
Karlstad University
Department of Information Systems

Remigijus GUSTAS
Department of Information Systems, Karlstad University

Phone: +46-54 700 17 65
E-mail: Remigijus.Gustas@kau.se

http://www.cs.kau.se/~gustas/

A New Foundation for Service –
Oriented Analysis and Design

© R Gustas© R Gustas2 Introduction

Two Challenges

�Foundation for Graphical Modelling of
Service – Oriented Architectures (SOA)
� SOA need to be captured, visualised and

agreed across the organisational and technical
system boundaries.

� Just as the complex buildings or machines
require explicit representations of design
structures, so does an overall SOA

�Integration Principles of SOA

© R Gustas© R Gustas3 Introduction

Enterprise Architecture –
Framework (Zachman, 1996)

StrategyScheduleOrganisationNetwork ComponentsDataFunctioning System

Rule
specification

Timing
definitions

Interface
architecture

Network
architecture

Process
design

Data
definition

Representations
Subcontractor view

Rule designComponent
control
structure

Presentation/
Layout structure

Techno-logy
archi-tecture

Deployment
architecture

Physical Data
architecture

Technology
Builder view

Constraints
and rules

Control
structure

Human interface
architecture

Distributed
system
architecture

Software
application
architecture

Logical Data
Architecture

Information System
Designer view

Business
Strategy /
Plan

Schedule
charts

Organisation
decomposition
chart with roles

Diagram of
logistic
network

Business
Process
diagram

Entity
relationship
diagram

Organisational system
Owner view

List of
business
goals

List of
business
events

List of
organizational
units

List of
locations

List of
processes

List of
concepts

Scope
Planner view

Motivation
(Why)

Time
(When)

People
(Who)

Network
(Where)

Function
(How)

Data
(What)

© R Gustas© R Gustas4 Introduction

Integration Principles
� Integrated representations of SOA are necessary to

reach consensus partners involved.

� Holistic understanding of SOA is typically not available.
It is necessary for planning of orderly transitional
processes.

� Traditional methods are dividing system specifications
into separate parts (they are typically devoted to data
architecture, application architecture or technology
architecture).

� Interdependencies between different views are crucial
to glue the static and dynamic aspects.

© R Gustas© R Gustas5 Introduction

Reassessment of the existing
theories, concepts and practices

� Service Oriented Analysis and Design (SOAD) should represent only conceptually
relevant aspects and it cannot be influenced by the possible implementation solutions. If
graphical specifications follow the basic conceptualization principle (Griethuisen, 1982),
they are less complex and, therefore, more comprehensible for humans.

� The fundamentals of engineering like good abstractions, good separation of concerns
never go out of style (Booch, 2004). Nevertheless, the implementation bias of many
system analysis methods is a big problem, since the same implementation - oriented
foundations are applied for the system analysis stage, without rethinking these concepts
fundamentally.

� Technology neutral descriptions of SOA should provide integration principles of the
isolated diagrams at the lower levels of abstraction. Separate technical system
representations are difficult to maintain. More reasonable is to conceptualize SOA, before
the supporting technical system is defined. Interdependencies across multiple diagrams
should be a critical part of business process modelling, since it is supposed to orchestrate
the interoperation details into one model.

© R Gustas© R Gustas6 Introduction

Design Layers

Object-
Oriented Design

Class Layer

Component-
Oriented Design

Component
Layer

Service-
Oriented Design

Service
Layer

Business Process
modeling

Business
Layer

Human Resource
Management

Recruitment Career

Example of design Hierarchy

© R Gustas© R Gustas7 Introduction

Basic Events in OO Analysis

� Creation
� Termination

� Connection
� Disconnection

� Classification
� Declassification
Source: (Martin and Odell, 1998)

Create, Access (Read, Search), Update and Delete
operations are used for definition of design solutions

Examples of design structures
in terms of Object Flow diagrams

© R Gustas© R Gustas8 Introduction

Compound Events in OO
Analysis

� Reconnection
� May look the same as connection

� Reclassification (similar as classification, declassification)
These events can be defined as follows:
� Creation of the object in Class2 by copying all attribute values from

the object in Class1 to the newly created object in Class2,
� Disconnect all associations pointing to the old objects and connect

them to the new one in Class2,
� Remove the old object in Class1.

� Basic events should be treated as one action in SOAD

© R Gustas© R Gustas9 Introduction

�Conceptual relevance (only conceptually
relevant aspects are included)

� Implementation Independent Notation
(technical aspects are not represented)

�Analyzability (whether SOA is Incomplete,
Inconsistent, Redundant, Incoherent,
Unambiguous)

�Traceability (must be traceable through all levels)
�Formality (well defined models)

Characteristics of Service
Oriented Representations

© R Gustas© R Gustas10 Introduction

Basic Semantic and Pragmatic
Dependencies

Dynamic (Semantic) Dependencies

Static (Semantic) Dependencies

Pragmatic Dependencies

© R Gustas© R Gustas11 Introduction

Pragmatic Dependencies (examples)

P la n n in g
D e p a rt-

m e n t

Q u a lity
C o n tro l
S ys te m

P rod uc tion
D e m an ds

R u n O rde r

D is c re pa nc ies

S h ift

M a rke tin g
D e p a rt-

m e n t

C la s s if ic a tio n
D a ta

Q u a lity
C o n tro l
S ys te m

P a p e r
M ill

H ig h e r
P ro f it

(-)

R e s tric tiv e
C la s s ific a tio n

P ro c e s s

p

g

Q ua lity
In fo rm a tion

Q u a lity
In fo rm a tio n

Actor

Flow

Description of
a situation or
process,
which Actors
may view as
Goal, Problem
or Opportunity

Context of
Business
Process

© R Gustas© R Gustas12 Introduction

Basic Events in SOAD
� Creation,
� Termination,

� Reclassification
(consists of termination
and creation events).

Events are trigerred by
communication Action.

Use Cases (UML) can be viewed as Actions

© R Gustas© R Gustas13 Introduction

Reclassification (Compound) Event

1. Communication Flow is sent by Agent

3. Communication
Flow is accepted by
Recepient

2. Removal of object
in a precondition Class

4. Creation of object
in a postcondition Class

Note: Flows can be Material, Information or Control
(control flow is represented just by communication dependency link)

© R Gustas© R Gustas14 Introduction

Example of Reclassification

Note: Reclassification of an object from one concept (could
be a class) to another without relating it to any other concepts
is not useful. Analysts must to identify a noteworthy semantic
difference between two concepts (Applicant and Employee).
Otherwise, the action is not useful.

© R Gustas© R Gustas15 Introduction

Semantic Difference can be specified
by using the Static Dependencies

© R Gustas© R Gustas16 Introduction

Example of Reclassification by
identifying two states of Person

© R Gustas© R Gustas17 Introduction

Basic Associations can be used
to define the semantic difference

Not Basic Associations (the remaining 5 types of static relations) are not
recommended for the final SOAD phase. They give rise to the semantic
holes. Since other association types are used in OO analysis and design,
they are not forbidden in early SOAD phases.

(0,1;1,1)

(1,1;1,1)

(0,*;1,1)

(0,1;1,*)

(1,1;1,*)

© R Gustas© R Gustas18 Introduction

Semantic Difference is defined by
new association for Employee

Termination of Applicant and creation of Employee is performed by the
same action of Employ. Postcondition object requires creation of a Position
object (it should be sent by Company as a part of flow that is entitled as
Contract). Precondition object of Applicant must have two associations (see
SS Number and Name). They are preserved after the action is executed,
because of the inheritance dependency from Employee to Person.

© R Gustas© R Gustas19 Introduction

Creation Event Notation

© R Gustas© R Gustas20 Introduction

Termination Event Notation

© R Gustas© R Gustas21 Introduction

Communication Loops

Company may be decomposed into services as its parts with clearly
defined communication protocols for delegated functions.

© R Gustas© R Gustas22 Introduction

Communication Loops with
Alternative Actions

© R Gustas© R Gustas23 Introduction

Communication Loops as
Queries

Not removed objects even when Search object is terminated.
They are necessary in the next communication loop.

© R Gustas© R Gustas24 Introduction

Relative Interpretation of Concepts

Nouns (an Order, a Search)

The same concept
can be interpreted in a number of ways (see the classification hierarchy).

Semantic dependecy types have no given names.
They define how a concept is classified.

Verbs (to Order, to Search)

© R Gustas© R Gustas25 Introduction

Component Level: Examples of
Business and Technical Components

Actor can be
instantiated as
Business or
Technical
Components

Interfaces have to be
defined between
Technical and
Business components

© R Gustas© R Gustas26 Introduction

Components and Communication Flows of the Trip
Reservation Service

Example of Search Form
(see component diagram)
Layout filled with

Trip Requirements data

© R Gustas© R Gustas27 Introduction

Components and
Interfaces of the Trip
Reservation Service

© R Gustas© R Gustas28 Introduction

Qualities of SOAD
Some discussion on qualities can be found in (Zimmermann et al.,2004)

�Service orientation facilitate reuse and ease of
reconfiguration through loose coupling.

�Dependencies between service components are
minimised and explicitly defined.

� Independent services are must be stateless.
�SOA should be understandable for domain experts

without deep technical expertise.
�SOAD is defined by using interaction

(communication) patterns among components
(business and technical: hardware, software). It is
based on the same systematic way of thinking.

© R Gustas© R Gustas29 Introduction

SOAD facilitates solution of
difficult problems:

� Ambiguity problem. Business processes and services are spanning across
organizational and technical system boundaries. Interpretation of the same
concept in various contexts may be different. SOA insists on clear definitions
and motivation of every concept.

� Integrity problem. SOA provide a comprehensible foundation for interplay
between various syntactic (implementation dependent), semantic and
pragmatic dependencies.

� Consistency problem. The same reality can be perceived in a number of
ways and therefore it can be represented on various levels of abstraction.
Inconsistencies can be identified by using SOA (inference rules).

� Completeness problem. Semantic and pragmatic dependencies suggest a
new way for the semantic incompleteness and overspecification control.

� Change evolution problem. Every new solution can be considered to be a
symptom of a new problem. Business architecture and SOA evolution problems
can be tackled in a systematic way.

© R Gustas© R Gustas30 Introduction

Summary

� Graphical Models that are used for SOAD follow the basic conceptualization
principle. Since models are implementation agnostic, their complexity is
lower and, therefore, comprehensibility by humans is higher

� Represent interoperation of organisational and technical components in one
model (on different levels of abstraction). Separate perspectives (many
models) in traditional architectures are difficult to maintain

� Integrated representations are necessary to reach consensus and to
develop holistic understanding for planning of orderly transitional processes

� Services can be represented as autonomous descriptions that are defined
and published on the Internet by using machine readable formats

� Significant competitive advantages, since models become a subject for
search, composition, evolution and integration

