
ws-humantask-spec-WD-02 13 March28 June 2008
Copyright © OASIS® 2008. All Rights Reserved. Page 1 of 90

 1

Web Services – Human Task 2

(WS-HumanTask) 3

Specification Version 1.1 4

Working Draft 02 5

13 March828 Julyne 2008 6

 7

 8

Specification URIs: 9

This Version: 10

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-wd-02.html 11
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-wd-02.doc 12
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-wd-02.pdf 13

Previous Version: 14

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-wd-01.html 15
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-wd-01.doc 16
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-wd-01.pdf 17

Latest Version: 18

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html 19
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.doc 20
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.pdf 21

Latest Approved Version: 22

N/A 23

 24

Technical Committee: 25

OASIS BPEL4People TC 26

 27

Chair: 28

Dave Ings, IBM 29

 30

Editor(s): 31

Charlton Barreto, Adobe Systems 32

Mark FordLuc Clément, Active Endpoints, Inc. 33

Dieter König, IBM 34

Vinkesh Mehta, Deloitte Consulting LLP 35

Ralf Mueller, Oracle Corporation 36

Krasimir Nedkov, SAP AG 37

Formatted: English (United Kingdom)

Formatted: Italian (Italy)

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-wd-02.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-wd-02.doc
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-wd-02.pdf
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-wd-01.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-wd-01.doc
http://docs.oasis-open.org/bpel4people/bpel4people-1.1-spec-wd-01.pdf
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.doc
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.pdf
http://www.oasis-open.org/committees/

ws-humantask-spec-WD-02 13 March28 June 2008
Copyright © OASIS® 2008. All Rights Reserved. Page 2 of 90

Ravi Rangaswamy, Oracle Corporation 38

Ivana Trickovic, SAP 39

Alessandro Triglia, OSS Nokalva 40

 41

Related work: 42

This specification is related to: 43

 WS-BPEL Extension for People (BPEL4People) Specification – Version 1.1 44

 45

Declared XML Namespace(s): 46

WS-HumanTask namespaces (defined in this specification): 47

 htd – http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803 48

htdp – http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803 49

 htdahta – http://docs.oasis-open.org/ns/bpel4people/ws-50
humantask/api/services/200803http://docs.oasis-open.org/ns/bpel4people/ws-51
humantask/api/200803 52

 htdthtt – http://docs.oasis-open.org/ns/bpel4people/ws-53
humantask/api/types/200803http://docs.oasis-open.org/ns/bpel4people/ws-54
humantask/types/200803 55

 htc - http://docs.oasis-open.org/ns/bpel4people/ws-humantask/context/200803 56

 htcp- http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803 57

 htp - http://docs.oasis-open.org/ns/bpel4people/ws-humantask/policy/200803 58

Other namespaces: 59

 wsa – http://www.w3.org/2005/08/addressing 60

 wsdl – http://schemas.xmlsoap.org/wsdl/ 61

 wsp – http://www.w3.org/ns/ws-policy 62

 xsd – http://www.w3.org/2001/XMLSchema 63

 64

Abstract: 65

The concept of human tasks is used to specify work which has to be accomplished by people. 66
Typically, human tasks are considered to be part of business processes. However, they can also 67
be used to design human interactions which are invoked as services, whether as part of a 68
process or otherwise. 69

This specification introduces the definition of human tasks, including their properties, behavior 70
and a set of operations used to manipulate human tasks. A coordination protocol is introduced in 71
order to control autonomy and life cycle of service-enabled human tasks in an interoperable 72
manner. 73

 74

Status: 75

This document was last revised or approved by the [TC name | membership of OASIS] on the 76
above date. The level of approval is also listed above. Check the “Latest Version” or “Latest 77
Approved Version” location noted above for possible later revisions of this document. 78

Technical Committee members should send comments on this specification to the Technical 79
Committee’s email list. Others should send comments to the Technical Committee by using the 80
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-81
open.org/committees/bpel4people/. 82

For information on whether any patents have been disclosed that may be essential to 83
implementing this specification, and any offers of patent licensing terms, please refer to the 84
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-85
open.org/committees/bpel4people/ipr.php. 86

Formatted: Portuguese (Brazil)

Field Code Changed

Formatted: English (United Kingdom)

Formatted: Bullets and Numbering

http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/services/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/services/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/services/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/types/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/types/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/types/200803
http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/ns/ws-policy
http://www.w3.org/2001/XMLSchema
http://www.oasis-open.org/committees/%5bTC%20short%20name%5d%20/
http://www.oasis-open.org/committees/%5bTC%20short%20name%5d%20/
http://www.oasis-open.org/committees/sca-bpel/ipr.php
http://www.oasis-open.org/committees/sca-bpel/ipr.php

ws-humantask-spec-WD-02 13 March28 June 2008
Copyright © OASIS® 2008. All Rights Reserved. Page 3 of 90

The non-normative errata page for this specification is located at http://www.oasis-87
open.org/committees/bpel4people/. 88

http://www.oasis-open.org/committees/%5bTC%20short%20name%5d%20/
http://www.oasis-open.org/committees/%5bTC%20short%20name%5d%20/

ws-humantask-spec-WD-02 13 March28 June 2008
Copyright © OASIS® 2008. All Rights Reserved. Page 4 of 90

Notices 89

Copyright © OASIS® 2008. All Rights Reserved. 90

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual 91
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. 92

This document and translations of it may be copied and furnished to others, and derivative works that 93
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, 94
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 95
and this section are included on all such copies and derivative works. However, this document itself may 96
not be modified in any way, including by removing the copyright notice or references to OASIS, except as 97
needed for the purpose of developing any document or deliverable produced by an OASIS Technical 98
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must 99
be followed) or as required to translate it into languages other than English. 100

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 101
or assigns. 102

This document and the information contained herein is provided on an "AS IS" basis and OASIS 103
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 104
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 105
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 106
PARTICULAR PURPOSE. 107

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would 108
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, 109
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to 110
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that 111
produced this specification. 112

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of 113
any patent claims that would necessarily be infringed by implementations of this specification by a patent 114
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR 115
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such 116
claims on its website, but disclaims any obligation to do so. 117

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 118
might be claimed to pertain to the implementation or use of the technology described in this document or 119
the extent to which any license under such rights might or might not be available; neither does it 120
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with 121
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be 122
found on the OASIS website. Copies of claims of rights made available for publication and any 123
assurances of licenses to be made available, or the result of an attempt made to obtain a general license 124
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee 125
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no 126
representation that any information or list of intellectual property rights will at any time be complete, or 127
that any claims in such list are, in fact, Essential Claims. 128

The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of 129
OASIS, the owner and developer of this specification, and should be used only to refer to the organization 130
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, 131
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-132
open.org/who/trademark.php for above guidance. 133

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

ws-humantask-spec-WD-02 13 March28 June 2008
Copyright © OASIS® 2008. All Rights Reserved. Page 5 of 90

Table of Contents 134

1 Introduction ... 76 135

2 Language Design ... 87 136

2.1 Dependencies on Other Specifications .. 87 137

2.2 Notational Conventions ... 87 138

2.3 Language Extensibility .. 87 139

2.4 Overall Language Structure .. 98 140

2.4.1 Syntax .. 98 141

2.4.2 Properties .. 98 142

3 Concepts .. 1211 143

3.1 Generic Human Roles .. 1211 144

3.2 Assigning People .. 1312 145

3.2.1 Using Logical People Groups .. 1413 146

3.2.2 Using Literals ... 1514 147

3.2.3 Using Expressions ... 1514 148

3.2.4 Data Type for Organizational Entities ... 1615 149

3.3 Task Rendering .. 1716 150

3.4 Task Instance Data ... 1716 151

3.4.1 Presentation Data .. 1716 152

3.4.2 Context Data.. 1817 153

3.4.3 Operational Data ... 1817 154

3.4.4 Data Types for Task Instance Data ... 1918 155

4 Human Tasks ... 2322 156

4.1 Overall Syntax .. 2322 157

4.2 Properties.. 2423 158

4.3 Presentation Elements .. 2524 159

4.4 Elements for Rendering Tasks ... 2726 160

4.5 Elements for People Assignment ... 2827 161

4.6 Elements for Handling Timeouts and Escalations .. 2928 162

4.7 Human Task Behavior and State Transitions ... 3534 163

4.7.1 Normal processing of a Human Task .. 3635 164

4.7.2 Releasing a Human Task .. 3736 165

4.7.3 Delegating or forwarding a Human Task ... 3736 166

4.7.4 Suspending and resuming a Human Task .. 3736 167

4.7.5 Skipping a Human Task .. 3736 168

4.7.6 Termination of a Human Task ... 3736 169

4.7.7 Error handling for Human Task ... 3837 170

5 Notifications .. 3938 171

5.1 Overall Syntax .. 3938 172

5.2 Properties.. 4039 173

5.3 Notification Behavior and State Transitions .. 4039 174

6 Programming Interfaces ... 4140 175

6.1 Operations for Client Applications .. 4140 176

6.1.1 Participant Operations ... 4241 177

ws-humantask-spec-WD-02 13 March28 June 2008
Copyright © OASIS® 2008. All Rights Reserved. Page 6 of 90

6.1.2 Simple Query Operations .. 4746 178

6.1.3 Advanced Query Operation ... 4948 179

6.1.4 Administrative Operations ... 5251 180

6.2 XPath Extension Functions ... 5352 181

7 Interoperable Protocol for Advanced Interaction with Human Tasks ... 5756 182

7.1 Human Task Coordination Protocol Messages .. 5958 183

7.2 Protocol Messages ... 6059 184

7.2.1 Protocol Messages Received by a Task Parent ... 6059 185

7.2.2 Protocol Messages Received by a Task ... 6059 186

7.3 WSDL of the Protocol Endpoints .. 6159 187

7.3.1 Protocol Endpoint of the Task Parent ... 6160 188

7.3.2 Protocol Endpoint of the Task ... 6160 189

7.4 Providing Human Task Context .. 6160 190

7.4.1 Schema of the Human Task Context .. 6160 191

7.4.2 SOAP Binding of Human Task Context .. 6261 192

7.5 Human Task Policy Assertion ... 6463 193

8 Providing Callback Information for Human Tasks .. 6564 194

8.1 EPR Information Model Extension .. 6564 195

8.2 XML Infoset Representation ... 6564 196

8.3 Message Addressing Properties ... 6867 197

8.4 SOAP Binding ... 6867 198

9 Security Considerations ... 7271 199

10 Conformance .. 7372 200

11 References ... 7473 201

A. Portability and Interoperability Considerations ... 7675 202

B. WS-HumanTask Language Schema .. 7776 203

C. WS-HumanTask Data Types Schema ... 7877 204

D. WS-HumanTask API Port Types .. 7978 205

E. WS-HumanTask Protocol Handler Port Types ... 8079 206

F. WS-HumanTask Context Schema ... 8180 207

G. WS-HumanTask Policy Assertion Schema .. 8281 208

H. Sample ... 8382 209

I. Acknowledgements .. 8783 210

J. Non-Normative Text ... 8985 211

K. Revision History .. 9086 212

213

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 7 of 90 Page 7 of 83

1 Introduction 214

Human tasks, or briefly tasks enable the integration of human beings in service-oriented 215

applications. This document provides a notation, state diagram and API for human tasks, as well 216
as a coordination protocol that allows interaction with human tasks in a more service-oriented 217
fashion and at the same time controls tasks’ autonomy. The document is called Web Services 218
Human Task (abbreviated to WS-HumanTask for the rest of this document). 219

Human tasks are services “implemented” by people. They allow the integration of humans in 220
service-oriented applications. A human task has two interfaces. One interface exposes the 221
service offered by the task, like a translation service or an approval service. The second interface 222
allows people to deal with tasks, for example to query for human tasks waiting for them, and to 223
work on these tasks. 224

A human task has people assigned to it. These assignments define who should be allowed to 225
play a certain role on that task. Human tasks may also specify how task metadata should be 226
rendered on different devices or applications making them portable and interoperable with 227
different types of software. Human tasks can be defined to react on timeouts, triggering an 228
appropriate escalation action. 229

This also holds true for notifications. Notifications are a special type of human task that allows the 230

sending of information about noteworthy business events to people. Notifications are always one-231
way, i.e., they are delivered in a fire-and-forget manner: The sender pushes out notifications to 232
people without waiting for these people to acknowledge their receipt. 233

Let us take a look at an example, an approval task. Such a human task could be involved in a 234
mortgage business process. After the data of the mortgage has been collected, and, if the value 235
exceeds some amount, a manual approval step is required. This can be implemented by invoking 236
an approval service implemented by the approval task. The invocation of the service by the 237
business process creates an instance of the approval task. As a consequence this task pops up 238
on the task list of the approvers. One of the approvers will claim the task, evaluate the mortgage 239
data, and eventually complete the task by either approving or rejecting it. The output message of 240
the task indicates whether the mortgage has been approved or not. All that is transparent to the 241
caller of the task (a business process in this example). 242

The goal of this specification is to enable portability and interoperability: 243

 Portability - The ability to take human tasks and notifications created in one vendor's 244

environment and use them in another vendor's environment. 245

 Interoperability - The capability for multiple components (task infrastructure, task list 246

clients and applications or processes with human interactions) to interact using well-247

defined messages and protocols. This enables combining components from different 248

vendors allowing seamless execution. 249

Out of scope of this specification is how human tasks and notifications are deployed or monitored. 250
Usually people assignment is accomplished by performing queries on a people directory which 251
has a certain organizational model. The mechanism determining how an implementation 252
evaluates people assignments, as well as the structure of the data in the people directory is out of 253
scope. 254

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 8 of 90 Page 7 of 83

2 Language Design 255

The language introduces a grammar for describing human tasks and notifications. Both design 256
time aspects, such as task properties and notification properties, and runtime aspects, such as 257
task states and events triggering transitions between states are covered by the language. Finally, 258
it introduces a programming interface which can be used by applications involved in the life cycle 259
of a task to query task properties, execute the task, or complete the task. This interface helps to 260
achieve interoperability between these applications and the task infrastructure when they come 261
from different vendors. 262

The language provides an extension mechanism that can be used to extend the definitions with 263
additional vendor-specific or domain-specific information. 264

Throughout this specification, WSDL and schema elements may be used for illustrative or 265
convenience purposes. However, in a situation where those elements or other text within this 266
document contradict the separate HT, WSDL or schema files, it is those files that have 267
precedence and not this document. 268

2.1 Dependencies on Other Specifications 269

WS-HumanTask utilizes the following specifications: 270

 WSDL 1.1 271

 XML Schema 1.0 272

 XPath 1.0 273

 WS-Addressing 1.0 274

 WS-Coordination 1.1 275

 WS-Policy 1.5 276

2.2 Notational Conventions 277

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 278
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 279
interpreted as described in RFC 2119 [RFC 2119]. 280

2.3 Language Extensibility 281

The WS-HumanTask extensibility mechanism allows: 282

 Attributes from other namespaces to appear on any WS-HumanTask element 283

 Elements from other namespaces to appear within WS-HumanTask elements 284

Extension attributes and extension elements MUST NOT contradict the semantics of any attribute 285
or element from the WS-HumanTask namespace. For example, an extension element could be 286
used to introduce a new task type. 287

The specification differentiates between mandatory and optional extensions (the section below 288
explains the syntax used to declare extensions). If a mandatory extension is used, a compliant 289
implementation must understand the extension. If an optional extension is used, a compliant 290
implementation may ignore the extension. 291

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 9 of 90 Page 7 of 83

2.4 Overall Language Structure 292

Human interactions subsume both human tasks and notifications. While human tasks and 293
notifications are described in subsequent sections, this section explains the overall structure of 294
human interactions definition. 295

2.4.1 Syntax 296

<htd:humanInteractions 297
 xmlns:htd="http://www.example.org/WS-HThttp://docs.oasis-298
open.org/ns/bpel4people/ws-humantask/200803" 299
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 300
 xmlns:tns="anyURI" 301
 targetNamespace="anyURI" 302
 expressionLanguage="anyURI"? 303
 queryLanguage="anyURI"?> 304
 305
 <htd:extensions>? 306
 <htd:extension namespace="anyURI" mustUnderstand="yes|no"/>+ 307
 </htd:extensions> 308
 309
 <htd:import namespace="anyURI"? 310
 location="anyURI"? 311
 importType="anyURI" />* 312
 313
 <htd:logicalPeopleGroups>? 314
 <htd:logicalPeopleGroup name="NCName" reference="QName"?>+ 315
 <htd:parameter name="NCName" type="QName" />* 316
 </htd:logicalPeopleGroup> 317
 </htd:logicalPeopleGroups> 318
 319
 <htd:tasks>? 320
 <htd:task name="NCName">+ 321
 ... 322
 </htd:task> 323
 </htd:tasks> 324
 325
 <htd:notifications>? 326
 <htd:notification name="NCName">+ 327
 ... 328
 </htd:notification> 329
 </htd:notifications> 330
 331
</htd:humanInteractions> 332
 333

2.4.2 Properties 334

The <humanInteractions> element has the following properties: 335

 expressionLanguage: This attribute specifies the expression language used in the 336

enclosing elements. The default value for this attribute is urn:ws-337

ht:sublang:xpath1.0 which represents the usage of XPath 1.0 within WS-338

HumanTask. The WS-HumanTask constructs that use expressions may override the 339

default expression language for individual expressions. A WS-HumanTask compliant 340

implementation MUST support the use of XPath 1.0 as the expression language. 341

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 10 of 90 Page 7 of 83

 queryLanguage: This attribute specifies the query language used in the enclosing 342

elements. The default value for this attribute is urn:ws-ht:sublang:xpath1.0 which 343

represents the usage of XPath 1.0 within WS-HumanTask. The WS-HumanTask 344

constructs that use query expressions may override the default query language for 345

individual query expressions. A WS-HumanTask compliant implementation MUST 346

support the use of XPath 1.0 as the query language. 347

 extensions: This element is used to specify namespaces of WS-HumanTask extension 348

attributes and extension elements. The element is optional. If present, it MUST include at 349

least one extension element. The <extension> element is used to specify a namespace of 350

WS-HumanTask extension attributes and extension elements, and indicate whether they 351

are mandatory or optional. Attribute mustUnderstand is used to specify whether the 352

extension must be understood by a compliant implementation. If the attribute has value 353

“yes” the extension is mandatory. Otherwise, the extension is optional. If a WS-354

HumanTask implementation does not support one or more of the extensions with 355

mustUnderstand="yes", then the human interactions definition MUST be rejected. 356

Optional extensions MAY be ignored. It is not required to declare optional extension. The 357

same extension URI MAY be declared multiple times in the <extensions> element. If an 358

extension URI is identified as mandatory in one <extension> element and optional in 359

another, then the mandatory semantics have precedence and MUST be enforced. The 360

extension declarations in an <extensions> element MUST be treated as an unordered 361

set. 362

 import: This element is used to declare a dependency on external WS-HumanTask and 363

WSDL definitions. Any number of <import> elements may appear as children of the 364

<humanInteractions> element. 365

The namespace attribute specifies an absolute URI that identifies the imported 366

definitions. This attribute is optional. An <import> element without a namespace 367

attribute indicates that external definitions are in use which are not namespace-qualified. 368
If a namespace is specified then the imported definitions MUST be in that namespace. If 369
no namespace is specified then the imported definitions MUST NOT contain a 370
targetNamespace specification. The namespace 371

http://www.w3.org/2001/XMLSchema is imported implicitly. Note, however, that 372

there is no implicit XML Namespace prefix defined for 373

http://www.w3.org/2001/XMLSchema. 374

The location attribute contains a URI indicating the location of a document that 375

contains relevant definitions. The location URI may be a relative URI, following the 376

usual rules for resolution of the URI base [XML Base, RFC 2396]. The location 377

attribute is optional. An <import> element without a location attribute indicates that 378

external definitions are used by the process but makes no statement about where those 379

definitions may be found. The location attribute is a hint and a WS-HumanTask 380

compliant implementation is not required to retrieve the document being imported from 381
the specified location. 382

The mandatory importType attribute identifies the type of document being imported by 383

providing an absolute URI that identifies the encoding language used in the document. 384

The value of the importType attribute MUST be set to 385
http://www.example.org/WS-HThttp://docs.oasis-386

open.org/ns/bpel4people/ws-humantask/200803 when importing WS-387

HumanTask documents, or to http://schemas.xmlsoap.org/wsdl/ when 388

importing WSDL 1.1 documents. 389

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 11 of 90 Page 7 of 83

According to these rules, it is permissible to have an <import> element without 390

namespace and location attributes, and only containing an importType attribute. 391

Such an <import> element indicates that external definitions of the indicated type are in 392

use that are not namespace-qualified, and makes no statement about where those 393
definitions may be found. 394

A human interactions definition MUST import all WS-HumanTask and WSDL definitions it 395
uses. In order to support the use of definitions from namespaces spanning multiple 396
documents, a human interactions definition MAY include more than one import 397

declaration for the same namespace and importType, provided that those declarations 398

include different location values. <import> elements are conceptually unordered. A 399

human interactions definition MUST be rejected if the imported documents contain 400
conflicting definitions of a component used by the importing process definition. 401

Documents (or namespaces) imported by an imported document (or namespace) MUST 402
NOT be transitively imported by a WS-HumanTask compliant implementation. In 403
particular, this means that if an external item is used by a task enclosed in the human 404
interactions definition, then a document (or namespace) that defines that item MUST be 405
directly imported by the human interactions definition. This requirement does not limit the 406
ability of the imported document itself to import other documents or namespaces. 407

 logicalPeopleGroups: This element specifies a set of all logical people groups used 408

in the enclosing human tasks and notifications. The element is optional. If present, it 409

MUST include at least one logicalPeopleGroup element. The set of logical people groups 410

MUST contain only those logical people groups that are used in the humanInteractions 411

element, and enclosed human tasks and notifications. The logicalPeopleGroup element 412

has the following attributes. The name attribute specifies the name of the logical people 413

group. The name MUST be unique among the names of all logicalPeopleGroups defined 414

within the humanInteractions element. The reference attribute is optional. InThe reference 415

attribute specifies logical people group, in case a logical people group is used in the 416

humanInteractions element that is defined in an elsewhereimported WS-HumanTask 417

definition, the reference attribute MUST be used to specify the logical people group. The 418

reference attribute is optional. The parameter element is used to pass data needed for 419

people query evaluation. 420

 tasks: This element specifies a set of human tasks. The element is optional. If present, it 421

MUST include at least one <task> element. The syntax and semantics of the <task> 422

element are introduced in section 4 “Human Tasks”. 423

 notifications: This element specifies a set of notifications. The element is optional. If 424

present, it MUST include at least one <notification> element. The syntax and semantics 425

of the <notification> element are introduced in section 5 “Notifications”. 426

Element humanInteractions MUST NOT be empty, that is it MUST include at least one 427

element. 428

 429

All WS-HumanTask elements may use the element <documentation> to provide annotation for 430

users. The content could be a plain text, HTML, and so on. The <documentation> element is 431

optional and has the following syntax: 432

 433

<htd:documentation xml:lang="xsd:language"> 434
 ... 435
</htd:documentation> 436

Formatted: French (Canada)

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 12 of 90 Page 7 of 83

3 Concepts 437

3.1 Generic Human Roles 438

Generic human roles define what a person or a group of people resulting from a people query can 439
do with tasks and notifications. The following generic human roles are taken into account in this 440
specification: 441

 Task initiator 442

 Task stakeholders 443

 Potential owners 444

 Actual owner 445

 Excluded owners 446

 Business administrators 447

 Notification recipients 448

 449

A task initiator is the person who creates the task instance. Depending on how the task has been 450

instantiated the task initiator may or may not be defined. 451

The task stakeholders are the people ultimately responsible for the oversight and outcome of the 452

task instance. A task stakeholder can influence the progress of a task, for example, by adding 453
ad-hoc attachments, forwarding the task, or simply observing the state changes of the task. It is 454
also allowed to perform administrative actions on the task instance and associated notification(s), 455
such as resolving missed deadlines. Compliant implementations MUST ensure that at least one 456
person is associated with this role at runtime. 457

Potential owners of a task are persons who receive the task so that they can claim and complete 458
it. A potential owner becomes the actual owner of a task by explicitly claiming it. Before the task 459

has been claimed, potential owners can influence the progress of the task, for example by 460
changing the priority of the task, adding ad-hoc attachments or comments. All excluded owners 461
are implicitly removed from the set of potential owners. 462

Excluded owners may not become an actual or potential owner and thus they may not reserve or 463

start the task. 464

An actual owner of a task is the person actually performing the task. A task has exactly one 465

actual owner. When task is performed, the actual owner can execute actions, such as revoking 466
the claim, forwarding the task, suspending and resuming the task execution or changing the 467
priority of the task. 468

Business administrators play the same role as task stakeholders but at task type level. Therefore, 469
business administrators can perform the exact same operations as task stakeholders. Business 470
administrators may also observe the progress of notifications. Compliant implementations MUST 471
ensure that at runtime at least one person is associated with this role. 472

Notification recipients are persons who receive the notification, such as happens when a deadline 473

is missed or when a milestone is reached. This role is similar to the roles potential owners and 474
actual owner but has different repercussions because a notification recipient does not have to 475
perform any action and hence it is more of informational nature than participation. A notification 476
has one or more recipients. 477

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 13 of 90 Page 7 of 83

3.2 Assigning People 478

To determine who is responsible for acting on a human task in a certain generic human role or 479
who will receive a notification, people need to be assigned. People assignment can be achieved 480
in different ways: 481

 Via logical people groups (see 3.2.1 “Using Logical People Groups”) 482

 Via literals (see 3.2.2 “Using Literals”) 483

 Via expressions e.g., by retrieving data from the input message of the human task (see 484

3.2.3 “Using Expressions”). 485

When specifying people assignments then the data type htd:tOrganizationalEntity is 486

used. Using htd:tOrganizationalEntity allows to assign either a set of people or an 487

unresolved group of people (“work queue”). 488

Syntax: 489

<htd:peopleAssignments> 490
 491
 <htd:genericHumanRole>+ 492
 <htd:from>...</htd:from> 493
 </htd:genericHumanRole> 494
 495
</htd:peopleAssignments> 496

The following syntactical elements for generic human roles are introduced. They may be used 497

wherever the abstract element genericHumanRole is allowed by the WS-HumanTask XML 498

Schema. 499

<htd:potentialOwners> 500
 <htd:from>...</htd:from> 501
</htd:potentialOwners> 502
 503
<htd:excludedOwners> 504
 <htd:from>...</htd:from> 505
</htd:excludedOwners> 506
 507
<htd:taskInitiator> 508
 <htd:from>...</htd:from> 509
</htd:taskInitiator> 510
 511
<htd:taskStakeholders> 512
 <htd:from>...</htd:from> 513
</htd:taskStakeholders> 514
 515
<htd:businessAdministrators> 516
 <htd:from>...</htd:from> 517
</htd:businessAdministrators> 518
 519
<htd:recipients> 520
 <htd:from>...</htd:from> 521
</htd:recipients> 522

Element <htd:from> is used to specify the value to be assigned to a role. The element may 523

have different forms as described below. 524

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 14 of 90 Page 7 of 83

3.2.1 Using Logical People Groups 525

A logical people group represents either one person, a set of people, or one or many unresolved 526
groups of people (i.e., group names). A logical people group is bound to a people query against a 527
people directory at deployment time. Though the term query is used, the exact discovery and 528
invocation mechanism of this query is not defined by this specification. There are no limitations as 529
to how the logical people group is evaluated. At runtime, this people query is evaluated to retrieve 530
the actual people assigned to the task or notification. Logical people groups support query 531
parameters which are passed to the people query at runtime. Parameters may refer to task 532
instance data (see section 3.4 for more details). During people query execution an infrastructure 533
may decide which of the parameters defined by the logical people group are used. It may use 534
zero or more of the parameters specified. It may also override certain parameters with values 535
defined during logical people group deployment. The deployment mechanism for tasks and 536
logical people groups is out of scope for this specification. 537

People queries are evaluated during the creation of a human task or a notification. If a people 538
query fails then the human task or notification is created anyway. Failed people queries are 539
treated like people queries that return an empty result set. If the potential owner people query 540
returns an empty set of people then nomination has to be performed (see section 4.7.1 “Normal 541
processing of a Human Task”). In case of notifications, the same applies to notification recipients. 542

People queries return either one person, a set of people, or the name of one or many groups of 543
people. The latter is added to support “work queue” based business scenarios, where people see 544
work they have been assigned to due to their membership of a certain group. Especially in cases 545
where group membership changes frequently, this “late binding” to the actual group members is 546
beneficial. 547

Logical people groups are global elements enclosed in a human interactions definition document. 548
Multiple human tasks in the same document can utilize the same logical people group definition. 549
During deployment each logical people group is bound to a people query. If two human tasks 550
reference the same logical people group, they are bound to the same people query. However, 551
this does not guarantee that the tasks are actually assigned to the same set of people. The 552
people query is performed for each logical people group reference of a task and may return 553
different results, for example if the content of the people directory has been changed between two 554
queries. Binding of logical people groups to actual people query implementations is out of scope 555
for this specification. 556

 557

Syntax: 558

<htd:from logicalPeopleGroup="NCName"> 559
 <htd:argument name="NCName" expressionLanguage="anyURI"? >* 560
 expression 561
 </htd:argument> 562
</htd:from> 563
 564

The logicalPeopleGroup attribute refers to a logicalPeopleGroup definition. The element 565

<argument> is used to pass values used in the people query. The expressionLanguage 566

attribute specifies the language used in the expression. The attribute is optional. If not specified, 567
the default language as inherited from the closest enclosing element that specifies the attribute is 568
used. 569

 570

Example: 571

<htd:potentialOwners> 572
 <htd:from logicalPeopleGroup="regionalClerks"> 573
 <htd:argument name="region"> 574
 htd:getInput("part1")/region 575
 </htd:argument> 576

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 15 of 90 Page 7 of 83

 </htd:from> 577
</htd:potentialOwners> 578

3.2.2 Using Literals 579

People assignments can be defined literally by directly specifying the user identifier(s) or the 580

name(s) of groups using either the htd:tOrganizationalEntity or htd:tUser data type 581

introduced below (see 3.2.4 “Data Type for Organizational Entities”). 582

Syntax: 583

<htd:from> 584
 <htd:literal> 585
 ... literal value ... 586
 </htd:literal> 587
</htd:from> 588

 589

Example specifying user identifiers: 590

<htd:potentialOwners> 591
 <htd:from> 592
 <htd:literal> 593
 <htd:organizationalEntity> 594
 <htd:users> 595
 <htd:user>Alan</htd:user> 596
 <htd:user>Dieter</htd:user> 597
 <htd:user>Frank</htd:user> 598
 <htd:user>Gerhard</htd:user> 599
 <htd:user>Ivana</htd:user> 600
 <htd:user>Karsten</htd:user> 601
 <htd:user>Matthias</htd:user> 602
 <htd:user>Patrick</htd:user> 603
 </htd:users> 604
 </htd:organizationalEntity> 605
 </htd:literal> 606
 </htd:from> 607
</htd:potentialOwners> 608
 609

Example specifying group names: 610

<htd:potentialOwners> 611
 <htd:from> 612
 <htd:literal> 613
 <htd:organizationalEntity> 614
 <htd:groups> 615
 <htd:group>bpel4people_authors</htd:group> 616
 </htd:groups> 617
 </htd:organizationalEntity> 618
 </htd:literal> 619
 </htd:from> 620
</htd:potentialOwners> 621

3.2.3 Using Expressions 622

Alternatively people can be assigned using expressions returning either an instance of the 623

htd:tOrganizationalEntity data type or the htd:tUser data type introduced below (see 624

3.2.4 “Data Type for Organizational Entities”). 625

 626

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 16 of 90 Page 7 of 83

Syntax: 627

<htd:from expressionLanguage="anyURI"?> 628
 expression 629
</htd:from> 630

 631

The expressionLanguage attribute specifies the language used in the expression. The 632

attribute is optional. If not specified, the default language as inherited from the closest enclosing 633
element that specifies the attribute is used. 634

 635

Example: 636

<htd:potentialOwners> 637
 <htd:from>htd:getInput("part1")/approvers</htd:from> 638
</htd:potentialOwners> 639
 640
<htd:businessAdministrators> 641
 <htd:from> 642
 htd:except(htd:getInput("part1")/admins, 643
 htd:getInput("part1")/globaladmins[0]) 644
 </htd:from> 645
</htd:businessAdministrators> 646

3.2.4 Data Type for Organizational Entities 647

The following XML schema definition describes the format of the data that is returned at runtime 648
when evaluating a logical people group. The result may contain either a list of users or a list of 649
groups. The latter is used to defer the resolution of one or more groups of people to a later point, 650
such as when the user accesses a task list. 651

<xsd:element name="organizationalEntity" type="tOrganizationalEntity" /> 652
<xsd:complexType name="tOrganizationalEntity"> 653
 <xsd:choice> 654
 <xsd:element ref="users" /> 655
 <xsd:element ref="groups" /> 656
 </xsd:choice> 657
</xsd:complexType> 658
 659
<xsd:element name="user" type="tUser" /> 660
<xsd:simpleType name="tUser"> 661
 <xsd:restriction base="xsd:string" /> 662
</xsd:simpleType> 663
 664
<xsd:element name="users" type="tUserlist" /> 665
<xsd:complexType name="tUserlist"> 666
 <xsd:sequence> 667
 <xsd:element ref="user" minOccurs="0" maxOccurs="unbounded" /> 668
 </xsd:sequence> 669
</xsd:complexType> 670
 671
<xsd:element name="group" type="tGroup" /> 672
<xsd:simpleType name="tGroup"> 673
 <xsd:restriction base="xsd:string" /> 674
</xsd:simpleType> 675
 676
<xsd:element name="groups" type="tGrouplist" /> 677
<xsd:complexType name="tGrouplist"> 678
 <xsd:sequence> 679

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 17 of 90 Page 7 of 83

 <xsd:element ref="group" minOccurs="0" maxOccurs="unbounded" /> 680
 </xsd:sequence> 681
</xsd:complexType> 682

3.3 Task Rendering 683

Humans require a presentation interface to interact with a machine. This specification covers the 684
service interfaces that enable this to be accomplished, and enables this in different constellations 685
of software from different parties. The key elements are the task list client, the task engine and 686
the applications invoked when a task is executed. 687

It is assumed that a single task instance can be rendered by different task list clients so the task 688
engine does not depend on a single dedicated task list client. Similarly it is assumed that one task 689
list client can present tasks from several task engines in one homogenous list and can handle the 690
tasks in a consistent manner. The same is assumed for notifications. 691

A distinction is made between the rendering of the meta-information associated with the task or 692
notification (task-description UI and task list UI) (see section 4.3 for more details on presentation 693
elements) and the rendering of the task or notification itself (task-UI) used for task execution (see 694

section 4.4 for more details on task rendering). For example, the task-description UI includes the 695
rendering of a summary list of pending or completed tasks and detailed meta-information such as 696
a deadlines, priority and description about how to perform the task. It is the task list client that 697
deals with this. 698

The task-UI can be rendered by the task list client or delegated to a rendering application invoked 699
by the task list client. The task definition and notification definition can define different rendering 700
information for the task-UI using different rendering methodologies. 701

Versatility of deployment determines which software within a particular constellation performs the 702
presentation rendering. 703

The task-UI can be specified by a rendering method within the task definition or notification 704
definition. The rendering method is identified by a unique name attribute and specifies the type of 705
rendering technology being used. A task or a notification may have more than one such rendering 706
method, e.g. one method for each environment the task or notification is accessed from (e.g. 707
workstation, mobile device). 708

The task-list UI encompasses all information crucial for understanding the importance of and 709
details about a given task or notification (e.g. task priority, subject and description) - typically in a 710
table-like layout. Upon selecting a task, i.e. an entry in case of a table-like layout, the user is 711
given the opportunity to launch the corresponding task-UI. The task-UI has access to the task 712
instance data, and may comprise and manipulate documents other than the task instance. It can 713
be specified by a rendering method within the task description. 714

3.4 Task Instance Data 715

Task instance data falls into three categories: 716

 Presentation data – The data is derived from the task definition or the notification 717

definition such as the name, subject or description. 718

 Context data - A set of dynamic properties, such as priority, task state, time stamps and 719

values for all generic human roles. 720

 Operational data – The data includes the input message, output message, attachments 721

and comments. 722

3.4.1 Presentation Data 723

The presentation data is used, for example, when displaying a task or a notification in the task list 724
client. The presentation data has been prepared for display such as by substituting variables. See 725
section 4.3 “Presentation Elements” for more details. 726

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 18 of 90 Page 7 of 83

3.4.2 Context Data 727

The task context includes the following: 728

 Task state 729

 Priority 730

 Values for all generic human roles, i.e. potential owners, actual owner and business 731

administrators 732

 Time stamps such as start time, completion time, defer expiration time, and expiration 733

time 734

 Skipable indicator 735

An implementation may extend this set of properties available in the task context. 736

For example, the actual owner may start the execution of the task but the task could 737

be long-running task so intermediate state could be saved in the task context. 738

3.4.3 Operational Data 739

The operational data of a task consists of its input data and output data or fault data, as well as 740
any ad-hoc attachments and comments. The operational data of a notification is restricted to its 741
input data. Operational data is accessed using the XPath extension functions and programming 742
interface. 743

3.4.3.1 Ad-hoc Attachments 744

Arbitrary additional data may be attached to a task. This additional data is referred to as task ad-745
hoc attachments. An ad-hoc attachment is specified by its name, its type and its content. 746

The name element is used to specify attachment name. Several attachments may have the same 747

name and can then be retrieved as a collection. 748

The contentType of an attachment can be any valid XML schema type, including xsd:any, or 749

any MIME type. The attachment data is assumed to be of that type. 750

The accessType element indicates if the attachment is specified inline or by reference. In the 751

inline case it contains the string constant “inline”. In this case the value of the attachment data 752

type contains the base64 encoded attachment. In case the attachment is referenced it contains 753

the string “URL”, indicating that the value of the attachment data type contains a URL from 754

where the attachment can be retrieved. Other values of the accessType element are allowed for 755

extensibility reasons, for example to enable inclusion of attachment content from content 756
management systems. 757

The attachedAt element indicates when the attachment is added. 758

The attachedBy element indicates who added the attachment. It could be a user, not a group or 759

a list of users or groups. 760

A task may have ad-hoc attachments. Ad-hoc attachments can be added, deleted and retrieved 761
by name. Deletion and retrieving affects all attachments of that name. 762

 763

Attachment Info Data Type 764

The following data type is used to return infos on ad-hoc attachments. 765

<xsd:element name="attachmentInfo" type="tAttachmentInfo" /> 766
<xsd:complexType name="tAttachmentInfo"> 767
 <xsd:sequence> 768
 <xsd:element name="name" type="xsd:string" /> 769
 <xsd:element name="accessType" type="xsd:string" /> 770

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 19 of 90 Page 7 of 83

 <xsd:element name="contentType" type="xsd:string" /> 771
 <xsd:element name="attachedAt" type="xsd:dateTime" /> 772
 <xsd:element name="attachedBy" type="htd:tUser" /> 773
 <xsd:any namespace="##other" processContents="lax" 774
 minOccurs="0" maxOccurs="unbounded" /> 775
 </xsd:sequence> 776
</xsd:complexType> 777
 778

Attachment Data Type 779

The following data type is used to return ad-hoc attachments. 780

<xsd:element name="attachment" type="tAttachment" /> 781
<xsd:complexType name="tAttachment"> 782
 <xsd:sequence> 783
 <xsd:element ref="attachmentInfo" /> 784
 <xsd:element name="value" type="xsd:anyType" /> 785
 </xsd:sequence> 786
</xsd:complexType> 787

3.4.3.2 Comments 788

A task may have associated textual notes added by participants of the task. These notes are 789
collectively referred to as task comments. Comments are essentially a chronologically ordered list 790

of notes added by various users who worked on the task. A comment has the text, user 791
information and a timestamp. Comments are usually added individually, but retrieved as one 792
group. Comments usage is optional in a task. 793

The addedAt element indicates when the comment is added. 794

The addedBy element indicates who added the attachment. It could be a user, not a group or a 795

list of users or groups. 796

 797

Comment Data Type 798

The following data type is used to return comments. 799

<xsd:element name="comment" type="tComment" /> 800
<xsd:complexType name="tComment"> 801
 <xsd:sequence> 802
 <xsd:element name="addedAt" type="xsd:dateTime" /> 803
 <xsd:element name="addedBy" type="htd:tUser" /> 804
 <xsd:element name="text" type="xsd:string" /> 805
 <xsd:any namespace="##other" processContents="lax" 806
 minOccurs="0" maxOccurs="unbounded" /> 807
 </xsd:sequence> 808
</xsd:complexType> 809

 810

Comments can be added to a task and retrieved from a task. 811

3.4.4 Data Types for Task Instance Data 812

The following data types are used to represent instance data of a task or a notification. The data 813

type htd:taskAbstracthtt:tTaskAbstract is used to provide the summary data of a task 814

or a notification that is displayed on a task list. The data type htd:taskhtt:tTask contains the 815

data of a task or a notification, except ad-hoc attachments, comments and presentation 816

description. The data that is not contained in htd:taskhtt:tTask may be retrieved separately 817

from the task engine using the task API. 818

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 20 of 90 Page 7 of 83

Contained presentation elements are in a single language (the context determines that language, 819
e.g., when a task abstract is returned in response to a simple query, the language from the locale 820
of the requestor is used). 821

The elements startByExists and completeByExists have a value of “true” if the task has 822

at least one start deadline or at least one completion deadline respectively. The actual times 823

(startBy and complete By) of the individual deadlines can be retrieved using the query 824

operation (see section 6.1.3 “Advanced Query Operation”). 825

Note that elements that do not apply to notifications are defined as optional. 826

 827

TaskAbstract Data Type 828

<xsd:element name="taskAbstract" type="tTaskAbstract" /> 829
<xsd:complexType name="tTaskAbstract"> 830
 <xsd:sequence> 831
 <xsd:element name="id" 832
 type="xsd:string" /> 833
 <xsd:element name="taskType" 834
 type="xsd:string" /> 835
 <xsd:element name="name" 836
 type="xsd:QName" /> 837
 <xsd:element name="status" 838
 type="tStatus" /> 839
 <xsd:element name="priority" 840
 type="xsd:nonNegativeInteger" minOccurs="0" /> 841
 <xsd:element name="createdOn" 842
 type="xsd:dateTime" /> 843
 <xsd:element name="activationTime" 844
 type="xsd:dateTime" minOccurs="0" /> 845
 <xsd:element name="expirationTime" 846
 type="xsd:dateTime" minOccurs="0" /> 847
 <xsd:element name="isSkipable" 848
 type="xsd:boolean" minOccurs="0" /> 849
 <xsd:element name="hasPotentialOwners" 850
 type="xsd:boolean" minOccurs="0" /> 851
 <xsd:element name="startByExists" 852
 type="xsd:boolean" minOccurs="0" /> 853
 <xsd:element name="completeByExists" 854
 type="xsd:boolean" minOccurs="0" /> 855
 <xsd:element name="presentationName" 856
 type="tPresentationName" minOccurs="0" /> 857
 <xsd:element name="presentationSubject" 858
 type="tPresentationSubject" minOccurs="0" /> 859
 <xsd:element name="renderingMethodExists" 860
 type="xsd:boolean" /> 861
 <xsd:element name="hasOutput" 862
 type="xsd:boolean" minOccurs="0" /> 863
 <xsd:element name="hasFault" 864
 type="xsd:boolean" minOccurs="0" /> 865
 <xsd:element name="hasAttachments" 866
 type="xsd:boolean" minOccurs="0" /> 867
 <xsd:element name="hasComments" 868
 type="xsd:boolean" minOccurs="0" /> 869
 <xsd:element name="escalated" 870
 type="xsd:boolean" minOccurs="0" /> 871
 <xsd:any namespace="##other" processContents="lax" 872
 minOccurs="0" maxOccurs="unbounded" /> 873

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 21 of 90 Page 7 of 83

 </xsd:sequence> 874
</xsd:complexType> 875

 876

Task Data Type 877

<xsd:element name="task" type="tTask"/> 878
<xsd:complexType name="tTask"> 879
 <xsd:sequence> 880
 <xsd:element name="id" 881
 type="xsd:string"/> 882
 <xsd:element name="taskType" 883
 type="xsd:string"/> 884
 <xsd:element name="name" 885
 type="xsd:QName"/> 886
 <xsd:element name="status" 887
 type="tStatus"/> 888
 <xsd:element name="priority" 889
 type="xsd:nonNegativeInteger" minOccurs="0"/> 890
 <xsd:element name="taskInitiator" 891
 type="htd:tUser" minOccurs="0"/> 892
 <xsd:element name="taskStakeholders" 893
 type="htd:tOrganizationalEntity" minOccurs="0"/> 894
 <xsd:element name="potentialOwners" 895
 type="htd:tOrganizationalEntity" minOccurs="0"/> 896
 <xsd:element name="businessAdministrators" 897
 type="htd:tOrganizationalEntity" minOccurs="0"/> 898
 <xsd:element name="actualOwner" 899
 type="htd:tUser" minOccurs="0"/> 900
 <xsd:element name="notificationRecipients" 901
 type="htd:tOrganizationalEntity" minOccurs="0"/> 902
 <xsd:element name="createdOn" 903
 type="xsd:dateTime"/> 904
 <xsd:element name="createdBy" 905
 type="xsd:string" minOccurs="0"/> 906
 <xsd:element name="activationTime" 907
 type="xsd:dateTime" minOccurs="0"/> 908
 <xsd:element name="expirationTime" 909
 type="xsd:dateTime" minOccurs="0"/> 910
 <xsd:element name="isSkipable" 911
 type="xsd:boolean" minOccurs="0"/> 912
 <xsd:element name="hasPotentialOwners" 913
 type="xsd:boolean" minOccurs="0"/> 914
 <xsd:element name="startByExists" 915
 type="xsd:boolean" minOccurs="0"/> 916
 <xsd:element name="completeByExists" 917
 type="xsd:boolean" minOccurs="0"/> 918
 <xsd:element name="presentationName" 919
 type="tPresentationName" minOccurs="0"/> 920
 <xsd:element name="presentationSubject" 921
 type="tPresentationSubject" minOccurs="0"/> 922
 <xsd:element name="renderingMethodExists" 923
 type="xsd:boolean"/> 924
 <xsd:element name="hasOutput" 925
 type="xsd:boolean" minOccurs="0"/> 926
 <xsd:element name="hasFault" 927
 type="xsd:boolean" minOccurs="0"/> 928
 <xsd:element name="hasAttachments" 929

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 22 of 90 Page 7 of 83

 type="xsd:boolean" minOccurs="0"/> 930
 <xsd:element name="hasComments" 931
 type="xsd:boolean" minOccurs="0"/> 932
 <xsd:element name="escalated" 933
 type="xsd:boolean" minOccurs="0"/> 934
 <xsd:element name="primarySearchBy" 935
 type="xsd:string" minOccurs="0"/> 936
 <xsd:any namespace="##other" processContents="lax" 937
 minOccurs="0" maxOccurs="unbounded"/> 938
 </xsd:sequence> 939
</xsd:complexType> 940

 941

Common Data Types 942

<xsd:simpleType name="tPresentationName"> 943
 <xsd:annotation> 944
 <xsd:documentation>length-restricted string</xsd:documentation> 945
 </xsd:annotation> 946
 <xsd:restriction base="xsd:string"> 947
 <xsd:maxLength value="64" /> 948
 <xsd:whiteSpace value="preserve" /> 949
 </xsd:restriction> 950
</xsd:simpleType> 951
 952
<xsd:simpleType name="tPresentationSubject"> 953
 <xsd:annotation> 954
 <xsd:documentation>length-restricted string</xsd:documentation> 955
 </xsd:annotation> 956
 <xsd:restriction base="xsd:string"> 957
 <xsd:maxLength value="254" /> 958
 <xsd:whiteSpace value="preserve" /> 959
 </xsd:restriction> 960
</xsd:simpleType> 961
 962
<xsd:simpleType name="tStatus"> 963
 <xsd:restriction base="xsd:string"> 964
 <xsd:enumeration value="CREATED" /> 965
 <xsd:enumeration value="READY" /> 966
 <xsd:enumeration value="RESERVED" /> 967
 <xsd:enumeration value="IN_PROGRESS" /> 968
 <xsd:enumeration value="SUSPENDED" /> 969
 <xsd:enumeration value="COMPLETED" /> 970
 <xsd:enumeration value="FAILED" /> 971
 <xsd:enumeration value="ERROR" /> 972
 <xsd:enumeration value="EXITED" /> 973
 <xsd:enumeration value="OBSOLETE" /> 974
 </xsd:restriction> 975
</xsd:simpleType> 976

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 23 of 90 Page 7 of 83

4 Human Tasks 977

The <task> element is used to specify human tasks. The section below introduces the syntax for 978

the element, and individual properties are explained in subsequent sections. 979

4.1 Overall Syntax 980

Definition of human tasks: 981

<htd:task name="NCName"> 982
 983
 <htd:interface portType="QName" operation="NCName" 984
 responsePortType="QName"? responseOperation="NCName"? /> 985
 986
 <htd:priority expressionLanguage="anyURI"? >? 987
 integer-expression 988
 </htd:priority> 989
 990
 <htd:peopleAssignments>...</htd:peopleAssignments> 991
 992
 <htd:delegation 993
 potentialDelegatees="anybody|nobody|potentialOwners|other" />? 994
 <htd:from>? 995
 ... 996
 </htd:from> 997
 </htd:delegation> 998
 999
 <htd:presentationElements>...</htd:presentationElements> 1000
 1001
 <htd:outcome part="NCName" queryLanguage="anyURI">? 1002
 queryContent 1003
 </htd:outcome> 1004
 1005
 <htd:searchBy expressionLanguage="anyURI"? >? 1006
 expression 1007
 </htd:searchBy> 1008
 1009
 <htd:renderings>? 1010
 <htd:rendering type="QName">+ 1011
 ... 1012
 </htd:rendering> 1013
 </htd:renderings> 1014
 1015
 <htd:deadlines>? 1016
 1017
 <htd:startDeadline>* 1018
 ... 1019
 </htd:startDeadline> 1020
 1021
 <htd:completionDeadline>* 1022
 ... 1023
 </htd:completionDeadline> 1024
 1025
 </htd:deadlines> 1026

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 24 of 90 Page 7 of 83

 1027
</htd:task> 1028

4.2 Properties 1029

The following attributes and elements are defined for tasks: 1030

 name: This attribute is used to specify the name of the task. The name combined with the 1031

target namespace of a task element is used to uniquely identify the task definition. This 1032

attribute is mandatory. It is not used for task rendering. 1033

 interface: This element is used to specify the operation used to invoke the task. The 1034

operation is specified using WSDL, that is, a WSDL port type and WSDL operation are 1035

defined. The element and its portType and operation attributes are mandatory. The 1036

interface is specified in one of the following forms: 1037

 The WSDL operation is a one-way operation and the task 1038

asynchronously returns output data. In this case, a callback one-way 1039

operation MUST be specified, using the responsePortType and 1040

responseOperation attributes. This callback operation is invoked 1041

when the task has finished. The Web service endpoint address of the 1042

callback operation is provided at runtime when the task’s one-way 1043

operation is invoked (for details, see section 8 “Providing Callback 1044

Information for Human Tasks”). 1045

 The WSDL operation is a request-response operation. In this case, the 1046

responsePortType and responseOperation attributes MUST NOT 1047

be specified. 1048

 priority: This element is used to specify the priority of the task. It is an optional 1049

element which value is an integer expression. If not present, the priority of the task is 1050

unspecified. 0 is the highest priority, larger numbers identify lower priorities. The result of 1051

the expression evaluation is of type xsd:integer. The expressionLanguage 1052

attribute specifies the language used in the expression. The attribute is optional. If not 1053

specified, the default language as inherited from the closest enclosing element that 1054

specifies the attribute is used. 1055

 peopleAssignments: This element is used to specify people assigned to different 1056

generic human roles, i.e. potential owners, and business administrator. The element is 1057

mandatory. See section 0 for more details on people assignments. 1058

 delegation: This element is used to specify constraints concerning delegation of the 1059

task. Attribute potentialDelegatees defines to whom the task may be delegated. The 1060

following values are allowed: 1061

 anybody: It is allowed to delegate the task to anybody 1062

 potentialOwners: It is allowed to delegate the task to potential 1063

owners previously selected 1064

 other: It is allowed to delegate the task to other people, e.g. authorized 1065

owners. The element <from> is used to determine the people to whom 1066

the task may be delegated. 1067

 nobody: It is not allowed to delegate the task. 1068

The delegation element is optional. If this element is not present the task is allowed to be 1069
delegated to anybody. 1070

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 25 of 90 Page 7 of 83

 presentationElements: This element is used to specify different information used to 1071

display the task in a task list, such as name, subject and description. See section 4.3 for 1072

more details on presentation elements. The element is mandatory. 1073

 outcome: This optional element identifies the field (of an xsd simple type) in the output 1074

message which reflects the business result of the task. A conversion takes place to yield 1075

an outcome of type xsd:string. The optional attribute queryLanguage specifies the 1076

language used for selection. If not specified, the default language as inherited from the 1077

closest enclosing element that specifies the attribute is used. 1078

 searchBy: This optional element is used to search for task instances based on a custom 1079

search criterion. The result of the expression evaluation is of type xsd:string. The 1080

expressionLanguage attribute specifies the language used in the expression. The 1081

attribute is optional. If not specified, the default language as inherited from the closest 1082

enclosing element that specifies the attribute is used. 1083

 rendering: This element is used to specify the rendering method. It is optional. If not 1084

present, task rendering is implementation dependent. See section 4.4 for more details on 1085

rendering tasks. 1086

 deadlines: This element specifies different deadlines. It is optional. See section 4.6 for 1087

more details on timeouts and escalations. 1088

4.3 Presentation Elements 1089

Information about human tasks or notifications needs to be made available in a human-readable 1090
way to allow users dealing with their tasks and notifications via a user interface, which could be 1091
based on various technologies, such as Web browsers, Java clients, Flex-based clients or .NET 1092
clients. For example, a user queries for her tasks, getting a list of tasks she should work on, 1093
displaying a short description of each task. Upon selection of one of the tasks, more complete 1094
information about the task is displayed by the user interface. 1095

Alternatively, a task or notification could be sent directly to a user’s inbox, in which case the same 1096
information would be used to provide a human readable rendering there. 1097

The same human readable information could also be used in reports on all the human tasks 1098
executed by a particular human task management system. 1099

Human readable information may be specified in multiple languages. 1100

 1101

Syntax: 1102

<htd:presentationElements> 1103
 1104
 <htd:name xml:lang="xsd:language"? >* 1105
 Text 1106
 </htd:name> 1107
 1108
 <!-- For the subject and description only, 1109
 replacement variables can be used. --> 1110
 <htd:presentationParameters expressionLanguage="anyURI"? >? 1111
 <htd:presentationParameter name="NCName" type="QName">+ 1112
 expression 1113
 </htd:presentationParameter> 1114
 </htd:presentationParameters> 1115
 1116
 <htd:subject xml:lang="xsd:language"? >* 1117
 Text 1118
 </htd:subject> 1119

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 26 of 90 Page 7 of 83

 1120
 <htd:description xml:lang="xsd:language"? 1121
contentType="mimeTypeString"? >* 1122
 <xsd:any minOccurs="0" maxOccurs="unbounded" /> 1123
 </htd:description> 1124
 1125
</htd:presentationElements> 1126
 1127

Properties 1128

The following attributes and elements are defined for the htd:presentationElements 1129

element. 1130

 name: This element is the short title of a task. It uses xml:lang, a standard XML 1131

attribute, to define the language of the enclosed information. This attribute uses tags 1132

according to RFC 1766 (see [RFC1766]). There could be zero or more name elements. It 1133

is not allowed to specify multiple name elements having the same value for attribute 1134

xml:lang. 1135

 presentationParameters: This element specifies parameters used in presentation 1136

elements subject and description. Attribute expressionLanguage identifies 1137

the expression language used to define parameters. This attribute is optional. If not 1138

specified, the default language as inherited from the closest enclosing element that 1139

specifies the attribute is used. Element presentationParameters is optional and if 1140

present MUST specify at least one element presentationParameter. Element 1141

presentationParameter has attribute name, which uniquely identifies the parameter 1142

definition within the presentationParameters element, and attribute type which 1143

defines its type. Parameters MUST be of XSD simple types. When a 1144

presentationParameter is used within subject and description, the syntax is 1145

{$parameterName}. The pair "{{" represents the character "{" and the pair "}}" 1146

represents the character "}". Only the defined presentation parameters and not arbitrary 1147

expressions are allowed to be embedded with this syntax. 1148

 subject: This element is a longer text that describes the task. It uses xml:lang to 1149

define the language of the enclosed information. There could be zero or more subject 1150

elements. It is not allowed to specify multiple subject elements having the same value 1151

for attribute xml:lang. 1152

 description: This element is a long description of the task. It uses xml:lang to 1153

define the language of the enclosed information. The optional attribute contentType 1154

uses content types according to RFC 2046 (see [RFC 2046]). The default value for this 1155

attribute is “text/plain”. A compliant implementation MUST support the content type 1156

“text/plain”. It SHOULD support HTML (such as “text/html” or “application/xml+xhtml”). 1157

There could be zero or more description elements. As descriptions may exist with 1158

different content types, it is allowed to specify multiple description elements having 1159

the same value for attribute xml:lang, but their content types MUST be different. 1160

 1161

Example: 1162

<htd:presentationElements> 1163
 1164
 <htd:name xml:lang="en-US">Approve Claim</htd:name> 1165
 <htd:name xml:lang="de-DE"> 1166
 Genehmigung der Schadensforderung 1167
 </htd:name> 1168

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 27 of 90 Page 7 of 83

 1169
 <htd:presentationParameters> 1170
 <htd:presentationParameter name="firstname" type="xsd:string"> 1171
 htd:getInput("ClaimApprovalRequest")/cust/firstname 1172
 </htd:presentationParameter> 1173
 <htd:presentationParameter name="lastname" type="xsd:string"> 1174
 htd:getInput("ClaimApprovalRequest")/cust/lastname 1175
 </htd:presentationParameter> 1176
 <htd:presentationParameter name="euroAmount" type="xsd:double"> 1177
 htd:getInput("ClaimApprovalRequest")/amount 1178
 </htd:presentationParameter> 1179
 </htd:presentationParameters> 1180
 1181
 <htd:subject xml:lang="en-US"> 1182
 Approve the insurance claim for €{$euroAmount} on behalf of 1183
 {$firstname} {$lastname} 1184
 </htd:subject> 1185
 <htd:subject xml:lang="de-DE"> 1186
 Genehmigung der Schadensforderung über €{$euroAmount} für 1187
 {$firstname} {$lastname} 1188
 </htd:subject> 1189
 1190
 <htd:description xml:lang="en-US" contentType="text/plain"> 1191
 Approve this claim following corporate guideline #4711.0815/7 ... 1192
 </htd:description> 1193
 <htd:description xml:lang="en-US" contentType="text/html"> 1194
 <p> 1195
 Approve this claim following corporate guideline 1196
 #4711.0815/7 1197
 ... 1198
 </p> 1199
 </htd:description> 1200
 <htd:description xml:lang="de-DE" contentType="text/plain"> 1201
 Genehmigen Sie diese Schadensforderung entsprechend Richtlinie Nr. 1202
 4711.0815/7 ... 1203
 </htd:description> 1204
 <htd:description xml:lang="de-DE" contentType="text/html"> 1205
 <p> 1206
 Genehmigen Sie diese Schadensforderung entsprechend Richtlinie 1207
 Nr. 4711.0815/7 1208
 ... 1209
 </p> 1210
 </htd:description> 1211
 1212
</htd:presentationElements> 1213

 1214

4.4 Elements for Rendering Tasks 1215

Human tasks and notifications need to be rendered on user interfaces like forms clients, portlets, 1216
e-mail clients, etc. The rendering element provides an extensible mechanism for specifying UI 1217
renderings for human tasks and notifications (task-UI). The element is optional. One or more 1218
rendering methods may be provided in a task definition or a notification definition. A task or 1219
notification can be deployed on any compliant implementation, irrespective of the fact whether the 1220
implementation supports specified rendering methods or not. The rendering method is identified 1221
using a QName. 1222

Formatted: French (France)

Formatted: French (France)

Formatted: German (Germany)

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 28 of 90 Page 7 of 83

Unlike for presentation elements, language considerations are opaque for the rendering element 1223
because the rendering applications typically provide multi-language support. Where this is not the 1224
case, providers of certain rendering types may decide to extend the rendering method in order to 1225
provide language information for a given rendering. 1226

The content of the rendering element is not defined by this specification. For example, when used 1227
in the rendering element, XPath extension functions as defined in section 6.2 may or may not be 1228
evaluated by a compliant implementation. 1229

 1230

Syntax: 1231

<htd:renderings> 1232
 <htd:rendering type="QName">+ 1233
 <xsd:any minOccurs="1" maxOccurs="1" /> 1234
 </htd:rendering> 1235
</htd:renderings> 1236

4.5 Elements for People Assignment 1237

The <peopleAssignments> element is used to assign people to the task. For each generic 1238

human role, a people assignment element can be specified. For human tasks it is mandatory to 1239
specify people assignment for potential owners. If no potential owner should be assigned by the 1240
human task's definition, e.g. because nomination is used, then this is accomplished by adding an 1241

empty <potentialOwners> element. Specifying people assignments for task stakeholders, 1242

task initiators, excluded owners and business administrators is optional. Human tasks never 1243
specify recipients. People assignments for actual owners MUST NOT be specified. 1244

 1245

Syntax: 1246

<htd:peopleAssignments> 1247
 1248
 <htd:potentialOwners> 1249
 ... 1250
 </htd:potentialOwners> 1251
 1252
 <htd:excludedOwners>? 1253
 ... 1254
 </htd:excludedOwners> 1255
 1256
 <htd:taskInitiator>? 1257
 ... 1258
 </htd:taskInitiator> 1259
 1260
 <htd:taskStakeholders>? 1261
 ... 1262
 </htd:taskStakeholders> 1263
 1264
 <htd:businessAdministrators>? 1265
 ... 1266
 </htd:businessAdministrators> 1267
 1268
</htd:peopleAssignments> 1269

 1270

People assignments may result in a set of values or an empty set. In case people assignment 1271
results in an empty set then the task may require administrative attention. This is out of scope of 1272

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 29 of 90 Page 7 of 83

the specification, except for people assignments for potential owners (see section 4.7.1 “Normal 1273
processing of a Human Task” for more details). 1274

 1275

Example: 1276

<htd:peopleAssignments> 1277
 <htd:potentialOwners> 1278
 <htd:from logicalPeopleGroup="regionalClerks"> 1279
 <htd:argument name="region"> 1280
 htd:getInput("ClaimApprovalRequest")/region 1281
 </htd:argument> 1282
 </htd:from> 1283
 </htd:potentialOwners> 1284
 1285
 <htd:businessAdministrators> 1286
 <htd:from logicalPeopleGroup="regionalManager"> 1287
 <htd:argument name="region"> 1288
 htd:getInput("ClaimApprovalRequest")/region 1289
 </htd:argument> 1290
 </htd:from> 1291
 </htd:businessAdministrators> 1292
</htd:peopleAssignments> 1293

4.6 Elements for Handling Timeouts and Escalations 1294

Timeouts and escalations allow the specification of a date or time before which the task must 1295
reach a specific state. If the timeout occurs a set of actions is performed as the response. The 1296
state of the task is not changed. Several deadlines are specified which differ in the point when the 1297
timer clock starts and the state which must be reached with the given duration or by the given 1298
date. They are: 1299

 Start deadline: Specifies the time until the task must start, i.e. it is must reach state 1300

InProgress. It is defined as either the period of time or the point in time until the task must 1301

reach state inProgress. Since expressions are allowed, durations and deadlines can be 1302

calculated at runtime, which for example enables custom calendar integration. The time 1303

starts to be measured from the time at which the task enters the state Created. If the task 1304

does not reach state InProgress by the deadline an escalation action or a set of 1305

escalation actions is performed. Once the task is started, the timer becomes obsolete. 1306

 Completion deadline: Specifies the due time of the task. It is defined as either the period 1307

of time until the task gets due or the point in time when the task gets due. The time starts 1308

to be measured from the time at which the task enters the state Created. If the task does 1309

not reach one of the final states (Completed, Failed, Error, Exited, Obsolete) by the 1310

deadline an escalation action or a set of escalation actions is performed. 1311

The element <deadlines> is used to include the definition of all deadlines within the task 1312

definition. It is optional. If present, at least one deadline MUST be defined. 1313

 1314

Syntax: 1315

<htd:deadlines> 1316
 1317
 <htd:startDeadline>* 1318
 1319
 <htd:documentation xml:lang="xsd:language"? >* 1320
 Text 1321
 </htd:documentation> 1322

Formatted: French (France)

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 30 of 90 Page 7 of 83

 1323
 (<htd:for expressionLanguage="anyURI"? > 1324
 duration-expression 1325
 </htd:for> 1326
 | <htd:until expressionLanguage="anyURI"? > 1327
 deadline-expression 1328
 </htd:until> 1329
) 1330
 1331
 <htd:escalation name="NCName">* 1332
 ... 1333
 </htd:escalation> 1334
 1335
 </htd:startDeadline> 1336
 1337
 <htd:completionDeadline>* 1338
 ... 1339
 </htd:completionDeadline> 1340
 1341
</htd:deadlines> 1342

 1343

The language used in expressions is specified using the expressionLanguage attribute. This 1344

attribute is optional. If not specified, the default language as inherited from the closest enclosing 1345
element that specifies the attribute is used. 1346

For all deadlines if a status is not reached within a certain time then an escalation action, 1347

specified using element <escalation>, can be triggered. The <escalation> element is 1348

defined in the section below. When the task reaches a final state (Completed, Failed, Error, 1349
Exited, Obsolete) all deadlines are deleted. 1350

 1351

Escalations are triggered if 1352

1. The associated point in time is reached, or duration has elapsed, and 1353

2. The associated condition (if any) evaluates to true 1354

Escalations use notifications to inform people about the status of the task. Optionally, a task 1355
might be reassigned to some other person or group as part of the escalation. Notifications are 1356
explained in more detail in section 5 “Notifications”. An escalation MUST specify exactly one 1357
escalation action. 1358

When defining escalations, a notification can be either referred to, or defined inline. 1359

 A notification defined in the <humanInteractions> root element or imported from a 1360

different namespace can be referenced by specifying its QName in the reference 1361

attribute of a <localNotification> element. When referring to a notification, the 1362

priority and the people assignments of the original notification definition MAY be 1363

overridden using the elements <priority> and <peopleAssignments> contained in 1364

the <localNotification> element. 1365

 A inlined notification is defined by a <notification> element. 1366

Notifications used in escalations may use the same type of input data as the surrounding task, or 1367
different type of data. If the same type of data is used then the input message of the task is 1368

passed to the notification implicitly. If not, then the <toPart> elements are used to assign 1369

appropriate data to the notification, i.e. to explicitly create a multi-part WSDL message from the 1370

data. The part attribute refers to a part of the WSDL message. The expressionLanguage 1371

attribute specifies the language used in the expression. The attribute is optional. If not specified, 1372

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 31 of 90 Page 7 of 83

the default language as inherited from the closest enclosing element that specifies the attribute is 1373
used. 1374

There MUST be a <toPart> element for every part in the WSDL message definition because 1375

parts not explicitly represented by <toPart> elements would result in uninitialized parts in the 1376
target WSDL message. The order in which parts are specified is not relevant. If multiple 1377

<toPart> elements are present, they MUST be executed in an “all or nothing” manner. If any of 1378

the <toPart>s fails, the escalation action will not be performed and the execution of the task is not 1379
affected. 1380

Reassignments are used to replace the potential owners of a task when an escalation is 1381

triggered. The <reassignment> element is used to specify reassignment. If present, the 1382

element MUST specify potential owners. 1383

In the case where several reassignment escalations are triggered, the first reassignment (lexical 1384
order) will be considered for execution. The task is set to state Ready after reassignment. 1385

Reassignments and notifications are performed in the lexical order. 1386

 1387

A task may have multiple start deadlines and completion deadlines associated with it. Each such 1388
deadline encompasses escalation actions each of which may send notifications to certain people. 1389
The corresponding set of people may overlap. 1390

As an example, the figure depicts a task that has been created at time T1. Its two start deadlines 1391
would be missed at time T2 and T3, respectively. The associated escalations whose conditions 1392
evaluate to “true” are triggered. Both, the escalations Esc-1 to Esc-n as well as escalations Esc-a 1393
to Esc-z may involve an overlapping set of people. The completion deadline would be missed at 1394
time T4. 1395

 1396

Syntax: 1397

<htd:deadlines> 1398
 1399
 <htd:startDeadline>* 1400
 ... 1401
 1402
 <htd:escalation name="NCName">* 1403
 1404
 <htd:condition expressionLanguage="anyURI"?>? 1405

Esc-1

Esc-n

…

Esc-a

Esc-z

…

Esc-

Esc-

…

…

Start

Deadline 1

Start

Deadline 2

Completion

Deadline

T1 T2 T3 T4

Con-1

Con-n

Con-a

Con-z

Con-

Con-

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 32 of 90 Page 7 of 83

 boolean-expression 1406
 </htd:condition> 1407
 1408
 <htd:toParts>? 1409
 <htd:toPart part="NCName" 1410
 expressionLanguage="anyURI"?>+ 1411
 expression 1412
 </htd:toPart> 1413
 </htd:toParts> 1414
 1415
 <!-- notification specified by reference --> 1416
 <htd:localNotification reference="QName">? 1417
 <htd:priority expressionLanguage="anyURI"?>? 1418
 integer-expression 1419
 </htd:priority> 1420
 <htd:peopleAssignments>? 1421
 <htd:recipients> 1422
 ... 1423
 </htd:recipients> 1424
 </htd:peopleAssignments> 1425
 1426
 </htd:localNotification> 1427
 1428
 <!-- notification specified inline --> 1429
 <htd:notification name="NCName">? 1430
 ... 1431
 </htd:notification> 1432
 1433
 <htd:reassignment>? 1434
 1435
 <htd:potentialOwners> 1436
 ... 1437
 </htd:potentialOwners> 1438
 1439
 </htd:reassignment> 1440
 1441
 </htd:escalation> 1442
 1443
 </htd:startDeadline> 1444
 1445
 <htd:completionDeadline>* 1446
 ... 1447
 </htd:completionDeadline> 1448
 1449
</htd:deadlines> 1450

 1451

Example: 1452

The following example shows the specification of a start deadline with escalations. At runtime, the 1453
following picture depicts the result of what is specified in the example: 1454

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 33 of 90 Page 7 of 83

The human task is created at T1. If it has not been started, i.e., no person is working on it until 1455
T2, then the escalation “reminder” is triggered that notifies the potential owners of the task that 1456
work is waiting for them. In case the task has high priority then at the same time the regional 1457
manager is informed. If the task amount is greater than or equal 10000 the task is reassigned to 1458
Alan. 1459

In case that task has been started before T2 was reached, then the start deadline is deactivated, 1460
no escalation occurs. 1461

 1462

<htd:startDeadline> 1463
 <htd:documentation xml:lang="en-US"> 1464
 If not started within 3 days, - escalation notifications are sent 1465
 if the claimed amount is less than 10000 - to the task's potential 1466
 owners to remind them or their todo - to the regional manager, if 1467
 this approval is of high priority (0,1, or 2) - the task is 1468
 reassigned to Alan if the claimed amount is greater than or equal 1469
 10000 1470
 </htd:documentation> 1471
 <htd:for>P3D</htd:for> 1472
 1473
 <htd:escalation name="reminder"> 1474
 1475
 <htd:condition> 1476
 <![CDATA[1477
 htd:getInput("ClaimApprovalRequest")/amount < 10000 1478
]]> 1479
 </htd:condition> 1480
 1481
 <htd:toParts> 1482
 <htd:toPart name="firstname"> 1483
 htd:getInput("ClaimApprovalRequest","ApproveClaim") /firstname 1484
 </htd:toPart> 1485
 <htd:toPart name="lastname"> 1486
 htd:getInput("ClaimApprovalRequest","ApproveClaim") /lastname 1487
 </htd:toPart> 1488
 <htd:toPart name="taskId"> 1489
 htd:getTaskID("ApproveClaim") 1490

Escalation:

“reminder”

Escalation:

“highPrio”

Start Deadline

T1 T2

prio <= 2

3 Days

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 34 of 90 Page 7 of 83

 </htd:toPart> 1491
 </htd:toParts> 1492
 1493
 <htd:localNotification reference="tns:ClaimApprovalReminder"> 1494
 1495
 <htd:documentation xml:lang="en-US"> 1496
 Reuse the predefined notification "ClaimApprovalReminder". 1497
 Overwrite the recipients with the task's potential owners. 1498
 </htd:documentation> 1499
 1500
 <htd:peopleAssignments> 1501
 <htd:recipients> 1502
 <htd:from>htd:getPotentialOwners("ApproveClaim")</htd:from> 1503
 </htd:recipients> 1504
 </htd:peopleAssignments> 1505
 1506
 </htd:localNotification> 1507
 1508
 </htd:escalation> 1509
 1510
 <htd:escalation name="highPrio"> 1511
 1512
 <htd:condition> 1513
 <![CDATA[1514
 (htd:getInput("ClaimApprovalRequest")/amount < 10000 1515
 && htd:getInput("ClaimApprovalRequest")/prio <= 2) 1516
]]> 1517
 </htd:condition> 1518
 1519
 <!-- task input implicitly passed to the notification --> 1520
 1521
 <htd:notification name="ClaimApprovalOverdue"> 1522
 <htd:documentation xml:lang="en-US"> 1523
 An inline defined notification using the approval data as its 1524
 input. 1525
 </htd:documentation> 1526
 1527
 <htd:interface portType="tns:ClaimsHandlingPT" 1528
 operation="escalate" /> 1529
 1530
 <htd:peopleAssignments> 1531
 <htd:recipients> 1532
 <htd:from logicalPeopleGroup="regionalManager"> 1533
 <htd:argument name="region"> 1534
 htd:getInput("ClaimApprovalRequest")/region 1535
 </htd:argument> 1536
 </htd:from> 1537
 </htd:recipients> 1538
 </htd:peopleAssignments> 1539
 1540
 <htd:presentationElements> 1541
 <htd:name xml:lang="en-US">Claim approval overdue</htd:name> 1542
 <htd:name xml:lang="de-DE"> 1543
 Überfällige Schadensforderungsgenehmigung 1544
 </htd:name> 1545
 </htd:presentationElements> 1546
 1547

Formatted: German (Germany)

Formatted: German (Germany)

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 35 of 90 Page 7 of 83

 </htd:notification> 1548
 1549
 </htd:escalation> 1550
 1551
 <htd:escalation name="highAmountReassign"> 1552
 1553
 <htd:condition> 1554
 <![CDATA[1555
 htd:getInput("ClaimApprovalRequest")/amount >= 10000 1556
]]> 1557
 </htd:condition> 1558
 1559
 <htd:reassignment> 1560
 <htd:documentation> 1561
 Reassign task to Alan if amount is greater than or equal 1562
 10000. 1563
 </htd:documentation> 1564
 1565
 <htd:potentialOwners> 1566
 <htd:from> 1567
 <htd:literal> 1568
 <htd:organizationalEntity> 1569
 <htd:users> 1570
 <htd:user>Alan</htd:user> 1571
 </htd:users> 1572
 </htd:organizationalEntity> 1573
 </htd:literal> 1574
 </htd:from> 1575
 </htd:potentialOwners> 1576
 1577
 </htd:reassignment> 1578
 1579
 </htd:escalation> 1580
 1581
</htd:startDeadline> 1582

4.7 Human Task Behavior and State Transitions 1583

Human tasks can have a number of different states and substates. The state diagram for human 1584
tasks below shows the different states and the transitions between them. 1585

Formatted: German (Germany)

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 36 of 90 Page 7 of 83

 1586

4.7.1 Normal processing of a Human Task 1587

Upon creation, a task goes into its initial state Created. Task creation starts with the initialization 1588

of its properties in the following order: 1589

1. Input message 1590

2. Priority 1591

3. Generic human roles (such as excluded owners, potential owners and business 1592

administrators) are made available in the lexical order of their definition in the people 1593

assignment definition with the constraint that excluded owners are taken into account 1594

when evaluating the potential owners. 1595

4. All other properties are evaluated after these properties in an implementation dependent 1596

order. 1597

Task creation succeeds irrespective of whether the people assignment returns a set of values or 1598
an empty set. People queries that cannot be executed successfully are treated as if they were 1599
returning an empty set. 1600

If potential owners were not assigned automatically during task creation, they must be assigned 1601
explicitly using nomination, which is performed by the task’s business administrator. The result of 1602
evaluating potential owners removes the excluded owners from results. The task remains in the 1603
state Created until it is activated (i.e., an activation timer has been specified) and has potential 1604

owners. 1605

When the task has a single potential owner, it transitions into the Reserved state, indicating that it 1606

is assigned to a single actual owner. Otherwise (i.e., when it has multiple potential owners or is 1607
assigned to a work queue), it transitions into the Ready state, indicating that it can be claimed by 1608

one of its potential owners. Once a potential owner claims the task, it transitions into the 1609
Reserved state, making that potential owner the actual owner. 1610

Created

Inactive

Closed

Reserved

Ready

InProgress

Completed Failed Error Exited Obsolete

Suspended

Ready

Reserved

InProgress

(activate ||

nomination performed) &&

single potential owner

[Task created, coord context obtained]

Register task with coordinator

(activate || nomination performed) &&

(multiple potential owners || work queue)

claim || delegate

startstart

revoke || forward

stop || delegate

revoke || forward

delegate

[Completion with response]

Send result

[Completion with fault response]

Send application fault

forward

[Non-recoverable error]

Send "WS-HT fault"

[WS-HT exit]

Exit task

[Skip && isSkippable]

Send „WS-HT skipped“

suspend

suspend

suspend

resume

resume

resume

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 37 of 90 Page 7 of 83

Once work is started on a task that is in state Ready or Reserved, it goes into the InProgress 1611
state, indicating that it is being worked on – if the transition is from Ready, the user starting the 1612

work becomes its actual owner. 1613

On successful completion of the work, the task transitions into the Completed final state. On 1614
unsuccessful completion of the work (i.e., with an exception), the task transitions into the Failed 1615

final state. 1616

4.7.2 Releasing a Human Task 1617

The current actual owner of a human task may release a task to again make it available for all 1618
potential owners. A task can be released from active states that have an actual owner (Reserved, 1619
InProgress), transitioning it into the Ready state. Business data associated with the task 1620

(intermediate result data, ad-hoc attachments and comments) is kept. 1621

A task that is currently InProgress can be stopped by the actual owner, transitioning it into state 1622
Reserved. Business data associated with the task as well as its actual owner is kept. 1623

4.7.3 Delegating or forwarding a Human Task 1624

Task’s potential owners, actual owner or business administrator can delegate a task to another 1625
user, making that user the actual owner of the task, and also adding her to the list of potential 1626
owners in case she is not, yet. A task can be delegated when it is in an active state (Ready, 1627
Reserved, InProgress), and transitions the task into the Reserved state. Business data 1628

associated with the task is kept. 1629

Similarily, task’s potential owners, actual owner or business administrator can forward an active 1630
task to another person or a set of people, replacing himself by those people in the list of potential 1631
owners. Potential owners can only forward tasks that are in the Ready state. Forwarding is 1632

possible if the task has a set of individually assigned potential owners, not if its potential owners 1633
are assigned using one or many groups. If the task is in the Reserved or InProgress state then 1634
the task is implicitly released first, that is, the task is transitioned into the Ready state. Business 1635

data associated with the task is kept. The user performing the forward is removed from the set of 1636
potential owners of the task, and the forwardee is added to the set of potential owners. 1637

4.7.4 Suspending and resuming a Human Task 1638

In any of its active states (Ready, Reserved, InProgress), a task can be suspended, transitioning 1639
it into the Suspended state. The Suspended state has sub-states to indicate the original state of 1640

the task. 1641

On resumption of the task, it transitions back to the original state from which it had been 1642

suspended. 1643

4.7.5 Skipping a Human Task 1644

A person working on a human task or a business administrator may decide that a task is no 1645
longer needed, and hence skip this task. This transitions the task into the Obsolete state. This is 1646

considered a “good” outcome of a task, even though an empty result is returned. The enclosing 1647
environment can be notified of that transition as described in section 0. 1648

The task can only be skipped if this capability is specified during the task invocation. A side-effect 1649
of this is that a task which is invoked using basic Web service protocols is not skipable. 1650

4.7.6 Termination of a Human Task 1651

The enclosing environment of a human task (such as the calling application or business process) 1652
may decide that a task is no longer needed and terminate it, either because a timeout has 1653
reached in that enclosing context (i.e., the task has expired), or because the enclosing 1654
environment itself is terminated. These events transition the task into the Obsolete state. 1655

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 38 of 90 Page 7 of 83

4.7.7 Error handling for Human Task 1656

If a human task encounters a non-recoverable error in any of its state (for example, it executes a 1657
divide by zero in an XPath expression), it transitions into the Error state. This is considered a 1658

“bad” outcome of the task and no result is returned. The enclosing environment can be notified of 1659
that transition as described in section 0. 1660

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 39 of 90 Page 7 of 83

5 Notifications 1661

Notifications are used to notify a person or a group of people of a noteworthy business event, 1662
such as that a particual order has been approved, or a particular product is about to be shipped. 1663
They are also used in escalation actions to notify a user that a task is overdue or a task has not 1664
been started yet. The person or people to whom the notification will be assigned to could be 1665
provided, for example, as result of a people query to organizational model. 1666

Notifications are simple human interactions that do not block the progress of the caller, that is the 1667
caller does not wait for the notification to be completed. Moreover, the caller cannot influence the 1668
execution of notifications, e.g. notifications are not terminated if the caller terminates. The caller, 1669
i.e. an application, a business process or an escalation action, initiates a notification passing the 1670
required notification data. The notification appears on the task list of all notification recipients. 1671
After a notification recipient removes it, the notification disappears from the recipient’s task list. 1672

A notification may have multiple recipients and optionally one or many business administrators. 1673
The generic human roles task initiator, task stakeholders, potential owners, actual owner and 1674
excluded owners play no role. 1675

Presentation elements and task rendering, as described in sections 4.3 and 4.4 respectively, are 1676
used for notifications also. In most cases the subject line and description are sufficient information 1677
for the recipients, especially if the notifications are received in an e-mail client or mobile device. 1678
But in some cases the notifications can be received in a proprietary client so the notification may 1679
support a proprietary rendering format to enable this to be utilized to the full, such as for 1680
rendering data associated with the caller invoking the notification. For example, the description 1681
could include a link to the process audit trail or a button to navigate to business transactions 1682
involved in the underlying process. 1683

Notifications do not have ad-hoc attachments, comments or deadlines. 1684

5.1 Overall Syntax 1685

Definition of notifications 1686

<htd:notification name="NCName"> 1687
 1688
 <htd:interface portType="QName" operation="NCName"/> 1689
 1690
 <htd:priority expressionLanguage="anyURI"?>? 1691
 integer-expression 1692
 </htd:priority> 1693
 1694
 <htd:peopleAssignments> 1695
 1696
 <htd:recipients> 1697
 ... 1698
 </htd:recipients> 1699
 1700
 <htd:businessAdministrators>? 1701
 ... 1702
 </htd:businessAdministrators> 1703
 1704
 </htd:peopleAssignments> 1705
 1706
 <htd:presentationElements> 1707
 ... 1708
 </htd:presentationElements> 1709

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 40 of 90 Page 7 of 83

 1710
 <htd:renderings>? 1711
 ... 1712
 </htd:renderings> 1713
 1714
</htd:notification> 1715

5.2 Properties 1716

The following attributes and elements are defined for notifications: 1717

 name: This attribute is used to specify the name of the notification. The name combined 1718

with the target namespace of a notification element is used to uniquely identify the 1719

notification definition. The attribute is mandatory. It is not used for notification rendering. 1720

 interface: This element is used to specify the operation used to invoke the notification. 1721

The operation is specified using WSDL, that is a WSDL port type and WSDL operation 1722

are defined. The element and its portType and operation attributes are mandatory. 1723

The operation MUST be a one-way WSDL operation. 1724

 priority: This element is used to specify the priority of the notification. It is an optional 1725

element which value is an integer expression. If not present, the priority of the task is 1726

unspecified. 0 is the highest priority, larger numbers identify lower priorities. The result of 1727

the expression evaluation is of type xsd:integer. The expressionLanguage 1728

attribute specifies the language used in the expression. The attribute is optional. If not 1729

specified, the default language as inherited from the closest enclosing element that 1730

specifies the attribute is used. 1731

 peopleAssignments: This element is used to specify people assigned to the 1732

notification. The element is mandatory. The element MUST include a people assignment 1733

for recipients and MAY include a people assignment for business administrators. 1734

 presentationElements: The element is used to specify different information used to 1735

display the notification, such as name, subject and description, in a task list. The element 1736

is mandatory. See section 4.3 for more information on presentation elements. 1737

 rendering: The element is used to specify rendering method. It is optional. If not 1738

present, notification rendering is implementation dependent. See section 4.4 for more 1739

information on rendering. 1740

5.3 Notification Behavior and State Transitions 1741

Same as human tasks, notifications are in pseudo-state Inactive before they are activated. Once 1742
they are activated they move to the Ready state. This state is observable, that is, when querying 1743
for notifications then all notifications in state Ready are returned. When a notification is removed 1744
then it moves into the final pseudo-state Removed. 1745

 1746

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 41 of 90 Page 7 of 83

6 Programming Interfaces 1747

6.1 Operations for Client Applications 1748

 1749

A number of applications are involved in the life cycle of a task. These comprise: 1750

 The task list client, i.e. a client capable of displaying information about the task under 1751

consideration 1752

 The requesting application, i.e. any partner that has initiated the task 1753

 The supporting application, i.e. an application launched by the task list client to support 1754

processing of the task. 1755

 1756

The task infrastructure provides access to a given task. It is important to understand that what is 1757
meant by task list client is the software that presents a UI to one authenticated user, irrespective 1758
of whether this UI is rendered by software running on server hardware (such as in a portals 1759
environment) or client software (such as a client program running on a users workstation or PC). 1760

A given task exposes a set of operations to this end. A compliant implementation MUST provide 1761
the operations listed below and an application (such as a task list client) may use these 1762
operations to manipulate the task. All operations are executed in a synchronous fashion and 1763
return faults provided that certain preconditions do not hold. The response message resulting 1764
from an operation invocation may be void. The above applies to notifications also. 1765

An operation takes a well-defined set of parameters as its input. Passing an illegal parameter or 1766

an illegal number of parameters results in the illegalhta:illegalArgumentFault being 1767

thrown. Invoking an operation that is not allowed in the current state of the task results in an 1768

illegalhta:illegalStateFault. 1769

By default, the identity of the person on behalf of which the operation is invoked is passed to the 1770
task. When the person is not authorized to perform the operation the 1771

illegalhta:illegalAccessFault and 1772

recipientNotAllowedhta:recipientNotAllowed is thrown in the case of tasks and 1773

notifications respectively. 1774

Invoking an operation that does not apply to the task type (e.g., invoking claim on a notification) 1775

results in an illegalhta:illegalOperationFault. 1776

The language of the person on behalf of which the operation is invoked is assumed to be 1777
available to operations requiring that information, e.g., when accessing presentation elements. 1778

 For an overview of which operations are allowed in what state, refer to section 4.7 1779
“Human Task Behavior and State Transitions”. For a formal definition of the allowed operations, 1780
see WS-HumanTask Data Types Schema 1781

Note to specification editors: the WS-HumanTask data types XML Schema definition is separately 1782
maintained in artifact 1783

 ws-humantask-types.xsd 1784

The contents of this artifact shall be copied back into this section before publishing the 1785
specification, e.g., as a committee draft. 1786

WS-HumanTask API Operations WSDL. 1787

This specification does not stipulate the authentication, language passing, addressing, and 1788
binding scheme employed when calling an operation. This can be achieved using different 1789
mechanisms (e.g. WS-Security, WS-Addressing). 1790

Formatted: Normal

Formatted: Normal

Formatted: Font: Arial

Formatted: Font: Courier New

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 42 of 90 Page 7 of 83

6.1.1 Participant Operations 1791

Operations are executed by end users, i.e. actual or potential owners. The identity of the user is 1792
implicitly passed when invoking any of the operations listed in the table below. The participant 1793
operations listed below only apply to tasks unless explicitly noted otherwise. The authorization 1794
column indicates people of which roles are authorized to perform the operation. Stakeholders of 1795
the task are not mentioned explicitly. They have the same authorization rights as business 1796
administrators. 1797

 1798

Operation Name Description Parameters Authorization

claim Claim responsibility for a
task, i.e. set the task to
status Reserved

In

 task identifier

Out

 void

Potential Owners

Business
Administrator

start Start the execution of the
task, i.e. set the task to
status InProgress.

In

 task identifier

Out

 void

Actual Owner

Potential Owners
(state Ready)

stop Cancel/stop the processing
of the task. The task
returns to the Reserved

state.

In

 task identifier

Out

 void

Actual Owner

Business
Administrator

release Release the task, i.e. set
the task back to status
Ready.

In

 task identifier

Out

 void

Actual Owner

Business
Administrator

suspend Suspend the task. In

 task identifier

Out

 void

Potential Owners
(state Ready)

Actual Owner

Business
Administrator

suspendUntil Suspend the task for a
given period of time or until
a fixed point in time. The
caller has to specify either
a period of time or a fixed
point in time.

In

 task identifier

 time period

 point of time

Out

 void

Potential Owners
(state Ready)

Actual Owner

Business
Administrator

resume Resume a suspended task. In

 task identifier

Potential Owners
(state Ready)

Actual Owner

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 43 of 90 Page 7 of 83

Out

 void

Business
Administrator

complete Execution of the task
finished successfully. If no
output data is set the
operation returns
illegalhta:illegalAr

gumentFault.

In

 task identifier

 output data of task

Out

 void

Actual Owner

remove Applies to notifications
only.

Used by notification
recipients to remove the
notification permanently
from their task list client. It
will not be returned on any
subsequent retrieval
operation invoked by the
same user.

In

 task identifier

Out

 void

Notification
Recipient

fail Actual owner completes
the execution of the task
raising a fault.

The fault
illegalhta:illegalOp

erationFault is

returned if the task
interface defines no faults.

If fault name or fault data is
not set the operation
returns
illegalhta:illegalAr

gumentFault.

In

 task identifier

 fault name

 fault data

Out

 void

Actual Owner

setPriority Change the priority of the
task. The caller has to
specify the integer value of
the new priority.

In

 task identifier

 priority

Out

 void

Actual Owner

Business
Administrator

addAttachment Add attachment to a task. In

 task identifier

 attachment name

 access type

 attachment

Out

 void

Actual Owner

Business
Administrator

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 44 of 90 Page 7 of 83

getAttachmentInfos Get attachment information
for all attachments
associated with the task.

In

 task identifier

Out

 list of attachment data

(list of

htthtd:attachment

Info)

Potential Owners

Actual Owner

Business
Administrator

getAttachments Get all attachments of a
task with a given name.

In

 task identifier

 attachment name

Out

 list of attachments (list

of

htdhtt:attachment

)

Potential Owners

Actual Owner

Business
Administrator

deleteAttachments Delete the attachments
with the specified name
from the task (if multiple
attachments with that
name exist, all are
deleted).

Attachments provided by
the enclosing context are
not affected by this
operation.

In

 task identifier

 attachment name

Out

 void

Actual Owner

Business
Administrator

addComment Add a comment to a task. In

 task identifier

 plain text

Out

 void

Potential Owners

Actual Owner

Business
Administrator

getComments Get all comments of a task In

 task identifier

Out

 list of comments (list of

htdhtt:comment)

Potential Owners

Actual Owner

Business
Administrator

skip Skip the task.

If the task is not skipable
then the fault
illegalhta:illegalOp

erationFault is

returned.

In

 task identifier

Out

 void

Task Initiator

Actual Owner

Business
Administrator

forward Forward the task to In Potential Owners

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 45 of 90 Page 7 of 83

another organization entity.
The caller has to specify
the receiving
organizational entity.

Potential owners can

only forward a task

while the task is in the

Ready state.

For details on forwarding
human tasks refer to

section 4.7.3.

 task identifier

 organizational entity

(htd:tOrganizatio

nalEntity)

Out

 void

Actual Owner

Business
Administrator

delegate Assign the task to one user
and set the task to state
Reserved. If the recipient

was not a potential owner
then this person is added
to the set of potential
owners.

For details on delegating
human tasks refer to
section 4.7.3.

In

 task identifier

 organizational entity

(htd:tOrganizatio

nalEntity)

Out

 void

Potential Owners
(only in Ready

state)

Actual Owner

Business
Administrator

getRendering Applies to both tasks and
notifications.

Returns the rendering
specified by the type
parameter.

In

 task identifier

 rendering type

Out

 any type

Any

getRenderingTypes Applies to both tasks and
notifications.

Returns the rendering
types available for the task
or notification.

In

 task identifier

Out

 list of QNames

Any

getTaskInfo Applies to both tasks and
notifications.

Returns a data object of

type htt:tTask

In

 task identifier

Out

 task (htdhtt:tTask)

Any

getTaskDescription Applies to both tasks and
notifications. Returns the
presentation description in
the specified mime type.

In

 task identifier

 content type – optional,

default is text/plain

Out

 string

Any

setOutput Set the data for the part of
the task's output message.

In

 task identifier

 part name (optional for

Actual Owner

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 46 of 90 Page 7 of 83

single part messages)

 output data of task

Out

 void

deleteOutput Deletes the output data of
the task.

In

 task identifier

Out

 void

Actual Owner

setFault Set the fault data of the
task.

The fault
illegalhta:illegalOp

erationFault is

returned if the task
interface defines no faults.

In

 task identifier

 fault name

 fault data of task

Out

 void

Actual Owner

deleteFault Deletes the fault name and
fault data of the task.

In

 task identifier

Out

 void

Actual Owner

getInput Get the data for the part of
the task's input message.

In

 task identifier

 part name (optional for

single part messages)

Out

 any type

Potential Owners

Actual owner

Business
Administrator

getOutput Get the data for the part of
the task's output message.

In

 task identifier

 part name (optional for

single part messages)

Out

 any type

Actual Owner

Business
Administrator

getFault Get the fault data of the
task.

In

 task identifier

Out

 fault name

 fault data

Actual Owner

Business
Administrator

getOutcome Get the outcome of the
task

In

 task identifier

Out

Any

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 47 of 90 Page 7 of 83

 string

All these operations MUST be supported by a compliant implementation. 1799

6.1.2 Simple Query Operations 1800

Simple query operations allow to retrieve task data. These operations MUST be supported by a 1801
compliant implementation. The identity of the user is implicitly passed when invoking any of the 1802
following operations. 1803

 1804

Operation Name Description Parameters Authorization

getMyTaskAbstracts Retrieve the task
abstracts. This
operation is used to
obtain the data required
to display a task list.

If no work queue has
been specified then only
personal tasks are
returned. If the work
queue is specified then
only tasks of that work
queue are returned.

The where clause may

only reference exactly
one column using the
following operators:
equals (“=”), not equals
(“<>”), less than (“<”),
greater than (“>”), less
than or equals (“<=”),
and greater than or
equals (“>=”), e.g.,

“Task.Priority = 1”).

The where clause is

logically ANDed with the
created-on clause,
which may only
reference the column
Task.CreatedOn with
operators as described
above.
The combination of the
two clauses enables
simple but restricted
paging in a task list
client.

If maxTasks is
specified, then the
number of task
abstracts returned for
this query will not
exceed this limit.

In

 task type (“ALL” |

“TASKS” |

“NOTIFICATIONS”)

 generic human role

 work queue

 status list

 where clause

 created-on clause

 maxTasks

Out

 list of tasks (list of

htdhtt:tTaskAbstr

act)

Any

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 48 of 90 Page 7 of 83

getMyTasks Retrieve the task
details. This operation is
used to obtain the data
required to display a
task list, as well as the
details for the individual
tasks.

If no work queue has
been specified then only
personal tasks are
returned. If the work
queue is specified then
only tasks of that work
queue are returned.

The where clause may

only reference exactly
one column using the
following operators:
equals (“=”), not equals
(“<>”), less than (“<”),
greater than (“>”), less
than or equals (“<=”),
and greater than or
equals (“>=”),e.g.,

“Task.Priority = 1”.

The where clause is

logically ANDed with the
created-on clause,
which may only
reference the column
Task.CreatedOn with
operators as described
above.
The combination of the
two clauses enables
simple but restricted
paging inthe task list
client.

If maxTasks is
specified, then the
number of task details
returned for this query
will not exceed this limit.

In

 task type (“ALL” |

“TASKS” |

“NOTIFICATIONS”)

 generic human role

 work queue

 status list

 where clause

 created-on clause

 maxTasks

Out

 list of tasks (list of

htdhtt:tTask)

Any

 1805

The return types tTaskAbstract and tTask are defined in section 3.4.4 “Data Types for Task 1806
Instance Data”. 1807

 1808

Simple Task View 1809

The table below lists the task attributes available to the simple query operations. This view is 1810
used when defining the where clause of any of the above query operations. 1811

 1812

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 49 of 90 Page 7 of 83

Column Name Type

ID xsd:string

TaskType Enumeration

Name xsd:Qname

Status Enumeration (for values see 4.7 “Human Task Behavior and
State Transitions”)

Priority xsd:nonNegativeInteger (0 = highest)

CreatedOn xsd:dateTime

ActivationTime xsd:dateTime

ExpirationTime xsd:dateTime

HasPotentialOwners xsd:boolean

StartByExists xsd:boolean

CompleteByExists xsd:boolean

RenderMethExists xsd:boolean

Escalated xsd:boolean

PrimarySearchBy xsd:string

 1813

6.1.3 Advanced Query Operation 1814

The advanced query operation is used by the task list client to perform queries not covered by the 1815
simple query operations defined in 6.1.2. A compliant implementation MAY support this operation. 1816
An implementation MAY restrict the results according to authorization of the invoking user. 1817

 1818

Operation
Name

Description Parameters

query Retrieve task data.
All clauses assume a
(pseudo-) SQL
syntax. If maxTasks
is specified, then the
number of task
returned by the query

In

 select clause

 where clause

 order-by clause

 maxTasks

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 50 of 90 Page 7 of 83

will not exceed this
limit. The
taskIndexOffset can
be used to perform
multiple identical
queries and iterate
over result sets
where the maxTasks
size exceeds the
query limit.

 taskIndexOffset

Out

 query result

(htd:taskQueryResultSethtt:tTaskQueryResult

Set)

 1819

 1820

 1821

ResultSet Data Type 1822

This is the result set element that is returned by the query operation. 1823

<xsd:element name="taskQueryResultSet" type="tTaskQueryResultSet" /> 1824
<xsd:complexType name="tTaskQueryResultSet"> 1825
 <xsd:sequence> 1826
 <xsd:element name="row" type="tTaskQueryResultRow" 1827
 minOccurs="0" maxOccurs="unbounded" /> 1828
 </xsd:sequence> 1829
</xsd:complexType> 1830
 1831

The following is the type of the row element contained in the result set. The value in the row are 1832
returned in the same order as specified in the select clause of the query. 1833

<xsd:complexType name="tTaskQueryResultRow"> 1834
 <xsd:choice minOccurs="0" maxOccurs="unbounded"> 1835
 <xsd:element name="id" type="xsd:string"/> 1836
 <xsd:element name="taskType" type="xsd:string"/> 1837
 <xsd:element name="name" type="xsd:QName"/> 1838
 <xsd:element name="status" type="tStatus"/> 1839
 <xsd:element name="priority" type="xsd:nonNegativeInteger"/> 1840
 <xsd:element name="taskInitiator" 1841
 type="htd:tUser"/> 1842
 <xsd:element name="taskStakeholders" 1843
 type="htd:tOrganizationalEntity"/> 1844
 <xsd:element name="potentialOwners" 1845
 type="htd:tOrganizationalEntity"/> 1846
 <xsd:element name="businessAdministrators" 1847
 type="htd:tOrganizationalEntity"/> 1848
 <xsd:element name="actualOwner" type="htd:tUser"/> 1849
 <xsd:element name="notificationRecipients" 1850
 type="htd:tOrganizationalEntity"/> 1851
 <xsd:element name="createdOn" type="xsd:dateTime"/> 1852
 <xsd:element name="createdBy" type="xsd:string"/> 1853
 <xsd:element name="activationTime" type="xsd:dateTime"/> 1854
 <xsd:element name="expirationTime" type="xsd:dateTime"/> 1855
 <xsd:element name="isSkipable" type="xsd:boolean"/> 1856
 <xsd:element name="hasPotentialOwners" type="xsd:boolean"/> 1857
 <xsd:element name="startByExists" type="xsd:boolean"/> 1858
 <xsd:element name="completeByExists" type="xsd:boolean"/> 1859
 <xsd:element name="presentationName" type="tPresentationName"/> 1860
 <xsd:element name="presentationSubject" 1861

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 51 of 90 Page 7 of 83

 type="tPresentationSubject"/> 1862
 <xsd:element name="renderingMethodExists" type="xsd:boolean"/> 1863
 <xsd:element name="hasOutput" type="xsd:boolean"/> 1864
 <xsd:element name="hasFault" type="xsd:boolean"/> 1865
 <xsd:element name="hasAttachments" type="xsd:boolean"/> 1866
 <xsd:element name="hasComments" type="xsd:boolean"/> 1867
 <xsd:element name="escalated" type="xsd:boolean"/> 1868
 <xsd:element name="primarySearchBy" type="xsd:string"/> 1869
 <xsd:element name="outcome" type="xsd:string"/> 1870
 <xsd:any namespace="##other" processContents="lax"/> 1871
 </xsd:choice> 1872
</xsd:complexType> 1873

 1874

Complete Task View 1875

The table below is the set of columns used when defining select clause, where clause, and order-1876
by clause of query operations. Conceptually, this set of columns defines a universal relation. As a 1877
result the query can be formulated without specifying a from clause. A compliant implementation 1878
MAY extend this view by adding columns. 1879

 1880

Column Name Type Constraints

ID xsd:string

TaskType Enumeration Identifies the task type. The
following values are allowed:

 “TASK” for a human task

 “NOTIFICATION” for

notifications

Note that notifications are simple
tasks that do not block the
progress of the caller,

Name xsd:Qname

Status Enumeration For values see section 4.7
“Human Task Behavior and State
Transitions”

Priority xsd:int (0 = highest)

UserId xsd:string

Group xsd:string

GenericHumanRole xsd:string

CreatedOn xsd:dateTime The time in UTC when the task
has been created.

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 52 of 90 Page 7 of 83

ActivationTime xsd:dateTime The time in UTC when the task
has been activated.

ExpirationTime xsd:dateTime The time in UTC when the task
will expire.

Skipable xsd:boolean

StartBy xsd:dateTime The time in UTC when the task
should have been started. This
time corresponds to the
respective start deadline.

CompleteBy xsd:dateTime The time in UTC when the task
should have been completed.
This time corresponds to the
respective end deadline.

PresentationName xsd:string The task’s presentation name.

PresentationSubject xsd:string The task’s presentation subject.

RenderingMethodName xsd:Qname The task’s rendering method
name.

FaultMessage xsd:any

InputMessage xsd:any

OutputMessage xsd:any

AttachmentName xsd:string

AttachmentType xsd:string

Escalated xsd:boolean

PrimarySearchBy xsd:string

Outcome xsd:string

 1881

6.1.4 Administrative Operations 1882

Operations to be executed for administrative purposes. Actual definition of authorization for 1883
operations is outside the scope of this specification. 1884

 1885

Operation Name Description Parameters Authorization

activate Activate the task,
i.e. set the task to
status Ready.

In

 task identifier

Out

Business
Administrator

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 53 of 90 Page 7 of 83

 void

nominate Nominate an
organization
entity to process
the task. If it is
nominated to one
person then the
new state of the
task is Reserved.

If it is nominated
to several people
then the new
state of the task
is Ready. This

can only be
performed when
the task is in the
state Created.

In

 task identifier

 organizational entity

(htd:tOrganizatio

nalTypetOrganizat

ionalEntity)

Out

 void

Business
Administrator

setGenericHumanRole Replace the
organizational
assignment to the
task in one
generic human
role.

In

 task identifier

 generic human role

 organizational entity

(htd:tOrganizatio

nalTypetOrganizat

ionalEntity)

Out

 void

Business
Administrator

 1886

6.2 XPath Extension Functions 1887

This section introducesThe following XPath extension functions that are provided to be used 1888
within the definition of a human task or notification. When defining properties using these XPath 1889

functions note the initialization order in section 4.7.1. 1890

Definition of these XPath extension functions is provided in the table below. Input parameters that 1891
specify task name, message part name or logicalPeopleGroup name MUST be literal strings. This 1892
restriction does not apply to other parameters. Because XPath 1.0 functions do not support 1893
returning faults, an empty node set is returned in the event of an error. 1894

XPath functions used for notifications in an escalation can access context from the enclosing task 1895
by specifying that task’s name. 1896

 1897

Operation Name Description Parameters

getPotentialOwners Returns the potential
owners of the task.
Evaluates to an empty
htd:organizationalEn

tity in case of an error.

In

 task name (optional)

Out

 potential owners

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 54 of 90 Page 7 of 83

If the task name is not
present the current task is
considered.

(htd:organizationalEnt

ity)

getActualOwner Returns the actual owner of
the task. Evaluates to an

empty htd:user in case

there is no actual owner.

If the task name is not
present the current task is
considered.

In

 task name (optional)

Out

 the actual owner

(user id as htd:user)

getTaskInitiator Returns the initiator of the
task. Evaluates to an empty

htd:user in case there is

no initiator.

If the task name is not
present the current task is
considered.

In

 task name (optional)

Out

 the task initiator

(user id as htd:user)

getTaskStakeholders Returns the stakeholders of
the task.

Evaluates to an empty
htd:organizationalEn

tity in case of an error.

If the task name is not
present the current task is
considered.

In

 task name (optional)

Out

 task stakeholders

(htd:organizationalEnt

ity)

getBusinessAdministrators Returns the business
administrators of the task.

Evaluates to an empty
htd:organizationalEn

tity in case of an error.

If the task name is not
present the current task is
considered.

In

 task name (optional)

Out

 business administrators

(htd:organizationalEnt

ity)

getExcludedOwners Returns the excluded
owners. Evaluates to an
empty
htd:organizationalEn

tity in case of an error.

If the task name is not
present the current task is
considered.

In

 task name (optional)

Out

 excluded owners

(htd:organizationalEnt

ity)

getTaskPriority Returns the priority of the
task.

Evaluates to “-1” in case of
an error.

If the task name is not
present the current task is
considered.

In

 task name (optional)

Out

 priority

(xsd:nonNegativeInteger)

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 55 of 90 Page 7 of 83

getInput Returns the part of the
task’s input message.

If the task name is not
present the current task is
considered.

In

 part name

 task name (optional)

Out

 input message

getLogicalPeopleGroup Returns the value of a
logical people group. In
case of an error (e.g., when
referencing a non existing
logical people group) the
htd:organizationalEn

tity contains an empty

user list.

If the task name is not
present the current task is
considered.

In

 task name (optional)

 name of the logical people

group

Out

 the value of the logical people

group

(htd:organizationalEnt

ity)

getOutcome Returns the outcome of the
task. Evaluates to an empty
string in case there is no
outcome specified for the
task.

If the task name is not
present the current task is
considered.

In

 task name (optional)

Out

 the task outcome

(xsd:string)

union Constructs an
organizationalEntity
containing every user that
occurs in either set1 or
set2, eliminating duplicate

users.

In

 set1

(htd:organizationalEnt

ity

|htd:users

|htd:user)

 set2

(htd:organizationalEnt

ity

|htd:users

|htd:user)

Out

 result

(htd:organizationalEntity)

intersect Constructs an
organizationalEntity
containing every user that
occurs in both set1 and
set2, eliminating duplicate

users.

In

 set1

(htd:organizationalEnt

ity

|htd:users

|htd:user)

 set2

(htd:organizationalEnt

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Font: Courier New

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 56 of 90 Page 7 of 83

ity

|htd:users

|htd:user)

Out

 result

(htd:organizationalEnt

ity)

Except Constructs an
organizationalEntity
containing every user that
occurs in set1 but not in
set2.

Note: This function is
required to allow enforcing
the separation of duties (“4-
eyes principle”).

In

 set1

(htd:organizationalEnt

ity

|htd:users

|htd:user)

 set2

(htd:organizationalEnt

ity

|htd:users

|htd:user)

Out

 result

(htd:organizationalEnt

ity)

 1898

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 57 of 90 Page 7 of 83

7 Interoperable Protocol for Advanced Interaction 1899

with Human Tasks 1900

Previous sections describe how to define standard invokable Web services that happen to be 1901
implemented by human tasks or notifications. Additional capability results from an application that 1902
is human task aware, and can control the autonomy and life cycle of the human tasks. To 1903
address this is an interoperable manner, a coordination protocol, namely the WS-HT coordination 1904
protocol, is introduced to exchange life-cycle command messages between an application and an 1905

invoked human task. A simplified protocol applies to notifications. 1906

 1907

 1908

While we do not make any assumptions about the nature of the application in the following 1909
scenarios, in practice it would be hosted by an infrastructure that actually deals with the WS-HT 1910
coordination protocol on the application’s behalf. 1911

In case of human tasks the following message exchanges are possible. 1912

Scenario 1: At some point in time, the application invokes the human task through its service 1913
interface. In order to signal to the human task infrastructure that an instance of the human task 1914
should be created which is actually coordinated by the parent application, this request message 1915
contains certain control information. This control information consists of a coordination context of 1916
the WS-HT coordination protocol, and optional human task attributes that are used to override 1917

aspects of the human task definition. 1918

 The coordination context (see [WS-C] for more details on Web services coordination 1919

framework used here) contains the element CoordinationType that MUST specify the 1920

WS-HT coordination type http://www.example.org/WS-1921

Figure 1: Message Exchange between Application and Human Task

Request ing

Applicat ion

(Task Parent)

(1)requestMessage

(HT coordination context,

overriding task attributes,

attachments, callback EPR)

(2) Coor Register

(EPR of task

protocol handler)

(3) Coor RegisterResponse

(EPR of requesting application

protocol handler)

(4a) responseMessage

(attachments)

(4b) Skipped

Task

×

Credit Requestor: Joe Rich

Credit Amount : 1M€

Risk Rat ing: ____

Submit Skip. . .

Risk Assessment

Coordinator

Applicat ion

Logic

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 58 of 90 Page 7 of 83

HT/protocolhttp://docs.oasis-open.org/ns/bpel4people/ws-1922

humantask/protocol/200803. The inclusion of a coordination context within the 1923

request message indicates that the life cycle of the human tasks is managed via 1924
corresponding protocol messages from outside its hosting WS-HumanTask (WS-HT) 1925

implementation. The coordination context further contains in its RegistrationService 1926

element an endpoint reference that the WS-HT implementation hosting the human task 1927
must use to register the task as participant of that coordination type. 1928
Note: In a typical implementation, the parent application or its environment will create that 1929
coordination context by issuing an appropriate request against the WS-Coordination (WS-1930

C) activation service, followed by registering the parent application as a TaskParent 1931

participant in that protocol. 1932

 The optional human task attributes allow overriding aspects of the definition of the human 1933
task from the calling application. The calling application may set values of the following 1934
attributes of the task definition: 1935

o Priority of the task 1936

o Actual people assignments for each of the generic human roles of the human 1937
task 1938

o The skipable indicator which determines whether a task can actually be skipped 1939
at runtime. 1940

o The amount of time by which the task activation is deferred. 1941

o The expiration time for the human task after which the calling application is no 1942
longer interested in its result. 1943

After having created this request message, it is sent to the WS-HT implementation hosting the 1944
human task (step (1) in Figure 1). The WS-HT implementation receiving that message extracts 1945
the coordination context and callback information, the human task attributes (if present) and the 1946
application payload. Before passing this application payload to the human task, the WS-HT 1947
implementation registers the human task to be created with the registration service passed as 1948

part of the coordination context (step (2) in Figure 1). The corresponding WS-C Register 1949

message includes the endpoint reference (EPR) of the protocol handler of the WS-HT 1950
implementation of the human task that the parent application must use to send all protocol 1951

messages to. This EPR is the value contained in the ParticipantProtocolService element 1952

of the Register message. Furthermore, the registration MUST be as HumanTask participant by 1953

specifying the corresponding value in the ProtocolIdentifier element of the Register 1954

message. The parent application reacts to that message by sending back a RegisterResponse 1955

message. This message contains in its CoordinatorProtocolService element the EPR of 1956

the protocol handler of the parent application, which is used by the WS-HT implementation of the 1957
human task for sending protocol messages to the parent application (step (3) in Figure 1). 1958

Now the instance of the human task is activated, so the assigned person can perform the task 1959
(e.g. the risk assessment). Once the human task was successfully completed, a response 1960
message is passed back to the parent application (step (4a) in Figure 1). 1961

 1962

Scenario 2: If the human task is not completed with a result, but the assigned person determines 1963

that the task should rather be skipped (and hence reaches its Obsolete final state), a “skipped” 1964

coordination protocol message is sent from the human task to its parent application (step (4b) in 1965
Figure 1). No response message is passed back. 1966

 1967

Scenario 3: If the parent application needs to end prematurely before the invoked human task 1968

has been completed, it sends an exit coordination protocol message to the human task, causing 1969

the human task to end its processing. No response message is passed back. 1970

 1971

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 59 of 90 Page 7 of 83

In case of notifications, only some of the overriding attributes are propagated with the request 1972
message. Only priority and people assignments can be overridden for a notification, and the 1973
elements isSkipable, expirationTime and attachments are ignored if present. Likewise, the WS-1974
HT coordination context, attachments and the callback EPR do not apply to notifications and are 1975
ignored as well. Finally, a notification does not return WS-HT coordination protocol messages. 1976
There is no message exchange beyond the initiating request message. 1977

7.1 Human Task Coordination Protocol Messages 1978

The following section describes the behavior of the human task with respect to the protocol 1979
messages exchanged with its requesting application which is human task aware. In particular, we 1980
describe which state transitions trigger which protocol message and vice versa. Human task 1981
aware requesting applications MUST support WS-HT protocol messages in addition to application 1982
requesting, responding and fault messages. 1983

See diagram in section 4.7 “Human Task Behavior and State Transitions”. 1984

1. The initiating message containing a WS-HT coordination context is received by the 1985
hosting WS-HT implementation. This message may also include ad hoc attachments that 1986
are to be made available to the task processor. A new task is created. As part of the 1987
context, an EPR of the registration service is passed. This registration service MUST be 1988
used by the hosting WS-HT implementation to register the protocol handler receiving the 1989
WS-HT protocol messages sent by the requesting application’s implementation. If an 1990
error occurs during the task instantiation the final state Error is reached and protocol 1991

message fault is sent to the requesting application. 1992

2. On successful completion of the task an application level response message is sent and 1993
the task moves to state Completed. When this happens, attachments created during the 1994

processing of the task may be added to the response message. Attachments that had 1995
been passed in the initiating message are not returned. 1996

3. On unsuccessful completion (completion with a fault message), an application level fault 1997
message is sent and the task moves to state Failed. When this happens, attachments 1998

created during the processing of the task are added to the response message. 1999
Attachments that had been passed in the initiating message are not returned. 2000

4. If the task experiences a non-recoverable error protocol message fault is sent and 2001

the task moves to state Error. No attachments are returned. 2002

5. If the task is skipable and is skipped then the task sends the protocol message 2003

skipped and it moves to state Obsolete. No attachments are returned. 2004

6. On receipt of protocol message exit the task exits. This indicates that the requesting 2005

application is no longer interested in any result produced by the task. No attachments are 2006
returned. 2007

The following table summarizes this behavior, the messages sent, and their direction, i.e., 2008
whether a message is sent from the requesting application to the task (“out” in the column titled 2009
Direction) or vice versa (“in”). 2010

 2011

Message Direction
Human Task Behavior (and
Protocol messages)

application request with WS-HT
coordination context

in Create task, (Register)

application response out Successful completion with response

application fault response out Completion with fault response

htcp:Fault out Non-recoverable error

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 60 of 90 Page 7 of 83

htcp:Exit in
Requesting application is no longer
interested in the task output

htcp:Skipped
 out Task moves to state Obsolete

7.2 Protocol Messages 2012

All WS-HT protocol messages have the following type: 2013

<xsd:complexType name="ProtocolMsgType"> 2014
 <xsd:sequence> 2015
 <xsd:any namespace="##other" processContents="lax" 2016
 minOccurs="0" maxOccurs="unbounded" /> 2017
 </xsd:sequence> 2018
 <xsd:anyAttribute namespace="##other" processContents="lax" /> 2019
</xsd:complexType> 2020

 2021

This message type is extensible and any implementation may use this extension mechanism to 2022
define proprietary attributes and content which are out of the scope of this specification. 2023

7.2.1 Protocol Messages Received by a Task Parent 2024

The following is the definition of the htdphtcp:skipped message. 2025

<xsd:element name="skipped" 2026
type="spe:ProtocolMsgTypehtcp:ProtocolMsgType" /> 2027
<wsdl:message name="skipped"> 2028
 <wsdl:part name="parameters" element="htdphtcp:skipped" /> 2029
</wsdl:message> 2030

The htdphtcp:skipped message is used to inform the task parent (i.e. the requesting 2031

application) that the invoked task has been skipped. The task does not return any result. 2032

The following is the definition of the htdphtcp:fault message. 2033

<xsd:element name="fault" type="spe:ProtocolMsgTypehtcp:ProtocolMsgType" 2034
/> 2035
<wsdl:message name="fault"> 2036
 <wsdl:part name="parameters" element="htdphtcp:fault" /> 2037
</wsdl:message> 2038

 2039

The htdphtcp:fault message is used to inform the task parent that the task has ended 2040

abnormally. The task does not return any result. 2041

7.2.2 Protocol Messages Received by a Task 2042

Upon receipt of the following htdphtcp:exit message the task parent informs the task that it is 2043

no longer interested in its results. 2044

<xsd:element name="exit" type="spe:ProtocolMsgTypehtcp:ProtocolMsgType" 2045
/> 2046
<wsdl:message name="exit"> 2047
 <wsdl:part name="parameters" element="htdphtcp:exit" /> 2048
</wsdl:message> 2049

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 61 of 90 Page 7 of 83

7.3 WSDL of the Protocol Endpoints 2050

Protocol messages are received by protocol participants via operations of dedicated ports called 2051
protocol endpoints. In this section we specify the WSDL port types of the protocol endpoints 2052
needed to run the WS-HT coordination protocol. 2053

7.3.1 Protocol Endpoint of the Task Parent 2054

An application that wants to create a task and wants to become a task parent must provide an 2055
endpoint implementing the following port type. This endpoint is the protocol endpoint of the task 2056
parent receiving protocol messages of the WS-HT coordination protocol from a task. The 2057
operation used by the task to send a certain protocol message to the task parent is named by the 2058

message name of the protocol message concatenated by the string Operation. For example, 2059

the skipped message can be passed to the tasked parent by using the operation named 2060

skippedOperation. 2061

<wsdl:portType name="clientParticipantPortType"> 2062
 <wsdl:operation name="skippedOperation"> 2063
 <wsdl:input message="htdphtcp:skipped" /> 2064
 </wsdl:operation> 2065
 <wsdl:operation name="faultOperation"> 2066
 <wsdl:input message="htdphtcp:fault" /> 2067
 </wsdl:operation> 2068
</wsdl:portType> 2069

7.3.2 Protocol Endpoint of the Task 2070

A task must provide an endpoint implementing the following port type. This endpoint is the 2071
protocol endpoint of the task receiving protocol messages of the WS-HT coordination protocol 2072
from a task parent. The operation used by the task parent to send a certain protocol message to 2073
a task is named by the message name of the protocol message concatenated by the string 2074

Operation. For example, the exit protocol message can be passed to the subprocess by 2075

using the operation named exitOperation. 2076

<wsdl:portType name="humanTaskParticipantPortType"> 2077
 <wsdl:operation name="exitOperation"> 2078
 <wsdl:input message="htdphtcp:exit" /> 2079
 </wsdl:operation> 2080
</wsdl:portType> 2081

7.4 Providing Human Task Context 2082

The task context information is exchanged between the requesting application and a task or a 2083
notification. In case of tasks, this information is passed as header fields of the request and 2084
response messages of the task’s operation. In case of notifications, this information is passed as 2085
header fields of the request message of the notification’s operation. 2086

7.4.1 Schema of the Human Task Context 2087

The following describes the XML schema representation of the task context: 2088

<xsd:element name="humanTaskContext" type="tHumanTaskContext" /> 2089
<xsd:complexType name="tHumanTaskContext"> 2090
 <xsd:sequence> 2091
 <xsd:element name="priority" type="xsd:nonNegativeInteger" 2092
 minOccurs="0" /> 2093
 <xsd:element name="peopleAssignments" type="tPeopleAssignments" 2094
 minOccurs="0" /> 2095

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 62 of 90 Page 7 of 83

 <xsd:element name="isSkipable" type="xsd:boolean" minOccurs="0" /> 2096
 <xsd:element name="expirationTime" type="xsd:dateTime" 2097
 minOccurs="0" /> 2098
 <xsd:element name="attachments" type="tAttachments" minOccurs="0" /> 2099
 </xsd:sequence> 2100
</xsd:complexType> 2101
 2102
<xsd:complexType name="tPeopleAssignments"> 2103
 <xsd:sequence> 2104
 <xsd:group ref="genericHumanRole" minOccurs="0" 2105
 maxOccurs="unbounded" /> 2106
 </xsd:sequence> 2107
</xsd:complexType> 2108
 2109
<xsd:group name="genericHumanRole"> 2110
 <xsd:choice> 2111
 <xsd:element ref="potentialOwners" /> 2112
 <xsd:element ref="excludedOwners" /> 2113
 <xsd:element ref="taskInitiator" /> 2114
 <xsd:element ref="taskStakeholders" /> 2115
 <xsd:element ref="businessAdministrators" /> 2116
 <xsd:element ref="recipients" /> 2117
 </xsd:choice> 2118
</xsd:group> 2119
<xsd:element name="potentialOwners" type="tGenericHumanRole" /> 2120
<xsd:element name="excludedOwners" type="tGenericHumanRole" /> 2121
<xsd:element name="taskInitiator" type="tGenericHumanRole" /> 2122
<xsd:element name="taskStakeholders" type="tGenericHumanRole" /> 2123
<xsd:element name="businessAdministrators" type="tGenericHumanRole" /> 2124
<xsd:element name="recipients" type="tGenericHumanRole" /> 2125
<xsd:complexType name="tGenericHumanRole"> 2126
 <xsd:sequence> 2127
 <xsd:element ref="htd:organizationalEntity" /> 2128
 </xsd:sequence> 2129
</xsd:complexType> 2130
 2131
<xsd:complexType name="tAttachments"> 2132
 <xsd:sequence> 2133
 <xsd:element name="returnAttachments" type="tReturnAttachments" 2134
 minOccurs="0" /> 2135
 <xsd:element ref="htdahta:attachment" minOccurs="0" 2136
 maxOccurs="unbounded" /> 2137
 </xsd:sequence> 2138
</xsd:complexType> 2139
 2140
<xsd:simpleType name="tReturnAttachments"> 2141
 <xsd:restriction base="xsd:string"> 2142
 <xsd:enumeration value="all" /> 2143
 <xsd:enumeration value="newOnly" /> 2144
 <xsd:enumeration value="none" /> 2145
 </xsd:restriction> 2146
</xsd:simpleType> 2147

7.4.2 SOAP Binding of Human Task Context 2148

In general, a SOAP binding specifies for message header fields how they are bound to SOAP 2149

headers. In case of WS-HumanTask, the humanTaskContext element is simply mapped to a 2150

Formatted: English (United States)

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 63 of 90 Page 7 of 83

single SOAP header as a whole. The following listing shows the SOAP binding of the human task 2151
context in an infoset representation. 2152

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2153
 xmlns:htdphtc="http://www.osoa.org/WS-2154
HT/protocolhttp://docs.oasis-open.org/ns/bpel4people/ws-2155
humantask/context/200803"> 2156
 <S:Header> 2157
 <htdphtc:humanTaskContext> 2158
 <htdphtc:priority>...</htdphtc:priority>? 2159
 <htdphtc:peopleAssignments>...</htdphtc:peopleAssignments>? 2160
 <htdphtc:isSkipable>...</htdphtc:isSkipable>? 2161
 <htdphtc:expirationTime>...</htdphtc:expirationTime>? 2162
 <htdphtc:attachments>...</htdphtc:attachments>? 2163
 </htdphtc:humanTaskContext> 2164
 </S:Header> 2165
 <S:Body> 2166
 ... 2167
 </S:Body> 2168
</S:Envelope> 2169

 2170

The following listing is an example of a SOAP message containing a human task context. 2171

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2172
 xmlns:htdphtc="http://www.osoa.org/WS-2173
HT/protocolhttp://docs.oasis-open.org/ns/bpel4people/ws-2174
humantask/context/200803"> 2175
 <S:Header> 2176
 <htdphtc:humanTaskContext> 2177
 <htdphtc:priority>0</htdphtc:priority> 2178
 <htdphtc:peopleAssignments> 2179
 <htdphtc:potentialOwners> 2180
 <htdphtd:organizationalEntity> 2181
 <htdphtd:users> 2182
 <htdphtd:user>Alan</htdphtd:user> 2183
 <htdphtd:user>Dieter</htdphtd:user> 2184
 <htdphtd:user>Frank</htdphtd:user> 2185
 <htdphtd:user>Gerhard</htdphtd:user> 2186
 <htdphtd:user>Ivana</htdphtd:user> 2187
 <htdphtd:user>Karsten</htdphtd:user> 2188
 <htdphtd:user>Matthias</htdphtd:user> 2189
 <htdphtd:user>Patrick</htdphtd:user> 2190
 </htdphtd:users> 2191
 </htdphtd:organizationalEntity> 2192
 </htdphtc:potentialOwners> 2193
 </htdphtc:peopleAssignments> 2194
 </htdphtc:humanTaskContext> 2195
 </S:Header> 2196
 <S:Body>...</S:Body> 2197
</S:Envelope> 2198

Formatted: French (France)

Formatted: French (Canada)

Formatted: English (United States)

Formatted: German (Germany)

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 64 of 90 Page 7 of 83

7.5 Human Task Policy Assertion 2199

In order to support discovery of Web services that support the human task contract that are available for 2200
coordination by another service, a human task policy assertion is defined by WS-HumanTask. This policy 2201

assertion may be associated with the business operation used by the invoking component (recall that the 2202
human task is restricted to have exactly one business operation). In doing so, the provider of a human 2203
task may signal whether or not the corresponding task may communicate with an invoking component via 2204
the WS-HT coordination protocol. 2205

The following describes the policy assertion used to specify that an operation can be used to instantiate a 2206
human task with the proper protocol in place: 2207

<htdphtp:HumanTaskAssertion wsp:Optional="true"? ...> 2208
 ... 2209
</htdphtp:HumanTaskAssertion> 2210

 2211

/htdphtp:HumanTaskAssertion 2212

This policy assertion specifies that the sender of an input message MUST include context 2213
information for a human task coordination type passed with the message. The receiving human 2214
task MUST be instantiated with the WS-Human Task protocol in place. 2215

 2216

/htdphtp:HumanTaskAssertion/@wsp:Optional="true" 2217

As defined in WS-Policy [WS-Policy], this is the compact notation for two policy alternatives, one 2218
with and one without the assertion. Presence of both policy alternatives indicates that the 2219
behavior indicated by the assertion is optional, such that a WS-HT coordination context MAY be 2220
passed with an input message. If the context is passed the receiving human task MUST be 2221
instantiated with the WS-HT protocol in place. The absence of the assertion is interpreted to 2222
mean that a WS-HT coordination context SHOULD NOT be passed with an input message. 2223

 2224

The human task policy assertion indicates behavior for a single operation, thus the assertion has an 2225
Operation Policy Subject. WS-PolicyAttachment [WS-PolAtt] defines two policy attachment points with 2226
Operation Policy Subject, namely wsdl:portType/wsdl:operation and wsdl:binding/wsdl:operation. 2227

The <htdphtp:HumanTaskAssertion> policy assertion can also be used for notifications. In that case 2228

it means that the sender of an input message MAY pass the human task context information with the 2229
message. Other headers, including headers with the coordination context are ignored. 2230

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 65 of 90 Page 7 of 83

8 Providing Callback Information for Human Tasks 2231

WS-HumanTask extends the information model of a WS-Addressing endpoint reference (EPR) defined in 2232
[WS-Addr-Core] (see [WS-Addr-SOAP] and [WS-Addr-WSDL] for more details). This extension is needed 2233
to support passing information to human tasks about ports and operations of a caller receiving responses 2234
from such human tasks. 2235

Passing this callback information from a caller (i.e. a requesting application) to a human task may 2236
override static deployment information that may have been set. 2237

8.1 EPR Information Model Extension 2238

Besides the properties of an endpoint reference (EPR) defined by [WS-Addr-Core] WS-HumanTask 2239
defines the following abstract properties: 2240

 2241

[response action] : xsd:anyURI (0..1) 2242

 2243

This property contains the value of the [action] message addressing property to be sent within the 2244
response message. 2245

 2246

[response operation] : xsd:NCName (0..1) 2247

 2248

This property contains the name of a WSDL operation. 2249

 2250

Each of these properties is a child element of the [metadata] property of an endpoint reference. An 2251
endpoint reference passed by a caller to a human task MUST contain the [metadata] property. 2252
Furthermore, this [metadata] property MUST contain either a [response action] property or a [response 2253
operation] property. 2254

If present, the value of the [response action] property MUST be used by the WS-HT implementation 2255
hosting the responding human task to specify the value of the [action] message addressing property of 2256
the response message sent back to the caller. Furthermore, the [destination] property of this response 2257
message MUST be copied from the [address] property of the EPR contained in the original request 2258
message. 2259

If present, the value of the [response operation] property MUST be the name of an operation of the port 2260
type implemented by the endpoint denoted by the [address] property of the EPR. The corresponding port 2261
type MUST be included as a WSDL 1.1 definition nested within the [metadata] property of the EPR (see 2262
[WS-Addr-WSDL]). The WS-HT implementation hosting the responding human task MUST use the value 2263
of the [response operation] property as operation of the specified port type at the specified endpoint to 2264
send the response message. Furthermore, the [metadata] property MUST contain WSDL 1.1 binding 2265
information corresponding to the port type implemented by the endpoint denoted by the [address] 2266
property of the EPR. 2267

The EPR sent from the caller to the human task MUST identify the instance of the caller. This can be 2268
done in two ways: First, the value of the [address] property may contain a URL with appropriate 2269
parameters uniquely identifying the caller instance. Second, appropriate [reference parameters] 2270
properties are specified within the EPR. The values of these [reference parameters] uniquely identify the 2271
caller within the scope of the URI passed within the [address] property. 2272

8.2 XML Infoset Representation 2273

The following describes the infoset representation of the EPR extensions introduced by WS-HumanTask: 2274

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 66 of 90 Page 7 of 83

<wsa:EndpointReference> 2275
 <wsa:Address>xsd:anyURI</wsa:Address> 2276
 <wsa:ReferenceParameters>xsd:any*</wsa:ReferenceParameters>? 2277
 <wsa:Metadata> 2278
 <htdphtcp:responseAction>xsd:anyURI</htdphtcp:responseAction>? 2279
 <htdphtcp:responseOperation>xsd:NCName</htdphtcp:responseOperation>? 2280
 </wsa:Metadata> 2281
</wsa:EndpointReference> 2282

 2283

/wsa:EndpointReference/wsa:Metadata 2284

This is a MANDATORY element of the EPR sent. It MUST either contain WSDL 1.1 metadata 2285
specifying the information to access the endpoint (i.e. its port type, bindings or ports) according to 2286

[WS-Addr-WSDL] as well as a <htcp:responseOperation> element, or it MUST contain a 2287

<htcp:responseAction> element. 2288

/wsa:EndpointReference/wsa:Metadata/htdphtcp:responseAction 2289

This element (of type xsd:anyURI) specifies the value of the [action] message addressing 2290

property to be used by the receiving human task when sending the response message from the 2291

human task back to the caller. If this element is specified the <htcp:responseOperation> 2292

element MUST NOT be specified. 2293

/wsa:EndpointReference/wsa:Metadata/htdphtcp:responseOperation 2294

This element (of type xsd:NCName) specifies the name of the operation to be used by the 2295

receiving human task to send the response message from the human task back to the caller. The 2296

value of this element is taken from the htd:callremoteTask/@responseOperation 2297

attribute. If this element is specified the <htcp:responseAction> element MUST NOT be 2298

specified. 2299

Effectively, WS-HumanTask defines two ways to pass callback information from the caller to the human 2300
task. First, the EPR contains just the value of the [action] message addressing property to be used within 2301

the response message (i.e. the <htcp:responseAction> element). Second, the EPR contains the 2302

WSDL 1.1 metadata for the port receiving the response operation. In this case, the callback information 2303

also specifies which operation of that port is to be used (i.e. the <htcp:responseOperation> 2304

element). In both cases, the response is typically sent to the address specified in the <wsa:Address> 2305

element of the EPR contained in the original request message; note, that [WS-Addr-WSDL] does not 2306
exclude redirection to other addresses than the one specified, but the corresponding mechanisms are out 2307
of the scope of the specification. 2308

The following example of an endpoint reference shows the usage of the <htcp:responseAction> 2309

element. The <wsa:Metadata> elements contain the <htcp:responseAction> element that 2310

specifies the value of the [action] message addressing property to be used by the WS-HT implementation 2311
when sending the response message back to the caller. This value is 2312

http://example.com/LoanApproval/approvalResponse. The value of the [destination] message 2313

addressing property to be used is given in the <wsa:Address> element, namely 2314

http://example.com/LoanApproval/loan?ID=42. Note that this URL includes the HTTP search 2315

part with the parameter ID=42 which uniquely identifies the instance of the caller. 2316

<wsa:EndpointReference 2317
 xmlns:wsa="http://www.w3.org/2005/08/addressing"> 2318
 2319
 <wsa:Address>http://example.com/LoanApproval/loan?ID=42</wsa:Address> 2320
 2321
 <wsa:Metadata> 2322
 <htdphtcp:responseAction> 2323
 http://example.com/LoanApproval/approvalResponse 2324
 </htdphtcp:responseAction> 2325
 </wsa:Metadata> 2326
 2327

Formatted: Portuguese (Brazil)

Formatted: Portuguese (Brazil)

http://example.com/LoanApproval/loan?ID=42

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 67 of 90 Page 7 of 83

</wsa:EndpointReference> 2328

 2329

The following example of an endpoint reference shows the usage of the <htcp:responseOperation> 2330

element and corresponding WSDL 1.1 metadata. The port type of the caller that receives the response 2331

message from the WS-HT implementation is defined using the <wsdl:portType> element. iIn our 2332

example it is the LoanApprovalPT port type. The definition of the port type is nested in a corresponding 2333

WSLD 1.1 <wsdl:definitions> element in the <wsa:Metadata> element. This 2334

<wsdl:definitions> element also contains a binding for this port type as well as a corresponding 2335

port definition nested in a <wsdl:service> element. The <htcp:responseOperation> element 2336

specifies that the approvalResponse operation of the LoanApprovalPT port type must be used to 2337

send the response to the caller. The address of the actual port to be used which implements the 2338

LoanApprovalPT port type and thus the approvalResponse operation is given in the 2339

<wsa:Address> element, namely the URL http://example.com/LoanApproval/loan. The 2340

unique identifier of the instance of the caller is specified in the <MyInstanceID<xmp:MyInstanceID> 2341

element nested in the <wsa:ReferenceParameters> element. 2342

<wsa:EndpointReference 2343
 xmlns:wsa="http://www.w3.org/2005/08/addressing"> 2344
 2345
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address> 2346
 2347
 <wsa:ReferenceParameters> 2348
 <yxz:xmp:MyInstanceID>42</yxz:xmp:MyInstanceID> 2349
 </wsa:ReferenceParameters> 2350
 2351
 <wsa:Metadata> 2352
 2353
 <wsdl:definitions ...> 2354
 2355
 <wsdl:portType name="LoanApprovalPT"> 2356
 <wsdl:operation name="approvalResponse">...</wsdl:operation> 2357
 ... 2358
 </wsdl:portType> 2359
 2360
 <wsdl:binding name="LoanApprovalSoap" type="LoanApprovalPT"> 2361
 ... 2362
 </wsdl:binding> 2363
 2364
 <wsdl:service name="LoanApprovalService"> 2365
 <wsdl:port name="LA" binding="LoanApprovalSoap"> 2366
 <soap:address 2367
 location="http://example.com/LoanApproval/loan" /> 2368
 </wsdl:port> 2369
 ... 2370
 </wsdl:service> 2371
 2372
 </wsdl:definitions> 2373
 2374
 <htdphtcp:responseOperation>approvalResponse</htdphtcp:responseOperation> 2375
 2376
 </wsa:Metadata> 2377
 2378
</wsa:EndpointReference> 2379

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 68 of 90 Page 7 of 83

8.3 Message Addressing Properties 2380

Message addressing properties provide references for the endpoints involved in an interaction at the 2381
message level. For this case, WS-HumanTask uses the message addressing properties defined in [WS-2382
Addr-Core] for the request message as well as for the response message. 2383

The request message sent by the caller (i.e. the requesting application) to the human task uses the 2384
message addressing properties as described in [WS-Addr-Core]. WS-HumanTask refines the use of the 2385
following message addressing properties: 2386

 The [reply endpoint] message addressing property MUST contain the EPR to be used by the 2387
human task to send its response to. 2388

 2389

Note that the [fault endpoint] property is not used by WS-HumanTask. This is because via one-way 2390
operation no application level faults are returned to the caller. 2391

The response message sent by the human task to the caller uses the message addressing properties as 2392
defined in [WS-Addr-Core] and refines the use of the following properties: 2393

 The value of the [action] message addressing property is set as follows: 2394

 If the original request message contains the <htcp:responseAction> element in the 2395

<wsa:Metadata> element of the EPR of the [reply endpoint] message addressing property, 2396

the value of the former element is copied into the [action] property of the response message. 2397

 If the original request message contains the <htcp:responseOperation> element (and, 2398

thus, WSDL 1.1 metadata) in the <wsa:Metadata> element of the EPR of the [reply 2399

endpoint] message addressing property, the value of the [action] message addressing 2400
property of the response message is determined as follows: 2401

 Assume that the WSDL 1.1 metadata specifies within the binding chosen a value for the 2402

soapaction attribute on the soap:operation element of the response operation. 2403

Then, this value MUST be used as value of the [action] property. 2404

 If no such soapaction attribute is provided, the value of the [action] property MUST be 2405

derived as specified in [WS-Addr-WSDL]. 2406

 Reference parameters are mapped as specified in [WS-Addr-SOAP]. 2407

8.4 SOAP Binding 2408

A SOAP binding specifies how abstract message addressing properties are bound to SOAP headers. In 2409
this case, WS-HumanTask uses the mappings as specified by [WS-Addr-SOAP]. 2410

The following is an example of a request message sent from the caller to the human task containing the 2411

<htcp:responseAction> element in the incoming EPR. The EPR is mapped to SOAP header fields as 2412

follows: The endpoint reference to be used by the human task for submitting its response message to is 2413

contained in the <wsa:ReplyTo> element. The address of the endpoint is contained in the 2414

<wsa:Address> element. The identifier of the instance of the caller to be encoded as reference 2415

parameters in the response message is nested in the <wsa:ReferenceParameters> element. The 2416

value of the <wsa:Action> element to be set by the human task in its response to the caller is in the 2417

<htcp:responseAction> element nested in the <wsa:Metadata> element of the EPR. 2418

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2419
 xmlns:wsa="http://www.w3.org/2005/08/addressing" 2420
 xmlns:htdphtcp="http://www.example.org/WS-HT/protocolhttp://docs.oasis-2421
open.org/ns/bpel4people/ws-humantask/protocol/200803"> 2422
 2423
 <S:Header> 2424
 <wsa:ReplyTo> 2425
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address> 2426
 <wsa:ReferenceParameters> 2427

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 69 of 90 Page 7 of 83

 <yxz:xmp:MyInstanceID>42</yxz:xmp:MyInstanceID> 2428
 </wsa:ReferenceParameters> 2429
 <wsa:Metadata> 2430
 <htdphtcp:responseAction> 2431
 http://example.com/LoanApproval/approvalResponse 2432
 </htdphtcp:responseAction> 2433
 </wsa:Metadata> 2434
 </wsa:ReplyTo> 2435
 </S:Header> 2436
 2437
 <S:Body>...</S:Body> 2438
</S:Envelope> 2439

 2440

The following is an example of a response message corresponding to the request message discussed 2441

above. This response is sent from the human task back to the caller. The <wsa:To> element contains a 2442

copy of the <wsa:Address> element of the original request message. The <wsa:Action> element is 2443

copied from the <htcp:responseAction> element of the original request message. The reference 2444

parameters are copied as standalone elements (the <yxz:xmp:MyInstanceID> element below) out of 2445

the <wsa:ReferenceParameters> element of the request message. 2446

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2447
 xmlns:wsa="http://www.w3.org/2005/08/addressing"> 2448
 <S:Header> 2449
 <wsa:To> 2450
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address> 2451
 </wsa:To> 2452
 <wsa:Action> 2453
 http://example.com/LoanApproval/approvalResponse 2454
 </wsa:Action> 2455
 <yxz:xmp:MyInstanceID wsa:IsReferenceParameter='true'> 2456
 42 2457
 </yxz:xmp:MyInstanceID> 2458
 </S:Header> 2459
 <S:Body>...</S:Body> 2460
</S:Envelope> 2461

 2462

The following is an example of a request message sent from the caller to the human task containing the 2463

<htcp:responseOperation> element and corresponding WSDL metadata in the incoming EPR. The 2464

EPR is mapped to SOAP header fields as follows: The endpoint reference to be used by the human task 2465

for submitting its response message to is contained in the <wsa:ReplyTo> element. The address of the 2466

endpoint is contained in the <wsa:Address> element. The identifier of the instance of the caller to be 2467

encoded as reference parameters in the response message is nested in the 2468

<wsa:ReferenceParameters> element. The WSDL metadata of the endpoint is contained in the 2469

<wsdl:definitions> element. The name of the operation of the endpoint to be used to send the 2470

response message to is contained in the <htcp:responseOperation> element. Both elements are 2471

nested in the <wsa:Metadata> element of the EPR. These elements provide the basis to determine the 2472

value of the action header field to be set by the caller in its response to the caller. 2473

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2474
 xmlns:wsa="http://www.w3.org/2005/08/addressing" 2475
 xmlns:htdphtcp="http://www.example.org/WS-HT/protocolhttp://docs.oasis-2476
open.org/ns/bpel4people/ws-humantask/protocol/200803"> 2477
 <S:Header> 2478
 <wsa:ReplyTo> 2479
 2480
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address> 2481
 2482

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 70 of 90 Page 7 of 83

 <wsa:ReferenceParameters> 2483
 <yxz:xmp:MyInstanceID>42</yxz:xmp:MyInstanceID> 2484
 </wsa:ReferenceParameters> 2485
 2486
 <wsa:Metadata> 2487
 2488
 <wsdl:definitions 2489
 targetNamespace="http://example.com/loanApproval" 2490
 xmlns:wsdl11="..." xmlns:soap="..."> 2491
 2492
 <wsdl:portType name="LoanApprovalPT"> 2493
 <wsdl:operation name="approvalResponse"> 2494
 <wsdl:input name="approvalInput" ... /> 2495
 </wsdl:operation> 2496
 ... 2497
 </wsdl:portType> 2498
 2499
 <wsdl:binding name="LoanApprovalSoap" 2500
 type="LoanApprovalPT"> 2501
 ... 2502
 </wsdl:binding> 2503
 2504
 <wsdl:service name="LoanApprovalService"> 2505
 <wsdl:port name="LA" binding="LoanApprovalSoap"> 2506
 <soap:address 2507
 location="http://example.com/LoanApproval/loan" /> 2508
 </wsdl:port> 2509
 ... 2510
 </wsdl:service> 2511
 </wsdl:definitions> 2512
 2513
 <htdphtcp:responseOperation> 2514
 approvalResponse 2515
 </htdphtcp:responseOperation> 2516
 2517
 </wsa:Metadata> 2518
 </wsa:ReplyTo> 2519
 2520
 </S:Header> 2521
 <S:Body>...</S:Body> 2522
</S:Envelope> 2523

 2524

The following is an example of a response message corresponding to the request message before; this 2525

response is sent from the human task back to the caller. The <wsa:To> element contains a copy of the 2526

<wsa:Address> field of the original request message. The reference parameters are copied as 2527

standalone element (the <yxz:xmp:MyInstanceID> element below) out of the 2528

<htcp:ReferenceParameters> element of the request message. The value of the <wsa:Action> 2529

element is composed according to [WS-Addr-WSDL] from the target namespace, port type name, name 2530
of the response operation to be used, and name of the input message of this operation given in the code 2531
snippet above. 2532

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2533
 xmlns:wsa="http://www.w3.org/2005/08/addressing" 2534
 xmlns:htd="http://www.example.org/WS-HThttp://docs.oasis-2535
open.org/ns/bpel4people/ws-humantask/200803"> 2536
 <S:Header> 2537
 <wsa:To>http://example.com/LoanApproval/loan</wsa:To> 2538
 <wsa:Action> 2539

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 71 of 90 Page 7 of 83

 http://example.com/loanApproval/... 2540
 ...LoanApprovalPT/approvalResponse/ApprovalInput 2541
 </wsa:Action> 2542
 <yxz:xmp:MyInstanceID wsa:IsReferenceParameter='true'> 2543
 42 2544
 </yxz:xmp:MyInstanceID> 2545
 </S:Header> 2546
 <S:Body>...</S:Body> 2547
</S:Envelope> 2548

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 72 of 90 Page 7 of 83

9 Security Considerations 2549

WS-HumanTask does not mandate the use of any specific mechanism or technology for client 2550
authentication. However, a client MUST provide a principal or the principal MUST be obtainable by the 2551
infrastructure. 2552

When using task APIs via SOAP bindings, compliance with the WS-I Basic Security Profile 1.0 is 2553
RECOMMENDED. 2554

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 73 of 90 Page 7 of 83

10 Conformance 2555

(tbd.) 2556

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 74 of 90 Page 7 of 83

11 References 2557

[RFC 1766] 2558

Tags for the Identification of Languages, RFC 1766, available via 2559
http://www.ietf.org/rfc/rfc1766.txt 2560

[RFC 2046] 2561

Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, RFC 2046, available via 2562
http://www.isi.edu/in-notes/rfc2046.txt (or http://www.iana.org/assignments/media-types/) 2563

[RFC 2119] 2564

Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, available via 2565
http://www.ietf.org/rfc/rfc2119.txt 2566

[RFC 2396] 2567

Uniform Resource Identifiers (URI): Generic Syntax, RFC 2396, available via 2568
http://www.faqs.org/rfcs/rfc2396.html 2569

[RFC 3066] 2570

Tags for the Identification of Languages, H. Alvestrand, IETF, January 2001, available via 2571
http://www.isi.edu/in-notes/rfc3066.txt 2572

[WSDL 1.1] 2573

Web Services Description Language (WSDL) Version 1.1, W3C Note, available via 2574
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 2575

[WS-Addr-Core] 2576

Web Services Addressing 1.0 - Core, W3C Recommendation, May 2006, available via 2577
http://www.w3.org/TR/ws-addr-core 2578

[WS-Addr-SOAP] 2579

Web Services Addressing 1.0 – SOAP Binding, W3C Recommendation, May 2006, available via 2580
http://www.w3.org/TR/ws-addr-soap 2581

[WS-Addr-WSDL] 2582

Web Services Addressing 1.0 – WSDL Binding, W3C Working Draft, February 2006, available 2583
via http://www.w3.org/TR/ws-addr-wsdl 2584

[WS-C] 2585

Web Services Coordination (WS-Coordination) Version 1.1, OASIS Committee Specification, 2586
February 2007, available via http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-2587
wscoor-1.1-spec.html 2588

[WS-Policy] 2589

Web Services Policy 1.5 - Framework, W3C Candidate Recommendation 30 March 2007, 2590
available via http://www.w3.org/TR/ws-policy/ 2591

[WS-PolAtt] 2592

Web Services Policy 1.5 - Attachment, W3C Candidate Recommendation 30 March 2007, 2593
available via http://www.w3.org/TR/2007/CR-ws-policy-attach-20070330/ 2594

[XML Infoset] 2595

XML Information Set, W3C Recommendation, available via http://www.w3.org/TR/2001/REC-2596
xml-infoset-20011024/ 2597

[XML Namespaces] 2598

http://www.ietf.org/rfc/rfc1766.txt
http://www.isi.edu/in-notes/rfc2046.txt
http://www.iana.org/assignments/media-types/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
RFC%202396
http://www.isi.edu/in-notes/rfc3066.txt
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-core
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-soap
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-wsdl
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 75 of 90 Page 7 of 83

Namespaces in XML 1.0 (Second Edition), W3C Recommendation, available via 2599
http://www.w3.org/TR/REC-xml-names/ 2600

[XML Schema Part 1] 2601

XML Schema Part 1: Structures, W3C Recommendation, October 2004, available via 2602
http://www.w3.org/TR/xmlschema-1/ 2603

[XML Schema Part 2] 2604

XML Schema Part 2: Datatypes, W3C Recommendation, October 2004, available via 2605
http://www.w3.org/TR/xmlschema-2/ 2606

[XMLSpec] 2607

XML Specification, W3C Recommendation, February 1998, available via 2608
http://www.w3.org/TR/1998/REC-xml-19980210 2609

[XPATH 1.0] 2610

XML Path Language (XPath) Version 1.0, W3C Recommendation, November 1999, available via 2611
http://www.w3.org/TR/1999/REC-xpath-19991116 2612

http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1999/REC-xpath-19991116

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 76 of 90 Page 7 of 83

A. Portability and Interoperability Considerations 2613

This section illustrates the portability and interoperability aspects addressed by WS-HumanTask: 2614

 Portability - The ability to take human tasks and notifications created in one vendor's environment 2615
and use them in another vendor's environment. 2616

 Interoperability - The capability for multiple components (task infrastructure, task list clients and 2617
applications or processes with human interactions) to interact using well-defined messages and 2618
protocols. This enables combining components from different vendors allowing seamless 2619
execution. 2620

Portability requires support of WS-HumanTask artifacts. 2621

Interoperability between task infrastructure and task list clients is achieved using the operations for client 2622
applications. 2623

Interoperability between applications and task infrastructure from different vendors subsumes two 2624
alternative constellations depending on how tightly the life-cycles of the task and the invocating 2625
application are coupled with each other. This is shown in the figure below: 2626

Tight Life-Cycle Constellation: Applications are human task aware and control the life cycle of tasks. 2627
Interoperability between applications and task infrastructure is achieved using the WS-HumanTask 2628
coordination protocol. 2629

Loose Life-Cycle Constellation: Applications use basic Web services protocols to invoke Web services 2630
implemented as human tasks. In this case standard Web services interoperability is achieved and 2631
applications do not control the life cycle of tasks. 2632

Standalone Human
Task

Callable
WSDL

Interface

HT-Protocol

Interface

Tight Life-Cycle
Constellation

Web service

invocation

Standalone Human
Task

Callable WSDL
Interface

Application

Loose Life-Cycle
Constellation

Application

Task

invocation

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 77 of 90 Page 7 of 83

B. WS-HumanTask Language Schema 2633

Note to specification editors: the WS-HumanTask XML Schema definition is separately maintained in an 2634
artifact 2635

 ws-humantask.xsd 2636

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2637
as a committee draft. 2638

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 78 of 90 Page 7 of 83

C. WS-HumanTask Data Types Schema 2639

Note to specification editors: the WS-HumanTask data types XML Schema definition is separately 2640
maintained in artifact 2641

 ws-humantask-types.xsd 2642

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2643
as a committee draft. 2644

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 79 of 90 Page 7 of 83

C.D. Operations WS-HumanTask API WSDLPort 2645

Types 2646

Note to specification editors: the WS-HumanTask API data types XML Schema definition, the WS-2647
HumanTask API operation signature XML Schema definition, and the WS-HumanTask API WSDL 2648
definition are is separately maintained in artifacts 2649

 ws-humantask-api.xsd 2650

 ws-humantask-api-wsdl.xsd 2651

 ws-humantask-api.wsdl 2652

The contents of these this artifact shall be copied back into this section before publishing the 2653
specification, e.g., as a committee draft. 2654

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 80 of 90 Page 7 of 83

E. WS-HumanTask Protocol Handler Port Types 2655

Note to specification editors: the WS-HumanTask protocol WSDL definition is separately maintained in an 2656
artifact 2657

 ws-humantask-protocol.wsdl 2658

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2659
as a committee draft. 2660

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 81 of 90 Page 7 of 83

F. WS-HumanTask Context Schema 2661

Note to specification editors: the WS-HumanTask context XML Schema definition is separately 2662
maintained in an artifact 2663

 ws-humantask-context.xsd 2664

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2665
as a committee draft. 2666

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 82 of 90 Page 7 of 83

G. WS-HumanTask Policy Assertion Schema 2667

Note to specification editors: the WS-HumanTask policy assertion XML Schema definition is separately 2668
maintained in an artifact 2669

 ws-humantask-policy.xsd 2670

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2671
as a committee draft. 2672

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 83 of 90 Page 7 of 83

D.H. Sample 2673

This appendix contains the full sample used in this specification. 2674

 2675

WSDL Definition 2676

Note to specification editors: the WS-HumanTask example WSDL definition is separately maintained in 2677
an artifact 2678

 ws-humantask-example-claim-approval.wsdl 2679

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2680
as a committee draft. 2681

 2682

Human Interaction Definition 2683

Note to specification editors: the WS-HumanTask example Human Task definition is separately 2684
maintained in an artifact 2685

 ws-humantask-example-claim-approval.tel 2686

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2687
as a committee draft. 2688

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 84 of 90 Page 7 of 83

E.Schema of Protocol Messages 2689

Note to specification editors: the WS-HumanTask protocol XML Schema definition is separately 2690
maintained in an artifact 2691

 ws-humantask-protocol.xsd 2692

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2693
as a committee draft. 2694

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 85 of 90 Page 7 of 83

F.Protocol Handler Port Types 2695

Note to specification editors: the WS-HumanTask protocol WSDL definition is separately maintained in an 2696
artifact 2697

 ws-humantask-protocol.wsdl 2698

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2699
as a committee draft. 2700

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 86 of 90 Page 7 of 83

G.Schema of the Task Context 2701

Note to specification editors: the WS-HumanTask context XML Schema definition is separately 2702
maintained in an artifact 2703

 ws-humantask-context.wsdl 2704

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2705
as a committee draft. 2706

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 87 of 90 Page 7 of 83

H.I. Acknowledgements 2707

The following individuals have participated in the creation of this specification and are gratefully 2708
acknowledged: 2709

 2710

Members of the BPEL4People Technical Committee: 2711

Ashish Agrawal, Adobe Systems 2712

Mike Amend, BEA Systems, Inc. 2713

Stefan Baeuerle, SAP AG 2714

Charlton Barreto, Adobe Systems 2715

Justin Brunt, TIBCO Software Inc. 2716

Martin Chapman, Oracle Corporation 2717

James Bryce Clark, OASIS 2718

Luc Clément, Active Endpoints, Inc. 2719

Manoj Das, Oracle Corporation 2720

Mark Ford, Active Endpoints, Inc. 2721

Sabine Holz, SAP AG 2722

Dave Ings, IBM 2723

Gershon Janssen, Individual 2724

Diane Jordan, IBM 2725

Anish Karmarkar, Oracle Corporation 2726

Ulrich Keil, SAP AG 2727

Oliver Kieselbach, SAP AG 2728

Matthias Kloppmann, IBM 2729

Dieter König, IBM 2730

Marita Kruempelmann, SAP AG 2731

Frank Leymann, IBM 2732

Mark Little, Red Hat 2733

Ashok Malhotra, Oracle Corporation 2734

Mike Marin, IBM 2735

Mary McRae, OASIS 2736

Vinkesh Mehta, Deloitte Consulting LLP 2737

Jeff Mischkinsky, Oracle Corporation 2738

Ralf Mueller, Oracle Corporation 2739

Krasimir Nedkov, SAP AG 2740

Benjamin Notheis, SAP AG 2741

Michael Pellegrini, Active Endpoints, Inc. 2742

Gerhard Pfau, IBM 2743

Karsten Ploesser, SAP AG 2744

Ravi Rangaswamy, Oracle Corporation 2745

Alan Rickayzen, SAP AG 2746

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 88 of 90 Page 7 of 83

Michael Rowley, BEA Systems, Inc. 2747

Ron Ten-Hove, Sun Microsystems 2748

Ivana Trickovic, SAP AG 2749

Alessandro Triglia, OSS Nokalva 2750

Claus von Riegen, SAP AG 2751

Peter Walker, Sun Microsystems 2752

Franz Weber, SAP AG 2753

Prasad Yendluri, Software AG, Inc. 2754

 2755

WS-HumanTask 1.0 Specification Contributors: 2756

Ashish Agrawal, Adobe 2757

Mike Amend, BEA 2758

Manoj Das, Oracle 2759

Mark Ford, Active Endpoints 2760

Chris Keller, Active Endpoints 2761

Matthias Kloppmann, IBM 2762

Dieter König, IBM 2763

Frank Leymann, IBM 2764

Ralf Müller, Oracle 2765

Gerhard Pfau, IBM 2766

Karsten Plösser, SAP 2767

Ravi Rangaswamy, Oracle 2768

Alan Rickayzen, SAP 2769

Michael Rowley, BEA 2770

Patrick Schmidt, SAP 2771

Ivana Trickovic, SAP 2772

Alex Yiu, Oracle 2773

Matthias Zeller, Adobe 2774

 2775

The following individuals have provided valuable input into the design of this specification: Dave Ings, 2776
Diane Jordan, Mohan Kamath, Ulrich Keil, Matthias Kruse, Kurt Lind, Jeff Mischkinsky, Bhagat Nainani, 2777
Michael Pellegrini, Lars Rueter, Frank Ryan, David Shaffer, Will Stallard, Cyrille Waguet, Franz Weber, 2778
and Eric Wittmann. 2779

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 89 of 90 Page 7 of 83

I.J. Non-Normative Text 2780

Formatted: Bullets and Numbering

ws-humantask-spec-WD-02 28 June 2008

Copyright © OASIS® 2008. All Rights Reserved. Page 90 of 90 Page 7 of 83

J.K. Revision History 2781

[optional; should not be included in OASIS Standards] 2782

 2783

Revision Date Editor Changes Made

WD-01 2008-03-12 Dieter König First working draft created from submitted
specification

WD-02 2008-03-13 Dieter König Added specification editors

Moved WSDL and XSD into separate artifacts

WD-02 2008-06-25 Ivana Trickovic Resolution of Issue #4 incorporated into the
document/section 2.4.2

WD-02 2008-06-25 Ivana Trickovic Resolution of Issue #4 incorporated into the
ws-humantask.xsd

WD-02 2008-06-25 Ivana Trickovic Resolution of Issue #8 incorporated into the
document/section 6.2

WD-02 2008-06-25 Ivana Trickovic Resolution of Issue #9 incorporated into the
document/section 4.6 (example), and ws-
humantask “ClaimApproval” example and
WSDL file

WD-02 2008-06-28 Dieter König Resolution of Issue #13 applied to complete
document and all separate XML artifacts

WD-02 2008-06-28 Dieter König Resolution of Issue #21 applied to section 2

WD-02 2008-07-08 Ralf Mueller Resolution of Issue #14 applied to section 6,

ws-humantask-api.wsdl and ws-humantask-
types.xsd

WD-02 2008-07-15 Luc Clément Updated Section 6.2 specifying
(xsd:nonNegativeInteger) as the type for
priority

 2784

