//

"status-description" -> "Bad Request: Cannot update number of

// priority levels",

// }

//
)

5.6 Delete a Resource

The below example illustrates successful deleting of a resource.

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

correlation-id: 4,

to: "$management",
reply-to: "/myaddress"
},

application-properties: {

"name" -> "myQueue",

"operation" -> "DELETE",

"type" -> "com.example.broker.queue"
}

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()
// responseMessage will be of the form:
//
Message(

//

properties: {
//

correlation-id: 4,

//

reply-to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "DELETE",

//

"status-code" -> 204,

//

"status-description" -> "No Content",

// }

//
)

5.7 Delete a Resource (but fail)

The below example illustrates a response if a delete operation fails.

In this case, the user attempts to delete a resource that does not exist.

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

correlation-id: 49,

to: "$management",
reply-to: "/myaddress"
},

application-properties: {

"name" -> "myQueue",

"operation" -> "DELETE",

"type" -> "com.example.broker.queue"
}

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()

// responseMessage will be of the form:

//
Message(

//

properties: {
//

correlation-id: 49,

//

reply-to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "DELETE",

//

"status-code" -> 404,

//

"status-description" -> "Not Found",

// }

//
)

5.8 Read All Resources

The below example illustrates successful reading of all resources .

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

message-id: 105,

to: "$management",

reply-to: "/myaddress"
},

application-properties: {

"name" -> "self",

"operation" -> "READALL",

"type" -> "org.amqp.management"
},

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()

// responseMessage will be of the form:

//
Message(

//

properties: {

//

correlation-id: 105,

//

to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "READALL",

//

"status-code" -> 200,

//

"status-description" -> "OK",

// },

//

application-data: AmqpValue(
//

List[

//

Map(

//

// type specific properties

//

"name" -> "myQueue",

//

"identity" -> "9876543",
//

"type" -> "com.example.broker.queue",
//

"num_priorities" -> 4,

//

"max_size" -> "3000Mb"

//

),
//

Map(

//

// type specific properties

//

"name" -> "newQueue",
//

"identity" -> "1234567",

//

"type" -> "com.example.broker.queue",
//

"num_priorities" -> 4,

//

"max_size" -> "2000Mb"

//

)
//

]

//

)

//
)

5.9 Discover

The below example illustrates successful discrovery.

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

message-id: 132,

to: "$management",

reply-to: "/myaddress"
},

application-properties: {

"name" -> "self",

"operation" -> "DISCOVER",

"type" -> "org.amqp.management"
},

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()

// responseMessage will be of the form:

//
Message(

//

properties: {

//

correlation-id: 132,

//

to: "/myaddress"

//

},

//

application-properties: {

//

"operation" -> "DISCOVER",

//

"status-code" -> 200,

//

"status-description" -> "OK",

// },

//

application-data: AmqpValue(

//

Map(

//

"com.example.broker.priorityqueue" -> Map(

//

"NAMES" -> AmqpValue(

//

List[

//

"myQueue",

//

"newqueue"

//

],

//

),

//

"TYPES" -> AmqpValue(

//

List[

//

"org.amqp.queue"

//

"com.example.broker.priorityqueue",

//

],

//

),

//

"OPERATIONS" -> AmqpValue(

//

List[

//

"CREATE",

//

"DELETE",

//

"READ",

//

"UPDATE"

//

]

//

)

//

)

//

"com.example.broker.queue" -> Map(

//

"NAMES" -> AmqpValue(

//

List[

//

...

//

],

//

),

//

"TYPES" -> AmqpValue(

//

List[

...

//

],

//

),

//

"OPERATIONS" -> AmqpValue(

//

List[

//

...

//

]

//

)

//

)

//

)

//

)

//
)
5.10 Discover Management Nodes

The below example illustrates successful discovery of all management nodes.

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

message-id: 152,

to: "$management",

reply-to: "/myaddress"
},

application-properties: {

"name" -> "self",

"operation" -> "DISCOVER-MGMT-NODES",

"type" -> "org.amqp.management"
},

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()

// responseMessage will be of the form:

//
Message(

//

properties: {

//

correlation-id: 152,

//

to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "DISCOVER-MGMT-NODES",

//

"status-code" -> 200,

//

"status-description" -> "OK",

// },

//

application-data: AmqpValue(
//

List[

//

"amqp:MasterNode",

//

"amqp:/SuperNode",

//

"amqp://example.com/AdminNode"
//

// TODO: Update these when Addressing is resolved.

//

]

//

)

//
)

5.11 Register a Resource

The below example illustrates successful registration of a resource.

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

correlation-id: 173,

to: "$management",
reply-to: "/myaddress"
},

application-properties: {

"name" -> "myQueue",

"operation" -> "REGISTER",

"type" -> "com.example.broker.queue"
}

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()

// responseMessage will be of the form:

//
Message(

//

properties: {

//

correlation-id: 173,

//

reply-to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "REGISTER",

//

"status-code" -> 200,

//

"status-description" -> "OK",

// }

//
)

5.12 Deregister a Resource

The below example illustrates successful deleting of registration of a resource.

// transfer a request message
requestLink.sendTransfer(
Message(
properties: {

correlation-id: 194,

to: "$management",
reply-to: "/myaddress"
},

application-properties: {

"name" -> "myQueue",

"operation" -> "DEREGISTER",

"type" -> "com.example.broker.queue"
}

)
)
// Receive the response message from the response link

responseMessage = responseLink.receiveTransfer()

// responseMessage will be of the form:

//
Message(

//

properties: {
//

correlation-id: 194,

//

reply-to: "/myaddress"
//

},

//

application-properties: {

//

"operation" -> "DEREGISTER",

//

"status-code" -> 200,

//

"status-description" -> "OK",

// }

//
)

6 # Conformance

The last numbered section in the specification must be the Conformance section. Conformance Statements/Clauses go here. [Remove # marker]
Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
[Participant Name, Affiliation | Individual Member]
[Participant Name, Affiliation | Individual Member]
Appendix B. Non-Normative Text
text

B.1 Subsidiary section

text

B.1.1 Sub-subsidiary section

text
Appendix C. Revision History

	Revision
	Date
	Editor
	Changes Made

	[Rev number]
	[Rev Date]
	[Modified By]
	[Summary of Changes]

TODO
· What do we mean by mandatory operations?
· All Manageable Entity Types should support the CRUD operations defined here, although some entities may not support all the CRUD operations, e.g., a system-managed entity cannot be created via this protocol.

· In introduction, add use case whereby this protocol is being used to manage non-message broker entities

amqp-man-v1.0-wd01
Working Draft 01
27 February 2013
Standards Track Draft
Copyright © OASIS Open 2013. All Rights Reserved.
Page 11 of 31

