
[image: image5.wmf]Requesting

Application

(Task Parent)

(1)

requestMessage

(HT coordination context,

overriding task attributes,

attachments, callback EPR)

(2) Coor

Register

(EPR of task

protocol handler)

(3) Coor

RegisterResponse

(EPR of requesting application

protocol handler)

(4a)

responseMessage

(attachments)

(4b)

Skipped

Task

×

Credit Requestor: Joe Rich

Credit Amount: 1M

€

Risk Rating: ____

Submit

Skip

...

Risk

Assessment

Coordinator

Application

Logic

Web Services – Human Task
(WS-HumanTask)
Specification Version 1.1

Committee Draft 02

6 January 2009

Specification URIs:

This Version:

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-02.html

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-02.doc

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-02.pdf

Previous Version:

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-01.html

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-01.doc

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-01.pdf

Latest Version:

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.doc
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.pdf
Latest Approved Version:

N/A

Technical Committee:

OASIS BPEL4People TC
Chair:

Dave Ings, IBM

Editor(s):

Luc Clément, Active Endpoints, Inc.

Dieter König, IBM

Vinkesh Mehta, Deloitte Consulting LLP

Ralf Mueller, Oracle Corporation

Krasimir Nedkov, SAP AG

Ravi Rangaswamy, Oracle Corporation

Michael Rowley, Active Endpoints, Inc.

Ivana Trickovic, SAP

Related work:

This specification is related to:

WS-BPEL Extension for People (BPEL4People) Specification – Version 1.1

Declared XML Namespace(s):

WS-HumanTask namespaces (defined in this specification):

htd – http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803
hta – http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/200803

htt – http://docs.oasis-open.org/ns/bpel4people/ws-humantask/types/200803

htc - http://docs.oasis-open.org/ns/bpel4people/ws-humantask/context/200803

htcp- http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803

htp - http://docs.oasis-open.org/ns/bpel4people/ws-humantask/policy/200803

Other namespaces:

wsa – http://www.w3.org/2005/08/addressing

wsdl – http://schemas.xmlsoap.org/wsdl/

wsp – http://www.w3.org/ns/ws-policy

xsd – http://www.w3.org/2001/XMLSchema

Abstract:

The concept of human tasks is used to specify work which has to be accomplished by people. Typically, human tasks are considered to be part of business processes. However, they can also be used to design human interactions which are invoked as services, whether as part of a process or otherwise.

This specification introduces the definition of human tasks, including their properties, behavior and a set of operations used to manipulate human tasks. A coordination protocol is introduced in order to control autonomy and life cycle of service-enabled human tasks in an interoperable manner.
Status:

This document was last revised or approved by the OASIS WS-BPEL Extension for People Technical Committee on the above date. The level of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/bpel4people/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/bpel4people/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/bpel4people/.

Notices

Copyright © OASIS® 2009. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The names "OASIS", MACROBUTTON NoMacro [insert specific trademarked names and abbreviations here] are trademarks of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.
Table of Contents

101
Introduction

2
Language Design
11
2.1 Dependencies on Other Specifications
11
2.2 Notational Conventions
11
2.3 Conformance Targets
11
2.4 Language Extensibility
12
2.5 Overall Language Structure
12
2.5.1 Syntax
12
2.5.2 Properties
13
3
Concepts
16
3.1 Generic Human Roles
16
3.2 Composite Tasks & Sub Tasks
17
3.2.1 Composite tasks by definition
17
3.2.2 Composite tasks created ad-hoc at runtime
17
3.3 Routing Patterns
18
3.4 Assigning People
18
3.4.1 Using Logical People Groups
18
3.4.2 Using Literals
18
3.4.3 Using Expressions
18
3.4.4 Data Type for Organizational Entities
18
3.4.5 Subtasks
18
3.4.6 Routing Patterns
18
3.5 Task Rendering
18
3.6 Lean Tasks
18
3.7 Task Instance Data
18
3.7.1 Presentation Data
18
3.7.2 Context Data
18
3.7.3 Operational Data
18
3.7.4 Data Types for Task Instance Data
18
3.7.5 Sub Tasks
18
4
Human Tasks
18
4.1 Overall Syntax
18
4.2 Properties
18
4.3 Presentation Elements
18
4.4 Elements for Rendering Tasks
18
4.5 Lean Tasks
18
4.6 Elements for Composite Tasks
18
4.7 Elements for People Assignment
18
4.7.1 Routing Patterns
18
4.8 Elements for Handling Timeouts and Escalations
18
4.9 Human Task Behavior and State Transitions
18
4.9.1 Normal processing of a Human Task
18
4.9.2 Releasing a Human Task
18
4.9.3 Delegating or forwarding a Human Task
18
4.9.4 Suspending and resuming a Human Task
18
4.9.5 Skipping a Human Task
18
4.9.6 Termination of a Human Task
18
4.9.7 Error handling for Human Task
18
4.9.8 Sub Tasks
18
5
Notifications
18
5.1 Overall Syntax
18
5.2 Properties
18
5.3 Notification Behavior and State Transitions
18
6
Programming Interfaces
18
6.1 Operations for Client Applications
18
6.1.1 Participant Operations
18
6.1.2 Simple Query Operations
18
6.1.3 Advanced Query Operation
18
6.1.4 Administrative Operations
18
6.1.5 Operation Authorizations
18
6.2 XPath Extension Functions
18
7
Interoperable Protocol for Advanced Interaction with Human Tasks
18
7.1 Human Task Coordination Protocol Messages
18
7.2 Protocol Messages
18
7.2.1 Protocol Messages Received by a Task Parent
18
7.2.2 Protocol Messages Received by a Task
18
7.3 WSDL of the Protocol Endpoints
18
7.3.1 Protocol Endpoint of the Task Parent
18
7.3.2 Protocol Endpoint of the Task
18
7.4 Providing Human Task Context
18
7.4.1 SOAP Binding of Human Task Context
18
7.5 Lean Task Interactions
18
7.6 Human Task Policy Assertion
18
8
Providing Callback Information for Human Tasks
18
8.1 EPR Information Model Extension
18
8.2 XML Infoset Representation
18
8.3 Message Addressing Properties
18
8.4 SOAP Binding
18
9
Security Considerations
18
10
Conformance
18
11
References
18
A.
Portability and Interoperability Considerations
18
B.
WS-HumanTask Language Schema
18
C.
WS-HumanTask Data Types Schema
18
D.
WS-HumanTask API Port Types
18
E.
WS-HumanTask Protocol Handler Port Types
18
F.
WS-HumanTask Context Schema
18
G.
WS-HumanTask Policy Assertion Schema
18
H.
Sample
18
I.
Acknowledgements
18
J.
Non-Normative Text
18
K.
Revision History
18

1 Introduction

Human tasks, or briefly tasks enable the integration of human beings in service-oriented applications. This document provides a notation, state diagram and API for human tasks, as well as a coordination protocol that allows interaction with human tasks in a more service-oriented fashion and at the same time controls tasks’ autonomy. The document is called Web Services Human Task (abbreviated to WS-HumanTask for the rest of this document).

Human tasks are services “implemented” by people. They allow the integration of humans in service-oriented applications. A human task has two interfaces. One interface exposes the service offered by the task, like a translation service or an approval service. The second interface allows people to deal with tasks, for example to query for human tasks waiting for them, and to work on these tasks.

A human task has people assigned to it. These assignments define who should be allowed to play a certain role on that task. Human tasks might be assigned to people in a well-defined order. This includes assignments in a specific sequence and or parallel assignment to a set of people or any combination of both. Human tasks may also specify how task metadata should be rendered on different devices or applications making them portable and interoperable with different types of software. Human tasks can be defined to react on timeouts, triggering an appropriate escalation action.

This also holds true for notifications. Notifications are a special type of human task that allows the sending of information about noteworthy business events to people. Notifications are always one-way, i.e., they are delivered in a fire-and-forget manner: The sender pushes out notifications to people without waiting for these people to acknowledge their receipt.

Let us take a look at an example, an approval task. Such a human task could be involved in a mortgage business process. After the data of the mortgage has been collected, and, if the value exceeds some amount, a manual approval step is required. This can be implemented by invoking an approval service implemented by the approval task. The invocation of the service by the business process creates an instance of the approval task. As a consequence this task pops up on the task list of the approvers. One of the approvers will claim the task, evaluate the mortgage data, and eventually complete the task by either approving or rejecting it. The output message of the task indicates whether the mortgage has been approved or not. All that is transparent to the caller of the task (a business process in this example).

The goal of this specification is to enable portability and interoperability:

· Portability - The ability to take human tasks and notifications created in one vendor's environment and use them in another vendor's environment.

· Interoperability - The capability for multiple components (task infrastructure, task list clients and applications or processes with human interactions) to interact using well-defined messages and protocols. This enables combining components from different vendors allowing seamless execution.

Out of scope of this specification is how human tasks and notifications are deployed or monitored. Usually people assignment is accomplished by performing queries on a people directory which has a certain organizational model. The mechanism determining how an implementation evaluates people assignments, as well as the structure of the data in the people directory is out of scope.

2 Language Design

The language introduces a grammar for describing human tasks and notifications. Both design time aspects, such as task properties and notification properties, and runtime aspects, such as task states and events triggering transitions between states are covered by the language. Finally, it introduces a programming interface which can be used by applications involved in the life cycle of a task to query task properties, execute the task, or complete the task. This interface helps to achieve interoperability between these applications and the task infrastructure when they come from different vendors.

The language provides an extension mechanism that can be used to extend the definitions with additional vendor-specific or domain-specific information.

Throughout this specification, WSDL and schema elements may be used for illustrative or convenience purposes. However, in a situation where those elements or other text within this document contradict the separate WS-HumanTask, WSDL or schema files, it is those files that have precedence and not this document.

2.1 Dependencies on Other Specifications

WS-HumanTask utilizes the following specifications:

· WSDL 1.1

· XML Schema 1.0
· XPath 1.0
· WS-Addressing 1.0

· WS-Coordination 1.1
· WS-Policy 1.5
2.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC 2119].

2.3 Conformance Targets

The following conformance targets are defined as part of this specification

· WS-HumanTask Definition
A WS-HumanTask Definition is any artifact that complies with the human interaction schema and additional constraints defined in this document.

· WS-HumanTask Processor
A WS-HumanTask Processor is any implementation that accepts a WS-HumanTask definition and executes the semantics as defined in this document.

· WS-HumanTask Parent
A WS-HumanTask Parent is any implementation that supports the Interoperable Protocol for Advanced Interactions with Human Tasks as defined in this document.

· WS-HumanTask Client
A WS-HumanTask Client is any implementation that uses the Programming Interfaces of the WS-HumanTask Processor.

2.4 Language Extensibility

The WS-HumanTask extensibility mechanism allows:

· Attributes from other namespaces to appear on any WS-HumanTask element

· Elements from other namespaces to appear within WS-HumanTask elements

Extension attributes and extension elements MUST NOT contradict the semantics of any attribute or element from the WS-HumanTask namespace. For example, an extension element could be used to introduce a new task type.

The specification differentiates between mandatory and optional extensions (the section below explains the syntax used to declare extensions). If a mandatory extension is used, a compliant implementation has to understand the extension. If an optional extension is used, a compliant implementation can ignore the extension.

2.5 Overall Language Structure

Human interactions subsume both human tasks and notifications. While human tasks and notifications are described in subsequent sections, this section explains the overall structure of human interactions definition.

2.5.1 Syntax

<htd:humanInteractions
 xmlns:htd="http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="anyURI"
 targetNamespace="anyURI"
 expressionLanguage="anyURI"?
 queryLanguage="anyURI"?>
 <htd:extensions>?
 <htd:extension namespace="anyURI" mustUnderstand="yes|no"/>+
 </htd:extensions>
 <htd:import namespace="anyURI"?
 location="anyURI"?
 importType="anyURI" />*
 <htd:logicalPeopleGroups>?
 <htd:logicalPeopleGroup name="NCName" reference="QName"?>+
 <htd:parameter name="NCName" type="QName" />*
 </htd:logicalPeopleGroup>
 </htd:logicalPeopleGroups>
 <htd:tasks>?
 <htd:task name="NCName">+
 ...
 </htd:task>
 </htd:tasks>
 <htd:notifications>?
 <htd:notification name="NCName">+
 ...
 </htd:notification>
 </htd:notifications>
</htd:humanInteractions>
2.5.2 Properties

The <humanInteractions> element has the following properties:

· expressionLanguage: This attribute specifies the expression language used in the enclosing elements. The default value for this attribute is urn:ws-ht:sublang:xpath1.0 which represents the usage of XPath 1.0 within human interactions definition. A WS-HumanTask Definition that uses expressions MAY override the default expression language for individual expressions. A WS-HumanTask Processor MUST support the use of XPath 1.0 as the expression language.
· queryLanguage: This attribute specifies the query language used in the enclosing elements. The default value for this attribute is urn:ws-ht:sublang:xpath1.0 which represents the usage of XPath 1.0 within human interactions definition. A WS-HumanTask Definition that use query expressions MAY override the default query language for individual query expressions. A WS-HumanTask Processor MUST support the use of XPath 1.0 as the query language.

· extensions: This element is used to specify namespaces of WS-HumanTask extension attributes and extension elements. The element is optional. If present, it MUST include at least one extension element. The <extension> element is used to specify a namespace of WS-HumanTask extension attributes and extension elements, and indicate whether they are mandatory or optional. Attribute mustUnderstand is used to specify whether the extension must be understood by a compliant implementation. If the attribute has value “yes” the extension is mandatory. Otherwise, the extension is optional. If a WS-HumanTask Processor does not support one or more of the extensions with mustUnderstand="yes", then the human interactions definition MUST be rejected. A WS-HumanTask Processor MAY ignore optional extensions. A WS-HumanTask Definition MAY declare optional extensions. The same extension URI MAY be declared multiple times in the <extensions> element. If an extension URI is identified as mandatory in one <extension> element and optional in another, then the mandatory semantics have precedence and MUST be enforced by a WS-HumanTask Processor. The extension declarations in an <extensions> element MUST be treated as an unordered set.

· import: This element is used to declare a dependency on external WS-HumanTask and WSDL definitions. Zero or more <import> elements MAY appear as children of the <humanInteractions> element.

The namespace attribute specifies an absolute URI that identifies the imported definitions. This attribute is optional. An <import> element without a namespace attribute indicates that external definitions are in use which are not namespace-qualified. If a namespace is specified then the imported definitions MUST be in that namespace. If no namespace is specified then the imported definitions MUST NOT contain a targetNamespace specification. The namespace http://www.w3.org/2001/XMLSchema is imported implicitly. Note, however, that there is no implicit XML Namespace prefix defined for http://www.w3.org/2001/XMLSchema.

The location attribute contains a URI indicating the location of a document that contains relevant definitions. The location URI MAY be a relative URI, following the usual rules for resolution of the URI base [XML Base, RFC 2396]. The location attribute is optional. An <import> element without a location attribute indicates that external definitions are used by the human interactions definition but makes no statement about where those definitions may be found. The location attribute is a hint and a WS-HumanTask Processor is not required to retrieve the document being imported from the specified location.

The mandatory importType attribute identifies the type of document being imported by providing an absolute URI that identifies the encoding language used in the document. The value of the importType attribute MUST be set to http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803 when importing human interactions definitions, or to http://schemas.xmlsoap.org/wsdl/ when importing WSDL 1.1 documents.

According to these rules, it is permissible to have an <import> element without namespace and location attributes, and only containing an importType attribute. Such an <import> element indicates that external definitions of the indicated type are in use that are not namespace-qualified, and makes no statement about where those definitions may be found.

A WS-HumanTask Definition MUST import all WS-HumanTask and WSDL definitions it uses. In order to support the use of definitions from namespaces spanning multiple documents, a WS-HumanTask Definition MAY include more than one import declaration for the same namespace and importType, provided that those declarations include different location values. <import> elements are conceptually unordered. A WS-HumanTask Processor MUST reject the imported documents if they contain conflicting definitions of a component used by the imported WS-HumanTask Definition.

Documents (or namespaces) imported by an imported document (or namespace) MUST NOT be transitively imported by a WS-HumanTask Processor. In particular, this means that if an external item is used by a task enclosed in the WS-HumanTask Definition, then a document (or namespace) that defines that item MUST be directly imported by the WS-HumanTask Definition. This requirement does not limit the ability of the imported document itself to import other documents or namespaces.
· logicalPeopleGroups: This element specifies a set of logical people groups. The element is optional. If present, it MUST include at least one logicalPeopleGroup element. The set of logical people groups MUST contain only those logical people groups that are used in the humanInteractions element, and enclosed human tasks and notifications. The logicalPeopleGroup element has the following attributes. The name attribute specifies the name of the logical people group. The name MUST be unique among the names of all logicalPeopleGroups defined within the humanInteractions element. The reference attribute is optional. In case a logical people group used in the humanInteractions element is defined in an imported WS-HumanTask definition, the reference attribute MUST be used to specify the logical people group. The parameter element is used to pass data needed for people query evaluation.

· tasks: This element specifies a set of human tasks. The element is optional. If present, it MUST include at least one <task> element. The syntax and semantics of the <task> element are introduced in section 4, "Human Tasks"
· notifications: This element specifies a set of notifications. The element is optional. If present, it MUST include at least one <notification> element. The syntax and semantics of the <notification> element are introduced in section 5 “Notifications”.
· Element humanInteractions MUST NOT be empty, that is it MUST include at least one element.

All elements in WS-HumanTask Definition MAY use the element <documentation> to provide annotation for users. The content could be a plain text, HTML, and so on. The <documentation> element is optional and has the following syntax:

<htd:documentation xml:lang="xsd:language">
 ...
</htd:documentation>
3 Concepts

3.1 Generic Human Roles

Generic human roles define what a person or a group of people resulting from a people query can do with tasks and notifications. The following generic human roles are taken into account in this specification:

· Task initiator

· Task stakeholders

· Potential owners

· Actual owner

· Excluded owners

· Business administrators

· Notification recipients

A task initiator is the person who creates the task instance. Depending on how the task has been instantiated the task initiator may or may not be defined. That is, a WS-HumanTask Definition MAY define assignment for this generic human role.

The task stakeholders are the people ultimately responsible for the oversight and outcome of the task instance. A task stakeholder can influence the progress of a task, for example, by adding ad-hoc attachments, forwarding the task, or simply observing the state changes of the task. It is also allowed to perform administrative actions on the task instance and associated notification(s), such as resolving missed deadlines. A WS-HumanTask Definition MAY define assignment for this generic human role. WS-HumanTask Processors MUST ensure that at least one person is associated with this role at runtime.

Potential owners of a task are persons who receive the task so that they can claim and complete it. A potential owner becomes the actual owner of a task by explicitly claiming it. Before the task has been claimed, potential owners can influence the progress of the task, for example by changing the priority of the task, adding ad-hoc attachments or comments. All excluded owners are implicitly removed from the set of potential owners. A WS-HumanTask Definition MAY define assignment for this generic human role.

Excluded owners
are people who cannot become an actual or potential owner and thus they cannot reserve or start the task. A WS-HumanTask Definition MAY define assignment for this generic human role.

An actual owner of a task is the person actually performing the task. A task managed by a WS-HumanTask Processor MUST have exactly one actual owner.
 When task is performed, the actual owner can execute actions, such as revoking the claim, forwarding the task, suspending and resuming the task execution or changing the priority of the task. A WS-HumanTask Definition MUST NOT define assignment for this generic human role.

Business administrators play the same role as task stakeholders but at task type level. Therefore, business administrators can perform the exact same operations as task stakeholders. Business administrators may also observe the progress of notifications. A WS-HumanTask Definition MAY define assignment for this generic human role. WS-HumanTask Processors MUST ensure that at runtime at least one person is associated with this role.

Notification recipients are persons who receive the notification, such as happens when a deadline is missed or when a milestone is reached. This role is similar to the roles potential owners and actual owner but has different repercussions because a notification recipient does not have to perform any action and hence it is more of informational nature than participation. A notification has one or more recipients. A WS-HumanTask Definition MAY define assignment for this generic human role.

3.2 Composite Tasks & Sub Tasks

A human task may describe a quite complex work package that could be divided into a substructure of related, but basically independent operations with potential legwork of different parties.

Complex tasks with substructures are called composite tasks; they can be considered as a composition of multiple (sub) tasks.

A sub task describes an act that may or must be completed as an element of completing a larger and more complex task. The enclosing composite task may share data with embedded sub tasks, e.g. map data into the input structure of sub tasks or share attachments between composite and sub task.

Composite tasks strictly follow the design principle that they are always managed by a single task processor. Therefore the existence of sub tasks usually won’t be visible on people activity level.

In general subtasks are just human tasks, coming with all attributes a human task has, behaving the way each human task behaves. Some specialties in the area of people assignment and state transitions apply in case a task is a sub task, to align with the behavior of the superior composite task.
Tasks can be composite tasks per definition (sub tasks are already defined in the task model) or turn into composite tasks at runtime, when a task processor ad-hoc creates one or more sub tasks to structure his work.
3.2.1 Composite tasks by definition

In case a composite task is pre-defined as such, the task model contains the definition of one or more sub tasks. Composite tasks come with the following additional attributes:

· Composition Type (parallel | sequential)

Composite tasks with composition type “parallel” allow multiple active sub tasks at the same time, sub tasks are not in any order; composite tasks with composition type “sequential” only allow sequential creation of sub tasks in the pre-defined order (a second listed sub task must not be created before a first listed sub task has been terminated).

· Activation Pattern (manual | automatic)

Composite tasks with activation pattern “manual” expect the task client to trigger creation of pre-defined sub tasks; composite tasks with activation pattern “automatic” are automatically created the time the composite task itself turns into status “in progress” (composition type “parallel”: all pre-defined sub tasks are created the time the composite task turns into status “in progress”; composition type “sequential”: the time the composite tasks turns into status “in progress” the first defined sub task will be created; next sub task in a sequence is automatically created the time its predecessor is terminated).

3.2.2 Composite tasks created ad-hoc at runtime

An ordinary task may turn into a composite task when the actual owner of a task decides to substructure his work and create sub tasks ad-hoc at runtime.

These runtime created sub tasks behave / are treated as though they are of type “parallel” (a user may create multiple sub tasks at a time) and have activation pattern “manual” (creation of ad-hoc sub tasks is always triggered by a user
).
3.3 Routing Patterns
TODO: describe the general concept of Routing Patterns

3.4 Assigning People

To determine who is responsible for acting on a human task in a certain generic human role or who will receive a notification, people need to be assigned. People assignment can be achieved in different ways:

· Via logical people groups (see 3.4.1 “Using Logical People Groups”)

· Via literals (see 3.4.2 “Using Literals”)

· Via expressions e.g., by retrieving data from the input message of the human task (see 3.4.3 “Using Expressions”).

· In a well-defined order using Routing Patterns (see Routing Patterns)
When specifying people assignments then the data type htd:tOrganizationalEntity is used. Using htd:tOrganizationalEntity allows to assign either a set of people or an unresolved group of people (“work queue”).
Human tasks might be assigned to people in a well-defined order. This includes assignments in a specific sequence and or parallel assignment to a set of people or any combination of both.
Syntax:

<htd:peopleAssignments>
 <htd:genericHumanRole>+
 <htd:from>...</htd:from>
 </htd:genericHumanRole>
 <htd:potentialOwners>+
 fromPattern+
 </htd: potentialOwners>

</htd:peopleAssignments>
The following syntactical elements for generic human roles are introduced. They can be used wherever the abstract element genericHumanRole is allowed by the WS-HumanTask XML Schema.

<htd:excludedOwners>
 <htd:from>...</htd:from>
</htd:excludedOwners>
<htd:taskInitiator>
 <htd:from>...</htd:from>
</htd:taskInitiator>
<htd:taskStakeholders>
 <htd:from>...</htd:from>
</htd:taskStakeholders>
<htd:businessAdministrators>
 <htd:from>...</htd:from>
</htd:businessAdministrators>
<htd:recipients>
 <htd:from>...</htd:from>
</htd:recipients>
For the potentialOwner generic human role the syntax is as following

<htd:potentialOwner>
 fromPattern+

</htd:potentialOwner>

where fromPattern is one of

<htd:from> ... </htd:from>

<htd:sequence type="all|single"?>

 fromPattern*

</htd:sequence>

<htd:parallel type="all|single"?>

 fromPattern*

</htd:parallel>

Element <htd:from> is used to specify the value to be assigned to a role. The element has different forms as described below.
3.4.1 Using Logical People Groups

A logical people group represents either one person, a set of people, or one or many unresolved groups of people (i.e., group names). A logical people group is bound to a people query against a people directory at deployment time. Though the term query is used, the exact discovery and invocation mechanism of this query is not defined by this specification. There are no limitations as to how the logical people group is evaluated. At runtime, this people query is evaluated to retrieve the actual people assigned to the task or notification. Logical people groups MUST support query parameters which are passed to the people query at runtime. Parameters MAY refer to task instance data (see section 3.6 for more details). During people query execution an infrastructure may decide which of the parameters defined by the logical people group are used. It may use zero or more of the parameters specified. It may also override certain parameters with values defined during logical people group deployment. The deployment mechanism for tasks and logical people groups is out of scope for this specification.

A logical people group has one instance per set of unique arguments. Whenever a logical people group is referenced for the first time with a given set of unique arguments, a new instance MUST be created by the WS-HumanTask Processor. To achieve that, the logical people group MUST be evaluated / resolved for this set of arguments. Whenever a logical people group is referenced for which an instance already exists (i.e., it has already referenced before with the same set of arguments), the logical people group MAY be re-evaluated/re-resolved.

In particular, for a logical people group with no parameters, there is a single instance, which MUST be evaluated / resolved when the logical people group is first referenced, and which MAY be re-evaluated / re-resolved when referenced again.

People queries are evaluated during the creation of a human task or a notification. If a people query fails a WS-HumanTask Processor MUST create the human task or notification anyway. Failed people queries MUST be treated like people queries that return an empty result set. If the potential owner people query returns an empty set of people a WS-HumanTask Processor MUST perform nomination (see section 4.9.1 “Normal processing of a Human Task”). In case of notifications, a WS-HumanTask Processor MUST apply the same to notification recipients.

People queries return either one person, a set of people, or the name of one or many groups of people. The latter is added to support “work queue” based business scenarios, where people see work they have been assigned to due to their membership of a certain group. Especially in cases where group membership changes frequently, this “late binding” to the actual group members is beneficial.

Logical people groups are global elements enclosed in a human interactions definition document. Multiple human tasks in the same document can utilize the same logical people group definition. During deployment each logical people group is bound to a people query. If two human tasks reference the same logical people group, they are bound to the same people query. However, this does not guarantee that the tasks are actually assigned to the same set of people. The people query is performed for each logical people group reference of a task and may return different results, for example if the content of the people directory has been changed between two queries. Binding of logical people groups to actual people query implementations is out of scope for this specification.

Syntax:

<htd:from logicalPeopleGroup="NCName">
 <htd:argument name="NCName" expressionLanguage="anyURI"? >*
 expression
 </htd:argument>
</htd:from>
The logicalPeopleGroup attribute refers to a logicalPeopleGroup definition. The element <argument> is used to pass values used in the people query. The expressionLanguage attribute specifies the language used in the expression. The attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute MUST be used by WS-HumanTask Processor.

Example:

<htd:potentialOwners>
 <htd:from logicalPeopleGroup="regionalClerks">
 <htd:argument name="region">
 htd:getInput("part1")/region
 </htd:argument>
 </htd:from>
</htd:potentialOwners>

3.4.2 Using Literals

People assignments can be defined literally by directly specifying the user identifier(s) or the name(s) of groups using either the htd:tOrganizationalEntity or htd:tUser data type introduced below (see 3.4.4 “Data Type for Organizational Entities”).

Syntax:

<htd:from>
 <htd:literal>

 ... literal value ...

 </htd:literal>
</htd:from>
Example specifying user identifiers:

<htd:potentialOwners>
 <htd:from>
 <htd:literal>
 <htd:organizationalEntity>
 <htd:users>
 <htd:user>Alan</htd:user>
 <htd:user>Dieter</htd:user>
 <htd:user>Frank</htd:user>
 <htd:user>Gerhard</htd:user>
 <htd:user>Ivana</htd:user>
 <htd:user>Karsten</htd:user>
 <htd:user>Matthias</htd:user>
 <htd:user>Patrick</htd:user>
 </htd:users>
 </htd:organizationalEntity>
 </htd:literal>
 </htd:from>
</htd:potentialOwners>
Example specifying group names:

<htd:potentialOwners>
 <htd:from>
 <htd:literal>
 <htd:organizationalEntity>
 <htd:groups>
 <htd:group>bpel4people_authors</htd:group>
 </htd:groups>
 </htd:organizationalEntity>
 </htd:literal>
 </htd:from>
</htd:potentialOwners>
3.4.3 Using Expressions

Alternatively people can be assigned using expressions returning either an instance of the htd:tOrganizationalEntity data type or the htd:tUser data type introduced below (see 3.4.4 “Data Type for Organizational Entities”).

Syntax:

<htd:from expressionLanguage="anyURI"?>
 expression
</htd:from>
The expressionLanguage attribute specifies the language used in the expression. The attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute MUST be used by WS-HumanTask Processor.

Example:

<htd:potentialOwners>
 <htd:from>htd:getInput("part1")/approvers</htd:from>
</htd:potentialOwners>
<htd:businessAdministrators>
 <htd:from>
 htd:except(htd:getInput("part1")/admins,
 htd:getInput("part1")/globaladmins[0])
 </htd:from>
</htd:businessAdministrators>
3.4.4 Data Type for Organizational Entities

The following XML schema definition describes the format of the data that is returned at runtime when evaluating a logical people group. The result can contain either a list of users or a list of groups. The latter is used to defer the resolution of one or more groups of people to a later point, such as when the user accesses a task list.

<xsd:element name="organizationalEntity" type="tOrganizationalEntity" />
<xsd:complexType name="tOrganizationalEntity">
 <xsd:choice>
 <xsd:element ref="users" />
 <xsd:element ref="groups" />
 </xsd:choice>
</xsd:complexType>
<xsd:element name="user" type="tUser" />
<xsd:simpleType name="tUser">
 <xsd:restriction base="xsd:string" />
</xsd:simpleType>
<xsd:element name="users" type="tUserlist" />
<xsd:complexType name="tUserlist">
 <xsd:sequence>
 <xsd:element ref="user" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="group" type="tGroup" />
<xsd:simpleType name="tGroup">
 <xsd:restriction base="xsd:string" />
</xsd:simpleType>
<xsd:element name="groups" type="tGrouplist" />
<xsd:complexType name="tGrouplist">
 <xsd:sequence>
 <xsd:element ref="group" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:complexType>
3.4.5 Subtasks

A subtask has the same set of roles each human task has. There is one additional limitation that exists for subtask people assignment compared to the general human task people assignment: Excluded owners of a composite task are always propagated into that task’s subtasks.

In case people assignment to a subtask’s roles is not defined (neither in the subtask’s task definition nor on composite task level (using overwrite mechanisms)) the following default assignments apply (especially valid for ad-hoc scenarios):

· Task initiator
a) Activation pattern “manual” (composite task actual owner becomes subtask initiator
b) Activation pattern “automatic” (no subtask initiator

· Task stakeholders
· Composite task actual owner becomes subtask stakeholder

· Potential owners
· No default assignment (usually potential owners will explicitly be defined)
· Excluded owners
· Composite task excluded owners become subtask excluded owner
(This rule applies always, even though the excluded owners of a subtask may be enhanced by additional people)
· Business administrators
· Composite task business administrators become subtask business administrators
3.4.6 Routing Patterns

A Routing Pattern is a special form of people assignment. In a routing pattern, a Task is assigned to people in a well-defined order. The standard patterns allow the assignment of a Task in a sequence or in parallel. Those patterns MAY be used in any combination to create complex task routing to people.

Example:
<htd:potentialOwners>
 <htd:sequence type="all">

 <htd:from logicalPeopleGroup="regionalClerks">
 <htd:argument name="region">
 htd:getInput("part1")/region
 </htd:argument>
 </htd:from>
 <htd:from>
 <htd:literal>
 <htt:organizationalEntity>
 <htt:users>
 <htt:user>Dieter</htt:user>
 </htt:users>
 </htt:organizationalEntity>
 </htd:literal>
 </htd:from>
 </htd:sequence>

</htd:potentialOwners>

3.5 Task Rendering

Humans require a presentation interface to interact with a machine. This specification covers the service interfaces that enable this to be accomplished, and enables this in different constellations of software from different parties. The key elements are the task list client, the task engine and the applications invoked when a task is executed.

It is assumed that a single task instance can be rendered by different task list clients so the task engine does not depend on a single dedicated task list client. Similarly it is assumed that one task list client can present tasks from several task engines in one homogenous list and can handle the tasks in a consistent manner. The same is assumed for notifications.

A distinction is made between the rendering of the meta-information associated with the task or notification (task-description UI and task list UI) (see section 4.3 for more details on presentation elements) and the rendering of the task or notification itself (task-UI) used for task execution (see section 4.4 for more details on task rendering). For example, the task-description UI includes the rendering of a summary list of pending or completed tasks and detailed meta-information such as a deadlines, priority and description about how to perform the task. It is the task list client that deals with this.

The task-UI can be rendered by the task list client or delegated to a rendering application invoked by the task list client. The task definition and notification definition can define different rendering information for the task-UI using different rendering methodologies.

Versatility of deployment determines which software within a particular constellation performs the presentation rendering.

The task-UI can be specified by a rendering method within the task definition or notification definition. The rendering method is identified by a unique name attribute and specifies the type of rendering technology being used. A task or a notification can have more than one such rendering method, e.g. one method for each environment the task or notification is accessed from (e.g. workstation, mobile device).

The task-list UI encompasses all information crucial for understanding the importance of and details about a given task or notification (e.g. task priority, subject and description) - typically in a table-like layout. Upon selecting a task, i.e. an entry in case of a table-like layout, the user is given the opportunity to launch the corresponding task-UI. The task-UI has access to the task instance data, and can comprise and manipulate documents other than the task instance. It can be specified by a rendering method within the task description.
3.6 Lean Tasks
WS-HumanTask enables the creation of task applications with rich renderings, separate input and output messages, and custom business logic in the portType implementation. However, there are also simpler task scenarios where the task can be defined simply with metadata and the rendering can be left to the WS-HumanTask Processor. An example of this is a simple todo task, where no form is required beyond the acknowledgement by the actual owner that the work stated in the Name and Subject is done. A notification doesn’t work in this case since it lacks the ability to track whether the work is done or not, and a normal task that has renderings defined requires that the WS-HumanTask Parent, WS-HumanTask Processor, and WS-HumanTask Client all understand the renderings to varying extents.

Another use is the ability to generate a form based upon a sub element of an existing input message from an existing task. A task client could issue a request to the WS-HumanTask Processor that requests that a specific subportion of an existing task be turned into a new task and have the full lifetime of a task. At the time the WS-HumanTask Processor system was designed and installed, this particular data could not have been known and the portType to call could not already exists. Therefore, this requires the notion of ad-hoc creation of new types of tasks complete with renderings powerful enough to establish useful tasks for decomposing a large task.

A Lean Task is a task that has a reduced set of vendor-specific capabilities which results in increased portability and simplicity. The two pieces of the task XML definition that Lean Tasks lack are the ability to define renderings and custom port types. Throughout the specification uses of the word task refers to both types of tasks unless otherwise noted.
In terms of renderings, a Lean Task lacks the ability to have renderings defined as part of its XML definition (htd:task, see section 4.1). Instead, the WS-HumanTask Processor MUST generate the rendering. All other WS-HumanTask Client to WS-HumanTask Processor interactions behave exactly as before, implying that the processing of a task on a WS-HumanTask Processor for a Lean Task and for a non-Lean Task SHOULD be indistringuishable from the perspective of a WS-HumanTask Client.

When used in constellation 4 of WS-BPEL4People, a Lean Task SHOULD be started through pre-existing interfaces that do not vary in portType or operation per task. They SHOULD instead be shipped as part of the installation of the WS-HumanTask Processor (see Section 7.5, Lean Task Interactions). Therefore, they also lack the ability to define which portType and operation are used to start the task as part of its XML definition.
Additionally, each WS-HumanTask Processor SHOULD have a default Lean Task named ToDoTask
 as part of its default configuration.
3.7 Task Instance Data

Task instance data falls into three categories:

· Presentation data – The data is derived from the task definition or the notification definition such as the name, subject or description.

· Context data - A set of dynamic properties, such as priority, task state, time stamps and values for all generic human roles.

· Operational data – The data includes the input message, output message, attachments and comments.

3.7.1 Presentation Data

The presentation data is used, for example, when displaying a task or a notification in the task list client. The presentation data has been prepared for display such as by substituting variables. See section 4.3 “Presentation Elements” for more details.

3.7.2 Context Data

The task context includes the following:

· Task state

· Priority

· Values for all generic human roles, i.e. potential owners, actual owner and business administrators

· Time stamps such as start time, completion time, defer expiration time, and expiration time

· Skipable indicator

A WS-HumanTask Processor MAY extend this set of properties available in the task context. For example, the actual owner may start the execution of the task but the task could be long-running task so intermediate state could be saved in the task context.

3.7.3 Operational Data

The operational data of a task consists of its input data and output data or fault data, as well as any ad-hoc attachments and comments. The operational data of a notification is restricted to its input data. Operational data is accessed using the XPath extension functions and programming interface.

3.7.3.1 Ad-hoc Attachments

A WS-HumanTask Processor MAY allow arbitrary additional data to be attached to a task. This additional data is referred to as task ad-hoc attachments. An ad-hoc attachment is specified by its name, its type and its content.

The name element is used to specify attachment name. Several attachments MAY have the same name and can then be retrieved as a collection.

The contentType of an attachment can be any valid XML schema type, including xsd:any, or any MIME type. The attachment data is assumed to be of that specified content type.

The contentCategory of an attachment is a URI used to qualify the contentType. While contentType contains the type of the attachment, the contentCategory specifies the type system used when defining the contentType. Predefined values for contentCategory are

· "http://www.w3.org/2001/XMLSchema"; if XML Schema types are used for the contentType

· "http://www.iana.org/assignments/media-types/"; if MIME types are used for the contentType

The set of values is extensible. A WS-HumanTask Processor MUST support the use of XML Schema types and MIME types as content categories, indicated by the predefined URI values shown above.

The accessType element indicates if the attachment is specified inline or by reference. In the inline case it MUST contain the string constant “inline”. In this case the value of the attachment data type contains the base64 encoded attachment. In case the attachment is referenced it MUST contain the string “URL”, indicating that the value of the attachment data type contains a URL from where the attachment can be retrieved. Other values of the accessType element are allowed for extensibility reasons, for example to enable inclusion of attachment content from content management systems.

The attachedAt element indicates when the attachment is added.

The attachedBy element indicates who added the attachment. It could be a user, not a group or a list of users or groups.

A task may have ad-hoc attachments. Ad-hoc attachments can be added, deleted and retrieved by name. Deletion and retrieving affects all attachments of that name.

Attachment Info Data Type

The following data type is used to return infos on ad-hoc attachments.

<xsd:element name="attachmentInfo" type="tAttachmentInfo" />
<xsd:complexType name="tAttachmentInfo">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="accessType" type="xsd:string" />
 <xsd:element name="contentType" type="xsd:string" />
 <xsd:element name="contentCategory" type="xsd:anyURI" />
 <xsd:element name="attachedAt" type="xsd:dateTime" />
 <xsd:element name="attachedBy" type="htd:tUser" />
 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:complexType>
Attachment Data Type

The following data type is used to return ad-hoc attachments.

<xsd:element name="attachment" type="tAttachment" />
<xsd:complexType name="tAttachment">
 <xsd:sequence>
 <xsd:element ref="attachmentInfo" />
 <xsd:element name="value" type="xsd:anyType" />
 </xsd:sequence>
</xsd:complexType>
3.7.3.2 Comments

A WS-HumanTask Processor MAY allow tasks to have associated textual notes added by participants of the task. These notes are collectively referred to as task comments. Comments are essentially a chronologically ordered list of notes added by various users who worked on the task. A comment has the text, user information and a timestamp. Comments are usually added individually, but retrieved as one group. Comments usage is optional in a task.

The addedAt element indicates when the comment is added.

The addedBy element indicates who added the comment. It could be a user, not a group or a list of users or groups.

Comment Data Type

The following data type is used to return comments.

<xsd:element name="comment" type="tComment" />
<xsd:complexType name="tComment">
 <xsd:sequence>
 <xsd:element name="addedAt" type="xsd:dateTime" />
 <xsd:element name="addedBy" type="htd:tUser" />
 <xsd:element name="text" type="xsd:string" />
 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:complexType>
Comments can be added to a task and retrieved from a task.

3.7.4 Data Types for Task Instance Data

The following data types are used to represent instance data of a task or a notification. The data type htt:tTaskAbstract is used to provide the summary data of a task or a notification that is displayed on a task list. The data type htt:tTask contains the data of a task or a notification, except ad-hoc attachments, comments and presentation description. The data that is not contained in htt:tTask can be retrieved separately using the task API.

Contained presentation elements are in a single language (the context determines that language, e.g., when a task abstract is returned in response to a simple query, the language from the locale of the requestor is used).

The elements startByExists and completeByExists have a value of “true” if the task has at least one start deadline or at least one completion deadline respectively. The actual times (startBy and complete By) of the individual deadlines can be retrieved using the query operation (see section 6.1.3 “Advanced Query Operation”).

Note that elements that do not apply to notifications are defined as optional.

TaskAbstract Data Type

<xsd:element name="taskAbstract" type="tTaskAbstract" />
<xsd:complexType name="tTaskAbstract">
 <xsd:sequence>
 <xsd:element name="id"
 type="xsd:string" />
 <xsd:element name="taskType"
 type="xsd:string" />
 <xsd:element name="name"
 type="xsd:QName" />
 <xsd:element name="status"
 type="tStatus" />
 <xsd:element name="priority"
 type="tPriority" minOccurs="0" />
 <xsd:element name="createdOn"
 type="xsd:dateTime" />
 <xsd:element name="activationTime"
 type="xsd:dateTime" minOccurs="0" />
 <xsd:element name="expirationTime"
 type="xsd:dateTime" minOccurs="0" />
 <xsd:element name="isSkipable"
 type="xsd:boolean" minOccurs="0" />
 <xsd:element name="hasPotentialOwners"
 type="xsd:boolean" minOccurs="0" />
 <xsd:element name="startByExists"
 type="xsd:boolean" minOccurs="0" />
 <xsd:element name="completeByExists"
 type="xsd:boolean" minOccurs="0" />
 <xsd:element name="presentationName"
 type="tPresentationName" minOccurs="0" />
 <xsd:element name="presentationSubject"
 type="tPresentationSubject" minOccurs="0" />
 <xsd:element name="renderingMethodExists"
 type="xsd:boolean" />
 <xsd:element name="hasOutput"
 type="xsd:boolean" minOccurs="0" />
 <xsd:element name="hasFault"
 type="xsd:boolean" minOccurs="0" />
 <xsd:element name="hasAttachments"
 type="xsd:boolean" minOccurs="0" />
 <xsd:element name="hasComments"
 type="xsd:boolean" minOccurs="0" />
 <xsd:element name="escalated"
 type="xsd:boolean" minOccurs="0" />
 <xsd:element name="outcome"
 type="xsd:string" minOccurs="0"/>
 <xsd:element name="parentTaskId"
 type="xsd:string" minOccurs="0"/>
 <xsd:element name="hasSubTasks"
 type="xsd:boolean" minOccurs="0”/>
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:complexType>
Task Data Type

<xsd:element name="task" type="tTask"/>
<xsd:complexType name="tTask">
 <xsd:sequence>
 <xsd:element name="id"
 type="xsd:string"/>
 <xsd:element name="taskType"
 type="xsd:string"/>
 <xsd:element name="name"
 type="xsd:QName"/>
 <xsd:element name="status"
 type="tStatus"/>
 <xsd:element name="priority"
 type="htt:tPriority" minOccurs="0"/>
 <xsd:element name="taskInitiator"
 type="htd:tUser" minOccurs="0"/>
 <xsd:element name="taskStakeholders"
 type="htd:tOrganizationalEntity" minOccurs="0"/>
 <xsd:element name="potentialOwners"
 type="htd:tOrganizationalEntity" minOccurs="0"/>
 <xsd:element name="businessAdministrators"
 type="htd:tOrganizationalEntity" minOccurs="0"/>
 <xsd:element name="actualOwner"
 type="htd:tUser" minOccurs="0"/>
 <xsd:element name="notificationRecipients"
 type="htd:tOrganizationalEntity" minOccurs="0"/>
 <xsd:element name="createdOn"
 type="xsd:dateTime"/>
 <xsd:element name="createdBy"
 type="xsd:string" minOccurs="0"/>
 <xsd:element name="activationTime"
 type="xsd:dateTime" minOccurs="0"/>
 <xsd:element name="expirationTime"
 type="xsd:dateTime" minOccurs="0"/>
 <xsd:element name="isSkipable"
 type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="hasPotentialOwners"
 type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="startByExists"
 type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="completeByExists"
 type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="presentationName"
 type="tPresentationName" minOccurs="0"/>
 <xsd:element name="presentationSubject"
 type="tPresentationSubject" minOccurs="0"/>
 <xsd:element name="renderingMethodExists"
 type="xsd:boolean"/>
 <xsd:element name="hasOutput"
 type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="hasFault"
 type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="hasAttachments"
 type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="hasComments"
 type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="escalated"
 type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="primarySearchBy"
 type="xsd:string" minOccurs="0"/>
 <xsd:element name="outcome"
 type="xsd:string" minOccurs="0"/>
 <xsd:element name="parentTaskId"
 type="xsd:string" minOccurs="0"/>
 <xsd:element name="hasSubTasks"
 type="xsd:boolean" minOccurs="0”/>
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>
Common Data Types
<xsd:simpleType name="tPresentationName">
 <xsd:annotation>
 <xsd:documentation>length-restricted string</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="64" />
 <xsd:whiteSpace value="preserve" />
 </xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="tPresentationSubject">
 <xsd:annotation>
 <xsd:documentation>length-restricted string</xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="254" />
 <xsd:whiteSpace value="preserve" />
 </xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="tStatus">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="CREATED" />
 <xsd:enumeration value="READY" />
 <xsd:enumeration value="RESERVED" />
 <xsd:enumeration value="IN_PROGRESS" />
 <xsd:enumeration value="SUSPENDED" />
 <xsd:enumeration value="COMPLETED" />
 <xsd:enumeration value="FAILED" />
 <xsd:enumeration value="ERROR" />
 <xsd:enumeration value="EXITED" />
 <xsd:enumeration value="OBSOLETE" />
 </xsd:restriction>
</xsd:simpleType>
3.7.5 Sub Tasks
To support sub tasks the task instance data gets enhanced by the following (optional) parameters:

· sub tasks
(reference to all already created sub tasks (incl. non-terminated and terminated instances)

(plus reference to not yet created sub task definitions

· parent task
(the superior composite task of a sub task

Sub Tasks are Tasks created as part of a routing pattern. As such, sub tasks can't be modeled. They are created implicitly at runtime when a routing pattern assignment occurs.
Tasks assigned to people in parallel SHOULD follow the same life cycle for each of the parallel assignment as if the task were assigned only to that assignment. To achieve this, each parallel assignment SHOULD be done using a sub task. Sub tasks can have other sub tasks when routing patterns are nested. Each sub task’s htd:parentTaskId MUST be the htd:id of its immediate parent task. Sub tasks SHOULD have its own value for htd:id.

Input
The inputs of a sub task SHOULD be the same as the input of the task at the time the sub task is created.
Output
Each sub task has an output. Conditions on applying the output of the sub task to that of the parent task is described in section TODO.
Comments and Attachment
Sub tasks SHOULD see comments and attachments of the parent task. Additional conditions apply as described in section TODO.

4 Human Tasks

The <task> element is used to specify human tasks. The section below introduces the syntax for the element, and individual properties are explained in subsequent sections.

4.1 Overall Syntax

Definition of human tasks:

<htd:task name="NCName">
 <htd:interface portType="QName" operation="NCName"
 responsePortType="QName"? responseOperation="NCName"? />
 <htd:priority expressionLanguage="anyURI"? >?
 integer-expression
 </htd:priority>
 <htd:peopleAssignments>...</htd:peopleAssignments>
 <htd:delegation
 potentialDelegatees="anybody|nobody|potentialOwners|other" />?
 <htd:from>?
 ...
 </htd:from>
 </htd:delegation>
 <htd:presentationElements>...</htd:presentationElements>
 <htd:outcome part="NCName" queryLanguage="anyURI">?
 queryContent
 </htd:outcome>
 <htd:searchBy expressionLanguage="anyURI"? >?
 expression
 </htd:searchBy>
 <htd:renderings>?
 <htd:rendering type="QName">+
 ...
 </htd:rendering>
 </htd:renderings>
 <htd:deadlines>?
 <htd:startDeadline>*
 ...
 </htd:startDeadline>
 <htd:completionDeadline>*
 ...
 </htd:completionDeadline>
 </htd:deadlines>
</htd:task>
4.2 Properties

The following attributes and elements are defined for tasks:

· name: This attribute is used to specify the name of the task. The name combined with the target namespace MUST uniquely identify a task element enclosed in the task definition. This attribute is mandatory. It is not used for task rendering.

· interface: This element is used to specify the operation used to invoke the task. The operation is specified using WSDL, that is, a WSDL port type and WSDL operation are defined. The element and its portType and operation attributes are mandatory. The interface is specified in one of the following forms:

The WSDL operation is a one-way operation and the task asynchronously returns output data. In this case, a WS-HumanTask Definition MUST specify a callback one-way operation, using the responsePortType and responseOperation attributes. This callback operation is invoked when the task has finished. The Web service endpoint address of the callback operation is provided at runtime when the task’s one-way operation is invoked (for details, see section 8 “
Providing Callback Information for Human Tasks
·
·
”).

· The WSDL operation is a request-response operation. In this case, the responsePortType and responseOperation attributes MUST NOT be specified.

· priority: This element is used to specify the priority of the task. It is an optional element which value is an integer expression. If present, the WS-HumanTask Definition MUST specify a value between 0 and 10, where 0 is the highest priority and 10 is the lowest. If not present, the priority of the task is considered as 5. The result of the expression evaluation is of type htt:tPriority. The expressionLanguage attribute specifies the language used in the expression. The attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.
· peopleAssignments: This element is used to specify people assigned to different generic human roles, i.e. potential owners, and business administrator. The element is mandatory. See section 3.2 for more details on people assignments.

· delegation: This element is used to specify constraints concerning delegation of the task. Attribute potentialDelegatees defines to whom the task can be delegated. One of the following values MUST be specified:

· anybody: It is allowed to delegate the task to anybody

· potentialOwners: It is allowed to delegate the task to potential owners previously selected

· other: It is allowed to delegate the task to other people, e.g. authorized owners. The element <from> is used to determine the people to whom the task can be delegated.

· nobody: It is not allowed to delegate the task.

The delegation element is optional. If this element is not present the task is allowed to be delegated to anybody.

· presentationElements: This element is used to specify different information used to display the task in a task list, such as name, subject and description. See section 4.3 for more details on presentation elements. The element is mandatory.

· outcome: This optional element identifies the field (of an xsd simple type) in the output message which reflects the business result of the task. A conversion takes place to yield an outcome of type xsd:string. The optional attribute queryLanguage specifies the language used for selection. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.
· searchBy: This optional element is used to search for task instances based on a custom search criterion. The result of the expression evaluation is of type xsd:string. The expressionLanguage attribute specifies the language used in the expression. The attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.
· rendering: This element is used to specify the rendering method. It is optional. If not present, task rendering is implementation dependent. See section 4.4 for more details on rendering tasks.

· deadlines: This element specifies different deadlines. It is optional. See section 4.7.1 for more details on timeouts and escalations.

4.3 Presentation Elements

Information about human tasks or notifications needs to be made available in a human-readable way to allow users dealing with their tasks and notifications via a user interface, which could be based on various technologies, such as Web browsers, Java clients, Flex-based clients or .NET clients. For example, a user queries for her tasks, getting a list of tasks she should work on, displaying a short description of each task. Upon selection of one of the tasks, more complete information about the task is displayed by the user interface.

Alternatively, a task or notification could be sent directly to a user’s inbox, in which case the same information would be used to provide a human readable rendering there.

The same human readable information could also be used in reports on all the human tasks executed by a particular human task management system.

Human readable information can be specified in multiple languages.

Syntax:

<htd:presentationElements>
 <htd:name xml:lang="xsd:language"? >*
 Text
 </htd:name>
 <!-- For the subject and description only,
 replacement variables can be used. -->
 <htd:presentationParameters expressionLanguage="anyURI"? >?
 <htd:presentationParameter name="NCName" type="QName">+
 expression
 </htd:presentationParameter>
 </htd:presentationParameters>
 <htd:subject xml:lang="xsd:language"? >*
 Text
 </htd:subject>
<htd:description xml:lang="xsd:language"?

 contentType="mimeTypeString"? >*
 <xsd:any minOccurs="0" maxOccurs="unbounded" />
 </htd:description>
</htd:presentationElements>
Properties

The following attributes and elements are defined for the htd:presentationElements element.

· name: This element is the short title of a task. It uses xml:lang, a standard XML attribute, to define the language of the enclosed information. This attribute uses tags according to RFC 1766 (see [RFC1766]). There could be zero or more name elements. A WS-HumanTask Definition MUST NOT specify multiple name elements having the same value for attribute xml:lang.

· presentationParameters: This element specifies parameters used in presentation elements subject and description. Attribute expressionLanguage identifies the expression language used to define parameters. This attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used. Element presentationParameters is optional and if present then the WS-HumanTask Definition MUST specify at least one element presentationParameter. Element presentationParameter has attribute name, which uniquely identifies the parameter definition within the presentationParameters element, and attribute type which defines its type. A WS-HumanTask Definition MUST specify parameters of XSD simple types. When a presentationParameter is used within subject and description, the syntax is {$parameterName}. The pair "{{" represents the character "{" and the pair "}}" represents the character "}". Only the defined presentation parameters are allowed, that is, a WS-HumanTask Definition MUST NOT specify arbitrary expressions embedded in this syntax.

· subject: This element is a longer text that describes the task. It uses xml:lang to define the language of the enclosed information. There could be zero or more subject elements. A WS-HumanTask Definition MUST NOT specify multiple subject elements having the same value for attribute xml:lang.

· description: This element is a long description of the task. It uses xml:lang to define the language of the enclosed information. The optional attribute contentType uses content types according to RFC 2046 (see [RFC 2046]). The default value for this attribute is “text/plain”. A WS-HumanTask Processor MUST support the content type “text/plain”. The WS-HumanTask Processor SHOULD support HTML (such as “text/html” or “application/xml+xhtml”). There could be zero or more description elements. As descriptions can exist with different content types, it is allowed to specify multiple description elements having the same value for attribute xml:lang, but the WS-HumanTask Definition MUST specify different content types.

Example:

<htd:presentationElements>
 <htd:name xml:lang="en-US">Approve Claim</htd:name>
 <htd:name xml:lang="de-DE">
 Genehmigung der Schadensforderung
 </htd:name>
 <htd:presentationParameters>
 <htd:presentationParameter name="firstname" type="xsd:string">
 htd:getInput("ClaimApprovalRequest")/cust/firstname
 </htd:presentationParameter>
 <htd:presentationParameter name="lastname" type="xsd:string">
 htd:getInput("ClaimApprovalRequest")/cust/lastname
 </htd:presentationParameter>
 <htd:presentationParameter name="euroAmount" type="xsd:double">
 htd:getInput("ClaimApprovalRequest")/amount
 </htd:presentationParameter>
 </htd:presentationParameters>
 <htd:subject xml:lang="en-US">
 Approve the insurance claim for €{$euroAmount} on behalf of
 {$firstname} {$lastname}
 </htd:subject>
 <htd:subject xml:lang="de-DE">
 Genehmigung der Schadensforderung über €{$euroAmount} für
 {$firstname} {$lastname}
 </htd:subject>
 <htd:description xml:lang="en-US" contentType="text/plain">
 Approve this claim following corporate guideline #4711.0815/7 ...
 </htd:description>
 <htd:description xml:lang="en-US" contentType="text/html">
 <p>
 Approve this claim following corporate guideline
 #4711.0815/7
 ...
 </p>
 </htd:description>
 <htd:description xml:lang="de-DE" contentType="text/plain">
 Genehmigen Sie diese Schadensforderung entsprechend Richtlinie Nr.
 4711.0815/7 ...
 </htd:description>
 <htd:description xml:lang="de-DE" contentType="text/html">
 <p>
 Genehmigen Sie diese Schadensforderung entsprechend Richtlinie
 Nr. 4711.0815/7
 ...
 </p>
 </htd:description>
</htd:presentationElements>
4.4 Elements for Rendering Tasks

Human tasks and notifications need to be rendered on user interfaces like forms clients, portlets, e-mail clients, etc. The rendering element provides an extensible mechanism for specifying UI renderings for human tasks and notifications (task-UI). The element is optional. One or more rendering methods can be provided in a task definition or a notification definition. A task or notification can be deployed on any WS-HumanTask Processor, irrespective of the fact whether the implementation supports specified rendering methods or not. The rendering method is identified using a QName.

Unlike for presentation elements, language considerations are opaque for the rendering element because the rendering applications typically provide multi-language support. Where this is not the case, providers of certain rendering types can decide to extend the rendering method in order to provide language information for a given rendering.

The content of the rendering element is not defined by this specification. For example, when used in the rendering element, XPath extension functions as defined in section 6.2 MAY be evaluated by a WS-HumanTask Processor.

Syntax:

<htd:renderings>
 <htd:rendering type="QName">+
 <xsd:any minOccurs="1" maxOccurs="1" />
 </htd:rendering>
</htd:renderings>
4.5 Lean Tasks

The definition of a Lean Task makes use of two elements not used for non-Lean Tasks, and does not allow two of elements from non-Lean Tasks.

The two elements that MUST NOT be children of a htd:task that is a Lean Task are interface and renderings.
The two new elements are messageSchema and possibleOutcomes.
Message Schema
The messageSchema element is a new element that MUST NOT be defined as a child of an htd:task unless it is a Lean Task. This element references the schema of the data that is used for both the input and output messages of the task. This overrides the need for the interface element.
 <xsd:element name="messageSchema" />

 <xsd:complexType name="tMessageSchema">

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">

 <xsd:sequence>

 <xsd:element name="field" type="tMessageField" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:complexType name="tMessageField">

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">

 <xsd:sequence>

 <xsd:element name="choice" type="tMessageChoice" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="display" type="tMessageDisplay" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:NCName" />

 <xsd:attribute name="type" type="xsd:QName" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:complexType name="tMessageChoice">

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="display" type="tMessageDisplay" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:complexType name="tMessageDisplay">

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">

 <xsd:sequence />

 <xsd:attribute ref="xml:lang" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>
The messageSchema element specifies the data that a Lean Task accepts. As it is currently defined, a WS-HumanTask Processor could render the following form elements in a way that only requires vendor-specific knowledge between the WS-HumanTask Processor and the WS-HumanTask Client and no vender-specific knowledge between the WS-HumanTask Processor and the WS-HumanTask Parent:
· String

· Integer

· Float

· Date Time

· Bool
· Enumeration (Choice)

Each of these is accomplished by using an instance of a tMessageField. For string, integer, float, datetime, and boolean fields, this is accomplished by using the type attribute of the tMssageField. The supported set of values are: xsd:string, xsd:integer, xsd:float, xsd:datetime, and xsd:boolean, all respectively matching the list above. If a simple rendering language like HTML were used, this could be accomplished by using a textbox control that simply had special rules about the format of its input.

The enumeration field uses a combination of one tMessageField element and possibly many child tMessageChoice elements. Each child tMessageChoice represents one possible option that could be selected from the enumeration. If a simple rendering language like HTML were used, this could be shown using radio buttons, a dropdown list, or a listbox that only supports single selection.

For all tMessageField and tMessageChoice elements, it is possible to specify a per-lanugage display name. It uses xml:lang, a standard XML attribute, to define the language of the enclosed information. This attribute uses tags according to RFC 1766 (see [RFC1766]). There could be zero or more name elements. A tMessageField or tMessageChoice MUST NOT specify multiple display or tMessageDisplay elements having the same value for the attribute xml:lang.

Task Outcomes

Task outcomes provide a way for a Lean Task to define which values are usable for the outcome value of a task. Having a separate definition enables a client to show a different construct for outcomes than other enumerations within a form, and in the general case of tasks, allows a tool for building tasks to provide support that understands exactly the set of possible outcomes.

 <xsd:element name="possibleOutcomes" type="tPossibleOutcomes" />

 <xsd:complexType name="tPossibleOutcomes">
 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:sequence>

 <xsd:element name="possibleOutcome" type="tPossibleOutcome" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:complexType name="tPossibleOutcome">
 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:sequence>

 <xsd:element name="outcomeName" type="tOutcomeName" minOccurs="0" maxOccurs="unbounded">
 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required" />
 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:complexType name="tOutcomeName">
 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">

 <xsd:sequence />

 <xsd:attribute ref="xml:lang" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

Each tPossibleOutcome element represents one possible outcome. For the typical example of an expense report approval, the two outcomes might be ‘Approve’ and ‘Reject’. In addition to the other data being collected by the rendering in the WS-HumanTask Client, this represents the most important information about how to proceed in a process that contains multiple tasks. Therefore, a rendering and client using HTML might choose to show this as a dropdown list, listbox with single selection, or radio button, the same options available for the Enumeration possibility for tMessageField, but also might choose an alternative rendering, like a series of <input type=”submit”> buttons, one for each different outcome.

For each tPossibleOutcome, it is possible to have a tOutcomeName element to specify a per-lanugage display name. It uses xml:lang, a standard XML attribute, to define the language of the enclosed information. This attribute uses tags according to RFC 1766 (see [RFC1766]). There could be zero or more name elements. A tPossibleOutcome MUST NOT specify multiple display elements having the same value for attribute xml:lang.

4.6 The combination of messageSchema and possibleOutcomes can be used to generate a form of sufficient functionality for many simple tasks, precluding the need for a renderings element.
4.7 ToDoTask
4.8 A WS-HumanTask processor SHOULD have a predefined Lean Task as part of its installation in order to make it possible for Lean Tasks to have a known starting point. The following XML should be used as the default ‘ToDoTask’.
 <htd:task name="ToDoTask">

 <htd:messageSchema />

 <htd:possibleOutcomes>

 <htd:possibleOutcome name="Completed" />
 ... language specific translations ...
 </htd:possibleOutcomes>

 <htd:delegation
 potentialDelegatees="anybody" />

 <htd:presentationElements>

 <htd:name>ToDo Task</htd:name>
 ... language specific translations ...

 <htd:subject>Please complete the described work</htd:subject>
 ... language specific translations ...

 <htd:description contentType="mimeTypeString" />
 ... language specific translations ...

 </htd:presentationElements>

4.9 </htd:task>
4.10 Elements for Composite Tasks

TODO: Describe syntax in some words

Syntax:

<htd:task>
 ...
 <htd:composition type="sequential|parallel"
 activationPattern="manual|automatic">

 <htd:subtask name="NCName" multiInstance="sequential|parallel"?>

 <htd:task>...</htd:task>

 </htd:subtask>+

 <htd:subtask name="NCName" multiInstance="sequential|parallel"?>

 <htd:localTask>...</htd:localTask>

 </htd:subtask>+
 <!--details-->

 <htd:subtask name="NCName">

 <htd:localTask reference="QName">

 <!--standard-overriding-elements-->

 <htd:priority expressionLanguage="anyURI">

 <!--integer-expression-->

 </htd:priority>

 <htd:peopleAssignments>

 <htd:genericHumanRole>

 <htd:from>...</htd:from>

 </htd:genericHumanRole>

 </htd:peopleAssignments>

 </htd:localTask>

 <htd:toParts>?

 <!--attribute "part" refers to input msg of the subtask-->

 <!--XPath expression may refer to input msg of the composite-->

 <!--task or to an output msg of predecessor subtasks-->

 <htd:toPart part="NCName" expressionLanguage="anyURI">
 XPath expression
 </htd:toPart>+

 </htd:toParts>

 <htd:attachmentPropagation fromCompositeTask="all|none"
 toCompositeTask="all|newOnly|none"/>?

 </htd:subtask>
 </htd:composition>

 ...

</htd:task>
4.11 Elements for People Assignment

The <peopleAssignments> element is used to assign people to the task. For each generic human role, a people assignment element can be specified. A WS-HumanTask Definition MUST specify a people assignment for potential owners of a human task. If no potential owner should be assigned by the human task's definition, e.g. because nomination is used, then this is accomplished by adding an empty <potentialOwners> element. Specifying people assignments for task stakeholders, task initiators, excluded owners and business administrators is optional. Human tasks never specify recipients. A WS-HumanTask Definition MUST NOT specify people assignments for actual owners.

Syntax:

<htd:peopleAssignments>
 <htd:potentialOwners>
 ...
 </htd:potentialOwners>
 <htd:excludedOwners>?
 ...
 </htd:excludedOwners>
 <htd:taskInitiator>?
 ...
 </htd:taskInitiator>
 <htd:taskStakeholders>?
 ...
 </htd:taskStakeholders>
 <htd:businessAdministrators>?
 ...
 </htd:businessAdministrators>
</htd:peopleAssignments>
People assignments can result in a set of values or an empty set. In case people assignment results in an empty set then the task potentially requires administrative attention. This is out of scope of the specification, except for people assignments for potential owners (see section 4.9.1 “Normal processing of a Human Task” for more details).

Example:

<htd:peopleAssignments>
 <htd:potentialOwners>
 <htd:from logicalPeopleGroup="regionalClerks">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 </htd:potentialOwners>
 <htd:businessAdministrators>
 <htd:from logicalPeopleGroup="regionalManager">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 </htd:businessAdministrators>
</htd:peopleAssignments>
4.11.1 Routing Patterns

Tasks can be assigned to people in sequence and parallel. Elements htd:sequence and htd:parallel elements in htd:potentialOwners are used to represent such assignments (see also section TODO).

4.11.1.1 Parallel Pattern

A task can be assigned to people in parallel using the htd:parallel element. htd:parallel can contain 1 to many other htd:parallel, htd:sequence or htd:from elements.

htd:from element can evaluate to multiple users/groups. Attribute ‘type’ in identifies how parallel assignments should be created for the multiple users/groups returned from htd:from. If type is ‘all’ an assignment SHOULD be created for each user returned by htd:from. If type is ‘single’, an assignment SHOULD be created for each htd:from clause (this assignment could have with n potential owners). The default value of type is ‘all’.

A htd:sequence in htd:parallel denotes one parallel branch.
A htd:parallel denotes a parallel assignment within a parallel branch.
Each parallel assignment SHOULD be a via a sub task. Sub tasks created for each parallel assignment SHOULD identify the parent using the htd:parentTaskId. This allows all the parallel assignees to view the task and each of the sub tasks have a life cycle similar to that of any non-sub tasks. When each of the parallel branches complete, the completion criteria MUST be evaluated to determine if the parallel pattern is complete.
Collaboration

‘collaborate’ attribute in htd:parallel identifies if the users working on their tasks in parallel are collaborating. If the attribute value is ‘true’ then the parallel assignees are collaborating. When collaborating, task comments, attachments and changes to the task output MUST be visible to other users in other parallel branches. If the attribute value is ‘false’ then there is no collaboration, which means, task comments, task attachments and changes to the task output SHOULD NOT be visible to other users in other parallel branches. They SHOULD be visible to other users in the same branch.

Task Output

The output of the sub task that completes most recent SHOULD be set as the task output of the parallel pattern.
Operations that can be performed by a parallel user

All operations like reassign, claim, etc. should be performable by an assignee working in parallel. Such operations SHOULD NOT alter the assignments of the other parallel branch.
Syntax:
<htd:potentialOwners>
 <htd:parallel type="all|single"?>
 <htd:completionBehavior>+
 <htd:from>...</htd:from>*
 pattern*
 </htd:parallel>
</htd:potentialOwners>
Example:

<htd:peopleAssignments>
 <htd:potentialOwners>
 <htd:parallel name="Claim Processing Review"

 collaborate=”false”>

 <htd:from>

 htd:getInput("ClaimApprovalRequest")/claimAgent

 </htd:from>

 </htd:parallel>
 </htd:potentialOwners>
</htd:peopleAssignments/>
4.11.1.1.1 Elements for the Completion Behavior

Completions allow the specification of conditions under which a Task with Routing patterns for people assignment might reach the Completed state prior to its normal completion.

Syntax:

<htd:parallel>

 <htd:completionBehavior>?

 <htd:completion>*

 <htd:condition>+

 boolean expression

 </htd:condition>

 <htd:action>?

 expression

 <htd:action>

 <htd:localNotifaction>?

 </htd:localNotification>

 <htd:completion>

 </htd:completionBehavior>

 fromPattern*

</htd:parallel>
The Completions are evaluated every time a sub task reaches the state Completed. If one of the completion condition expressions evaluates to true, the following operations are performed

· The sub tasks that have not yet completed are obsoleted

· If specified, the completion action is executed

· If specified, a local notification is performed

A Task Processor MUST evaluate the completions in the order specified under completionBehavior. The first condition that evaluates to true MUST stop evaluation of the completions that follow.

Example:

<htd:parallel>

 <htd:completionBehavior>

 <htd:completion>

 <htd:condition>

 htd:getInput("ClaimApprovalRequest")/amount < 1000
 </htd:condition>

 <htd:action>

 htd:setOutputValue("ClaimApprovalResponse", "/outcome",
 "Approved.")

 </htd:action>

 </htd:completion>

 <htd:completion>

 <htd:condition>

 htd:getNumberOfSubTasksWithOutcome("Rejected") /

 htd:getNumberOfTotalSubTasks()
 > 0.5

 </htd:condition>

 <htd:action>

 htd:setOutputValue("ClaimApprovalResponse", "/outcome",

 "Rejected")

 <htd:action>

 </htd:completion>

 </htd:completionBehavior>

</htd:parallel>

4.11.1.2 Sequential Pattern

A task can be assigned to people in sequence using the htd:sequence element. htd:sequence can contain 1 to many other htd:parallel, htd:sequence or htd:from elements.

htd:from element can evaluate to multiple users/groups. Attribute ‘type’ in identifies how sequential assignments should be created for the multiple users/groups returned from htd:from. If type is ‘all’ an assignment SHOULD be created for each user returned by htd:from. If type is ‘single’, an assignment SHOULD be created for each htd:from clause (this assignment could have with n potential owners). The default value of type is ‘all’.
Users/groups in htd:sequence inside htd:sequence SHOULD be assigned the task in sequence.
htd:parallel in htd:sequence is used to assign the task in parallel to multiple users.

After each user completes the task, the next set of users/groups in htd:sequence SHOULD see the task until the sequence pattern completes. The same task instance
 SHOULD be assigned to each of the users/groups in sequence.
Syntax:
<htd:potentialOwners>
 <htd:sequence type="all|single"?>
 <htd:from>...</htd:from>*
 pattern*
 </htd:sequence>
</htd:potentialOwners>
Example:

<htd:peopleAssignments>
 <htd:potentialOwners>
 <htd:sequence type="all">
 <htd:from logicalPeopleGroup="regionalClerks">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 <htd:from logicalPeopleGroup="regionalManager">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 </htd:sequence>

 </htd:potentialOwners>
</htd:peopleAssignments/>
4.12 Elements for Handling Timeouts and Escalations

Timeouts and escalations allow the specification of a date or time before which the task has to reach a specific state. If the timeout occurs a set of actions is performed as the response. The state of the task is not changed. Several deadlines are specified which differ in the point when the timer clock starts and the state which has to be reached with the given duration or by the given date. They are:

· Start deadline: Specifies the time until the task has to start, i.e. it has to reach state InProgress. It is defined as either the period of time or the point in time until the task has to reach state inProgress. Since expressions are allowed, durations and deadlines can be calculated at runtime, which for example enables custom calendar integration. The time starts to be measured from the time at which the task enters the state Created. If the task does not reach state InProgress by the deadline an escalation action or a set of escalation actions is performed. Once the task is started, the timer becomes obsolete.

· Completion deadline: Specifies the due time of the task. It is defined as either the period of time until the task gets due or the point in time when the task gets due. The time starts to be measured from the time at which the task enters the state Created. If the task does not reach one of the final states (Completed, Failed, Error, Exited, Obsolete) by the deadline an escalation action or a set of escalation actions is performed.

The element <deadlines> is used to include the definition of all deadlines within the task definition. It is optional. If present then the WS-HumanTask Definition MUST specify at least one deadline.

Syntax:

<htd:deadlines>
 <htd:startDeadline>*
 <htd:documentation xml:lang="xsd:language"? >*
 Text
 </htd:documentation>
 (<htd:for expressionLanguage="anyURI"? >
 duration-expression
 </htd:for>
 | <htd:until expressionLanguage="anyURI"? >
 deadline-expression
 </htd:until>
)
 <htd:escalation name="NCName">*
 ...
 </htd:escalation>
 </htd:startDeadline>
 <htd:completionDeadline>*
 ...
 </htd:completionDeadline>
</htd:deadlines>
The language used in expressions is specified using the expressionLanguage attribute. This attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.

For all deadlines if a status is not reached within a certain time then an escalation action, specified using element <escalation>, can be triggered. The <escalation> element is defined in the section below. When the task reaches a final state (Completed, Failed, Error, Exited, Obsolete) all deadlines are deleted.

Escalations are triggered if

1. The associated point in time is reached, or duration has elapsed, and

2. The associated condition (if any) evaluates to true

Escalations use notifications to inform people about the status of the task. Optionally, a task might be reassigned to some other person or group as part of the escalation. Notifications are explained in more detail in section 5 “Notifications”. For an escalation, a WS-HumanTask Definition MUST specify exactly one escalation action.

When defining escalations, a notification can be either referred to, or defined inline.

· A notification defined in the <humanInteractions> root element or imported from a different namespace can be referenced by specifying its QName in the reference attribute of a <localNotification> element. When referring to a notification, the priority and the people assignments of the original notification definition MAY be overridden using the elements <priority> and <peopleAssignments> contained in the <localNotification> element.

· A inlined notification is defined by a <notification> element.

Notifications used in escalations can use the same type of input data as the surrounding task, or different type of data. If the same type of data is used then the input message of the task is passed to the notification implicitly. If not, then the <toPart> elements are used to assign appropriate data to the notification, i.e. to explicitly create a multi-part WSDL message from the data. The part attribute refers to a part of the WSDL message. The expressionLanguage attribute specifies the language used in the expression. The attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.
A WS-HumanTask Definition MUST specify a <toPart> element for every part in the WSDL message definition because parts not explicitly represented by <toPart> elements would result in uninitialized parts in the target WSDL message. The order in which parts are specified is not relevant. If multiple <toPart> elements are present, a WS-HumanTask Processor MUST execute them in an “all or nothing” manner. If any of the <toPart>s fails, the escalation action will not be performed and the execution of the task is not affected.

Reassignments are used to replace the potential owners of a task when an escalation is triggered. The <reassignment> element is used to specify reassignment. If present then a WS-HumanTask Definition MUST specify potential owners.

In the case where several reassignment escalations are triggered, the first reassignment (lexical order) MUST be considered for execution by the WS-HumanTask Processor. The task is set to state Ready after reassignment. Reassignments and notifications are performed in the lexical order.

[image: image1.png]OASIS)

A task MAY have multiple start deadlines and completion deadlines associated with it. Each such deadline encompasses escalation actions each of which MAY send notifications to certain people. The corresponding set of people MAY overlap.

As an example, the figure depicts a task that has been created at time T1. Its two start deadlines would be missed at time T2 and T3, respectively. The associated escalations whose conditions evaluate to “true” are triggered. Both, the escalations Esc-1 to Esc-n as well as escalations Esc-a to Esc-z can involve an overlapping set of people. The completion deadline would be missed at time T4.

Syntax:

<htd:deadlines>
 <htd:startDeadline>*
 ...
 <htd:escalation name="NCName">*
 <htd:condition expressionLanguage="anyURI"?>?
 boolean-expression
 </htd:condition>
 <htd:toParts>?
 <htd:toPart part="NCName"
 expressionLanguage="anyURI"?>+
 expression
 </htd:toPart>
 </htd:toParts>
 <!-- notification specified by reference -->
 <htd:localNotification reference="QName">?
 <htd:priority expressionLanguage="anyURI"?>?
 integer-expression
 </htd:priority>
 <htd:peopleAssignments>?
 <htd:recipients>
 ...
 </htd:recipients>
 </htd:peopleAssignments>
 </htd:localNotification>
 <!-- notification specified inline -->
 <htd:notification name="NCName">?
 ...
 </htd:notification>
 <htd:reassignment>?
 <htd:potentialOwners>
 ...
 </htd:potentialOwners>
 </htd:reassignment>
 </htd:escalation>

 </htd:startDeadline>
 <htd:completionDeadline>*
 ...
 </htd:completionDeadline>
</htd:deadlines>
Example:

The following example shows the specification of a start deadline with escalations. At runtime, the following picture depicts the result of what is specified in the example:

[image: image2.wmf]Esc

-

1

Esc

-

n

…

Esc

-

a

Esc

-

z

…

Esc

-

a

Esc

-

z

…

…

Start

Deadline 1

Start

Deadline 2

Completion

Deadline

T1

T2

T3

T4

Con

-

1

Con

-

n

Con

-

a

Con

-

z

Con

-

a

Con

-

z

The human task is created at T1. If it has not been started, i.e., no person is working on it until T2, then the escalation “reminder” is triggered that notifies the potential owners of the task that work is waiting for them. In case the task has high priority then at the same time the regional manager is informed. If the task amount is greater than or equal 10000 the task is reassigned to Alan.

In case that task has been started before T2 was reached, then the start deadline is deactivated, no escalation occurs.

<htd:startDeadline>
 <htd:documentation xml:lang="en-US">
 If not started within 3 days, - escalation notifications are sent
 if the claimed amount is less than 10000 - to the task's potential
 owners to remind them or their todo - to the regional manager, if
 this approval is of high priority (0,1, or 2) - the task is
 reassigned to Alan if the claimed amount is greater than or equal
 10000
 </htd:documentation>
 <htd:for>P3D</htd:for>
 <htd:escalation name="reminder">
 <htd:condition>
 <![CDATA[
 htd:getInput("ClaimApprovalRequest")/amount < 10000
]]>
 </htd:condition>
 <htd:toParts>
 <htd:toPart name="firstname">
 htd:getInput("ClaimApprovalRequest","ApproveClaim") /firstname
 </htd:toPart>
 <htd:toPart name="lastname">
 htd:getInput("ClaimApprovalRequest","ApproveClaim") /lastname
 </htd:toPart>
 </htd:toParts>
 <htd:localNotification reference="tns:ClaimApprovalReminder">
 <htd:documentation xml:lang="en-US">
 Reuse the predefined notification "ClaimApprovalReminder".
 Overwrite the recipients with the task's potential owners.
 </htd:documentation>
 <htd:peopleAssignments>
 <htd:recipients>
 <htd:from>htd:getPotentialOwners("ApproveClaim")</htd:from>
 </htd:recipients>
 </htd:peopleAssignments>
 </htd:localNotification>
 </htd:escalation>
 <htd:escalation name="highPrio">
 <htd:condition>
 <![CDATA[
 (htd:getInput("ClaimApprovalRequest")/amount < 10000
 && htd:getInput("ClaimApprovalRequest")/prio <= 2)
]]>
 </htd:condition>
 <!-- task input implicitly passed to the notification -->
 <htd:notification name="ClaimApprovalOverdue">
 <htd:documentation xml:lang="en-US">
 An inline defined notification using the approval data as its
 input.
 </htd:documentation>
 <htd:interface portType="tns:ClaimsHandlingPT"
 operation="escalate" />
 <htd:peopleAssignments>
 <htd:recipients>
 <htd:from logicalPeopleGroup="regionalManager">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 </htd:recipients>
 </htd:peopleAssignments>
 <htd:presentationElements>
 <htd:name xml:lang="en-US">Claim approval overdue</htd:name>
 <htd:name xml:lang="de-DE">
 Überfällige Schadensforderungsgenehmigung
 </htd:name>
 </htd:presentationElements>
 </htd:notification>
 </htd:escalation>
 <htd:escalation name="highAmountReassign">
 <htd:condition>
 <![CDATA[
 htd:getInput("ClaimApprovalRequest")/amount >= 10000
]]>
 </htd:condition>
 <htd:reassignment>
 <htd:documentation>
 Reassign task to Alan if amount is greater than or equal
 10000.
 </htd:documentation>
 <htd:potentialOwners>
 <htd:from>
 <htd:literal>
 <htd:organizationalEntity>
 <htd:users>
 <htd:user>Alan</htd:user>
 </htd:users>
 </htd:organizationalEntity>
 </htd:literal>
 </htd:from>
 </htd:potentialOwners>
 </htd:reassignment>
 </htd:escalation>
</htd:startDeadline>
All timeouts and escalations apply to sub tasks also. If htd:escalation is triggered for a sub task, then any htd:reassignment MUST be applied only to that
4.13 Human Task Behavior and State Transitions

Human tasks can have a number of different states and substates. The state diagram for human tasks below shows the different states and the transitions between them.
Add a loop in InProgress state.

4.13.1 Normal processing of a Human Task

Upon creation, a task goes into its initial state Created. Task creation starts with the initialization of its properties in the following order:

1. Input message

2. [image: image3.wmf]Escalation:

“

reminder

”

Escalation:

“

highPrio

”

Start Deadline

T1

T2

prio

<= 2

3 Days

Priority

3. Generic human roles (such as excluded owners, potential owners and business administrators) are made available in the lexical order of their definition in the people assignment definition with the constraint that excluded owners are taken into account when evaluating the potential owners.

4. All other properties are evaluated after these properties in an implementation dependent order.

Task creation succeeds irrespective of whether the people assignment returns a set of values or an empty set. People queries that cannot be executed successfully are treated as if they were returning an empty set.

If potential owners were not assigned automatically during task creation then they MUST be assigned explicitly using nomination, which is performed by the task’s business administrator. The result of evaluating potential owners removes the excluded owners from results. The task remains in the state Created until it is activated (i.e., an activation timer has been specified) and has potential owners.

When the task has a single potential owner, it transitions into the Reserved state, indicating that it is assigned to a single actual owner. Otherwise (i.e., when it has multiple potential owners or is assigned to a work queue), it transitions into the Ready state, indicating that it can be claimed by one of its potential owners. Once a potential owner claims the task, it transitions into the Reserved state, making that potential owner the actual owner.

Once work is started on a task that is in state Ready or Reserved, it goes into the InProgress state, indicating that it is being worked on – if the transition is from Ready, the user starting the work becomes its actual owner.

On successful completion of the work, the task transitions into the Completed final state. On unsuccessful completion of the work (i.e., with an exception), the task transitions into the Failed final state.
Life cycle of sub tasks is the same as that of the main task.
 WS-HumanTask Processor SHOULD always activate sub tasks on creation.

4.13.2 Releasing a Human Task

The current actual owner of a human task can release a task to again make it available for all potential owners. A task can be released from active states that have an actual owner (Reserved, InProgress), transitioning it into the Ready state. Business data associated with the task (intermediate result data, ad-hoc attachments and comments) is kept.

A task that is currently InProgress can be stopped by the actual owner, transitioning it into state Reserved. Business data associated with the task as well as its actual owner is kept.

4.13.3 Delegating or forwarding a Human Task

Task’s potential owners, actual owner or business administrator can delegate a task to another user, making that user the actual owner of the task, and also adding her to the list of potential owners in case she is not, yet. A task can be delegated when it is in an active state (Ready, Reserved, InProgress), and transitions the task into the Reserved state. Business data associated with the task is kept.

Similarly, task’s potential owners, actual owner or business administrator can forward an active task to another person or a set of people, replacing himself by those people in the list of potential owners. Potential owners can only forward tasks that are in the Ready state. Forwarding is possible if the task has a set of individually assigned potential owners, not if its potential owners are assigned using one or many groups. If the task is in the Reserved or InProgress state then the task is implicitly released first, that is, the task is transitioned into the Ready state. Business data associated with the task is kept. The user performing the forward is removed from the set of potential owners of the task, and the forwardee is added to the set of potential owners.

4.13.4 Suspending and resuming a Human Task

In any of its active states (Ready, Reserved, InProgress), a task can be suspended, transitioning it into the Suspended state. The Suspended state has sub-states to indicate the original state of the task.

On resumption of the task, it transitions back to the original state from which it had been suspended.

When a task is suspended, all of its sub tasks are also suspended.

4.13.5 Skipping a Human Task

A person working on a human task or a business administrator can decide that a task is no longer needed, and hence skip this task. This transitions the task into the Obsolete state. This is considered a “good” outcome of a task, even though an empty result is returned. The enclosing environment can be notified of that transition as described in section 5.3.

The task can only be skipped if this capability is specified during the task invocation. A side-effect of this is that a task which is invoked using basic Web service protocols is not skipable.

When a task is skipped, all of its sub tasks are also skipped.

4.13.6 Termination of a Human Task

The enclosing environment of a human task (such as the calling application or business process) can decide that a task is no longer needed and terminate it, either because a timeout has reached in that enclosing context (i.e., the task has expired), or because the enclosing environment itself is terminated. These events transition the task into the Obsolete state.
When a task is terminated, all of its sub tasks are also terminated.

4.13.7 Error handling for Human Task

If a human task encounters a non-recoverable error in any of its state (for example, it executes a divide by zero in an XPath expression), it transitions into the Error state. This is considered a “bad” outcome of the task and no result is returned. The enclosing environment can be notified of that transition as described in section 5.3.
4.13.8 Sub Tasks

The inner status & action model of a sub task does not differ from the status & action model of any human task.

Still there are some correlations of state transitions of a composite task and its sub tasks:

· Suspend

· Task status: Suspended

· Sub task status (of available sub tasks in status ready / reserved / in progress): Suspended

· Parent task status (if parent is available): No impact

· [Completion with response] / Send result

· Task status: Completed

· Sub task status (of available sub tasks in status created / ready / reserved / in progress): Obsolete

· Parent task status (if parent is available): No impact

· [Completion with fault response] / Send application fault

· Task status: Failed

· Sub tasks status (of available sub tasks in status created / ready / reserved / in progress): Exited

· Parent task status (if parent is available):

· For composite tasks with type “sequence”, activation pattern “automatic”: Failed

· For composite tasks with type “sequence”, activation pattern “manual”: Suspended

· For composite tasks with type “parallel”: No status change on parent task per default, might have an impact in case the composite task refers to the sub task output at some point in time

· [Non-recoverable error] / Send "WS-HT fault"

· Task status: Error

· Sub tasks status (of available sub tasks in status created / ready / reserved / in progress): Exited

· Parent task status (if parent is available):

· For composite tasks with type “sequence”, activation pattern “automatic”: Error

· For composite tasks with type “sequence”, activation pattern “manual”: Suspended

· For composite tasks with type “parallel”: No status change on parent task per default, might have an impact in case the composite task refers to the sub task output at some point in time

· [WS-HT Exit] / Exit task

· Task status: Exited

· Sub tasks status (of available sub tasks in status created / ready / reserved / in progress): Exited

· Parent task status (if parent is available): No impact

· [Skip && isSkippable] / Send "WS-HT skipped“

· Task status: Obsolete

· Sub tasks status (of available sub tasks in status created / ready / reserved / in progress): Obsolete

· Parent task status (if parent is available): No impact
5 Notifications

Notifications are used to notify a person or a group of people of a noteworthy business event, such as that a particular order has been approved, or a particular product is about to be shipped. They are also used in escalation actions to notify a user that a task is overdue or a task has not been started yet. The person or people to whom the notification will be assigned to could be provided, for example, as result of a people query to organizational model.

Notifications are simple human interactions that do not block the progress of the caller, that is, the caller does not wait for the notification to be completed. Moreover, the caller cannot influence the execution of notifications, e.g. notifications are not terminated if the caller terminates. The caller, i.e. an application, a business process or an escalation action, initiates a notification passing the required notification data. The notification appears on the task list of all notification recipients. After a notification recipient removes it, the notification disappears from the recipient’s task list.

A notification MAY have multiple recipients and optionally one or many business administrators. The generic human roles task initiator, task stakeholders, potential owners, actual owner and excluded owners play no role.

Presentation elements and task rendering, as described in sections 4.3 and 4.4 respectively, are used for notifications also. In most cases the subject line and description are sufficient information for the recipients, especially if the notifications are received in an e-mail client or mobile device. But in some cases the notifications can be received in a proprietary client so the notification can support a proprietary rendering format to enable this to be utilized to the full, such as for rendering data associated with the caller invoking the notification. For example, the description could include a link to the process audit trail or a button to navigate to business transactions involved in the underlying process.

Notifications do not have ad-hoc attachments, comments or deadlines.

5.1 Overall Syntax

Definition of notifications

<htd:notification name="NCName">
 <htd:interface portType="QName" operation="NCName"/>
 <htd:priority expressionLanguage="anyURI"?>?
 integer-expression
 </htd:priority>
 <htd:peopleAssignments>
 <htd:recipients>
 ...
 </htd:recipients>
 <htd:businessAdministrators>?
 ...
 </htd:businessAdministrators>
 </htd:peopleAssignments>
 <htd:presentationElements>
 ...
 </htd:presentationElements>
 <htd:renderings>?
 ...
 </htd:renderings>
</htd:notification>
5.2 Properties

The following attributes and elements are defined for notifications:

· name: This attribute is used to specify the name of the notification. The name combined with the target namespace MUST uniquely identify a notification in the notification definition. The attribute is mandatory. It is not used for notification rendering.

· interface: This element is used to specify the operation used to invoke the notification. The operation is specified using WSDL, that is a WSDL port type and WSDL operation are defined. The element and its portType and operation attributes are mandatory. In the operation attribute, a WS-HumanTask Definition MUST reference a one-way WSDL operation.

· priority: This element is used to specify the priority of the notification. It is an optional element which value is an integer expression. If present then the WS-HumanTask Definition MUST specify a value between 0 and 10, where 0 is the highest priority and 10 is the lowest. If not present, the priority of the notification is considered as 5. The result of the expression evaluation is of type htt:tPriority. The expressionLanguage attribute specifies the language used in the expression. The attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.
· peopleAssignments: This element is used to specify people assigned to the notification. The element is mandatory. A WS-HumanTask Definition MUST include a people assignment for recipients and MAY include a people assignment for business administrators.

· presentationElements: The element is used to specify different information used to display the notification, such as name, subject and description, in a task list. The element is mandatory. See section 4.3 for more information on presentation elements.

· rendering: The element is used to specify rendering method. It is optional. If not present, notification rendering is implementation dependent. See section 4.4 for more information on rendering.

5.3 Notification Behavior and State Transitions

Same as human tasks, notifications are in pseudo-state Inactive before they are activated. Once they are activated they move to the Ready state. This state is observable, that is, when querying for notifications then all notifications in state Ready are returned. When a notification is removed then it moves into the final pseudo-state Removed.

6 Programming Interfaces

6.1 Operations for Client Applications

A number of applications are involved in the life cycle of a task. These comprise:

· The task list client, i.e. a client capable of displaying information about the task under consideration

· The requesting application, i.e. any partner that has initiated the task

· The supporting application, i.e. an application launched by the task list client to support processing of the task.

The task infrastructure provides access to a given task. It is important to understand that what is meant by task list client is the software that presents a UI to one authenticated user, irrespective of whether this UI is rendered by software running on server hardware (such as in a portals environment) or client software (such as a client program running on a users workstation or PC).

A given task exposes a set of operations to this end. A WS-HumanTask Processor MUST provide the operations listed below and an application (such as a task list client) may use these operations to manipulate the task. All operations MUST be executed in a synchronous fashion and MUST return fault if certain preconditions do not hold. For operations that are not expected to return a response they MAY return a void message. The above applies to notifications also.

An operation takes a well-defined set of parameters as its input. Passing an illegal parameter or an illegal number of parameters MUST result in the hta:illegalArgumentFault being returned. Invoking an operation that is not allowed in the current state of the task MUST result in an hta:illegalStateFault.

By default, the identity of the person on behalf of which the operation is invoked is passed to the task. When the person is not authorized to perform the operation the hta:illegalAccessFault and hta:recipientNotAllowed MUST be returned in the case of tasks and notifications respectively.

Invoking an operation that does not apply to the task type (e.g., invoking claim on a notification) MUST result in an hta:illegalOperationFault.

The language of the person on behalf of which the operation is invoked is assumed to be available to operations requiring that information, e.g., when accessing presentation elements.

A. For an overview of which operations are allowed in what state, refer to section 4.9 “Human Task Behavior and State Transitions”. For a formal definition of the allowed operations, see WS-HumanTask Data Types Schema

Note to specification editors: the WS-HumanTask data types XML Schema definition is separately maintained in artifact

ws-humantask-types.xsd

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., as a committee draft.

WS-HumanTask API

.

For information which generic human roles are authorized to perform which operations, refer to section 6.1.5 “Operation Authorizations”.

This specification does not stipulate the authentication, language passing, addressing, and binding scheme employed when calling an operation. This can be achieved using different mechanisms (e.g. WS-Security, WS-Addressing).

6.1.1 Participant Operations

Operations are executed by end users, i.e. actual or potential owners. The identity of the user is implicitly passed when invoking any of the operations listed in the table below. The participant operations listed below only apply to tasks unless explicitly noted otherwise.
All of the operations below apply to tasks and sub tasks unless specifically noted below.
	Operation Name
	Description
	Parameters

	Claim
	Claim responsibility for a task, i.e. set the task to status Reserved
	In

· task identifier

Out

· void

	Start
	Start the execution of the task, i.e. set the task to status InProgress.
	In

· task identifier

Out

· void

	Stop
	Cancel/stop the processing of the task. The task returns to the Reserved state.
	In

· task identifier

Out

· void

	release
	Release the task, i.e. set the task back to status Ready.
	In

· task identifier

Out

· void

	suspend
	Suspend the task.
	In

· task identifier

Out

· void

	suspendUntil
	Suspend the task for a given period of time or until a fixed point in time. The WS-HumanTask Client MUST specify either a period of time or a fixed point in time.
	In

· task identifier

· time period

· point of time

Out

· void

	resume
	Resume a suspended task.
	In

· task identifier

Out

· void

	complete
	Execution of the task finished successfully. If no output data is set the operation MUST return hta:illegalArgumentFault.
	In

· task identifier

· output data of task

Out

· void

	remove
	Applies to notifications only.

Used by notification recipients to remove the notification permanently from their task list client. It will not be returned on any subsequent retrieval operation invoked by the same user.
	In

· task identifier

Out

· void

	fail
	Actual owner completes the execution of the task raising a fault.

The fault hta:illegalOperationFault MUST be returned if the task interface defines no faults.

If fault name or fault data is not set the operation MUST return hta:illegalArgumentFault.
	In

· task identifier

· fault name

· fault data

Out

· void

	setPriority
	Change the priority of the task. The WS-HumanTask Client MUST specify the integer value of the new priority.
	In

· task identifier

· priority (htt:tPriority)

Out

· void

	addAttachment
	Add attachment to a task.
	In

· task identifier

· attachment name

· access type

· content type

· attachment

Out

· void

	getAttachmentInfos
	Get attachment information for all attachments associated with the task.
	In

· task identifier

Out

· list of attachment data (list of htt:attachmentInfo)

	getAttachments
	Get all attachments of a task with a given name.
	In

· task identifier

· attachment name

Out

· list of attachments (list of htt:attachment)

	deleteAttachments
	Delete the attachments with the specified name from the task (if multiple attachments with that name exist, all MUST be deleted).

Attachments provided by the enclosing context MUST not be affected by this operation.
	In

· task identifier

· attachment name

Out

· void

	addComment
	Add a comment to a task.
	In

· task identifier

· plain text

Out

· void

	getComments
	Get all comments of a task
	In

· task identifier

Out

· list of comments (list of htt:comment)

	skip
	Skip the task.

If the task is not skipable then the fault hta:illegalOperationFault MUST be returned.

	In

· task identifier

Out

· void

	forward
	Forward the task to another organization entity. The WS-HumanTask Client MUST specify the receiving organizational entity.

Potential owners can only forward a task while the task is in the Ready state.

For details on forwarding human tasks refer to section 4.9.3.
	In

· task identifier

· organizational entity (htd:tOrganizationalEntity)

Out

· void

	delegate
	Assign the task to one user and set the task to state Reserved. If the recipient was not a potential owner then this person MUST be added to the set of potential owners.

For details on delegating human tasks refer to section 4.9.3.
	In

· task identifier

· organizational entity (htd:tOrganizationalEntity)

Out

· void

	Initail thinking only:
CreateLeanSubTask
	Initail thinking only:

Creates a Lean Task as a child of the current task, and based on properties either the called task MUST wait for the child task to complete or the completion of the parent task causes the subtask to move into the obsolete state. The question of what is possible/necessary here is the main impetus to not yet make a normative statement.
	Initail thinking only:

In: Similar to CreateLeanTask in section 7.5:
· Name of task

· htd:task with overrides, including completion conditions/resuls, particularly aggregation nodes
· task identifier
Out

· task identifier

	getRendering
	Applies to both tasks and notifications.

Returns the rendering specified by the type parameter.
	In

· task identifier

· rendering type

Out

· any type

	getRenderingTypes
	Applies to both tasks and notifications.

Returns the rendering types available for the task or notification.
	In

· task identifier

Out

· list of QNames

	getTaskInfo
	Applies to both tasks and notifications.

Returns a data object of type htt:tTask
If the task returned has active sub tasks, then the potential owner and actual owner of the task MUST be empty.
	In

· task identifier

Out

· task (htt:tTask)

	getTaskDescription
	Applies to both tasks and notifications. Returns the presentation description in the specified mime type.
	In

· task identifier

· content type – optional, default is text/plain

Out

· string

	setOutput
	Set the data for the part of the task's output message.
	In

· task identifier

· part name (optional for single part messages)

· output data of task

Out

· void

	deleteOutput
	Deletes the output data of the task.
	In

· task identifier

Out

· void

	setFault
	Set the fault data of the task.

The fault hta:illegalOperationFault MUST be returned if the task interface defines no faults.
	In

· task identifier

· fault name

· fault data of task

Out

· void

	deleteFault
	Deletes the fault name and fault data of the task.
	In

· task identifier

Out

· void

	getInput
	Get the data for the part of the task's input message.
	In

· task identifier

· part name (optional for single part messages)

Out

· any type

	getOutput
	Get the data for the part of the task's output message.
	In

· task identifier

· part name (optional for single part messages)

Out

· any type

	getFault
	Get the fault data of the task.
	In

· task identifier

Out

· fault – contains the fault name and fault data

	getOutcome
	Get the outcome of the task
	In

· task identifier

Out

· string

	getSubtasks
	Returns all subtasks of a task (created instances + not yet created subtask definitions)
	In

· task identifier
Out

· list of tasks (list of htt:tTask)

	getSubtaskIdentifiers
	Returns the identifiers of all already created subtasks of a task
	In

· task identifier
Out

· list of task identifiers

	hasSubtasks
	Returns true if a task has at least one (already created or not yet created, but specified) subtask
	In

· task identifier

Out

· boolean

	getParentTask
	Returns the superior composite task of a subtask
	In

· task identifier

Out

· htt:tTask

	getParentTaskIdentifier
	Returns the task identifier of the superior composite task of a subtask
	In

· task identifier

Out

· task identifier

	isSubtask
	Returns true if a task is a subtask of a superior composite task
	In

· task identifier

Out

· boolean

6.1.2 Simple Query Operations

Simple query operations allow retrieving task data. These operations MUST be supported by a WS-HumanTask Processor. The identity of the user is implicitly passed when invoking any of the following operations.
The following operations will return both matching tasks and sub tasks.
	Operation Name
	Description
	Parameters
	Authorization

	getMyTaskAbstracts
	Retrieve the task abstracts. This operation is used to obtain the data required to display a task list.

If no work queue has been specified then only personal tasks MUST be returned. If the work queue is specified then only tasks of that work queue MUST be returned.

The where clause MUST reference exactly one column using the following operators: equals (“=”), not equals (“<>”), less than (“<”), greater than (“>”), less than or equals (“<=”), and greater than or equals (“>=”), e.g., “Task.Priority = 1”).

The where clause is logically ANDed with the created-on clause, which MUST reference the column Task.CreatedOn with operators as described above.

The combination of the two clauses enables simple but restricted paging in a task list client.

If maxTasks is specified, then the number of task abstracts returned for this query MUST not exceed this limit.
	In

· task type (“ALL” | “TASKS” | “NOTIFICATIONS”)

· generic human role

· work queue

· status list

· where clause

· created-on clause

· maxTasks

Out

· list of tasks (list of htt:tTaskAbstract)
	Any

	getMyTasks
	Retrieve the task details. This operation is used to obtain the data required to display a task list, as well as the details for the individual tasks.

If no work queue has been specified then only personal tasks MUST be returned. If the work queue is specified then only tasks of that work queue MUST be returned.

The where clause MUST reference exactly one column using the following operators: equals (“=”), not equals (“<>”), less than (“<”), greater than (“>”), less than or equals (“<=”), and greater than or equals (“>=”),e.g., “Task.Priority = 1”.

The where clause is logically ANDed with the created-on clause, which MUST reference the column Task.CreatedOn with operators as described above.

The combination of the two clauses enables simple but restricted paging inthe task list client.

If maxTasks is specified, then the number of task details returned for this query MUST not exceed this limit.
	In

· task type (“ALL” | “TASKS” | “NOTIFICATIONS”)

· generic human role

· work queue

· status list

· where clause

· created-on clause

· maxTasks

Out

· list of tasks (list of htt:tTask)
	Any

The return types tTaskAbstract and tTask are defined in section 3.7.4 “Data Types for Task Instance Data”.

Simple Task View

The table below lists the task attributes available to the simple query operations. This view is used when defining the where clause of any of the above query operations.

	Column Name
	Type

	ID
	xsd:string

	TaskType
	Enumeration

	Name
	xsd:Qname

	Status
	Enumeration (for values see 4.9 “Human Task Behavior and State Transitions”)

	Priority
	htt:tPriority

	CreatedOn
	xsd:dateTime

	ActivationTime
	xsd:dateTime

	ExpirationTime
	xsd:dateTime

	HasPotentialOwners
	xsd:boolean

	StartByExists
	xsd:boolean

	CompleteByExists
	xsd:boolean

	RenderMethExists
	xsd:boolean

	Escalated
	xsd:boolean

	ParentTaskId
	xsd:string

	HasSubTasks
	xsd:Boolean

	PrimarySearchBy
	xsd:string

	Outcome
	xsd:string

6.1.3 Advanced Query Operation

The advanced query operation is used by the task list client to perform queries not covered by the simple query operations defined in 6.1.2. A WS-HumanTask Processor MAY support this operation. An implementation MAY restrict the results according to authorization of the invoking user.
The following operations will return both matching tasks and sub tasks.
	Operation Name
	Description
	Parameters

	query
	Retrieve task data. All clauses assume a (pseudo-) SQL syntax. If maxTasks is specified, then the number of task returned by the query MUST not exceed this limit. The taskIndexOffset can be used to perform multiple identical queries and iterate over result sets where the maxTasks size exceeds the query limit.
	In

· select clause

· where clause

· order-by clause

· maxTasks

· taskIndexOffset

Out

· query result (htt:tTaskQueryResultSet)

ResultSet Data Type

This is the result set element that is returned by the query operation.

<xsd:element name="taskQueryResultSet" type="tTaskQueryResultSet" />
<xsd:complexType name="tTaskQueryResultSet">
 <xsd:sequence>
 <xsd:element name="row" type="tTaskQueryResultRow"
 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
</xsd:complexType>
The following is the type of the row element contained in the result set. The value in the row are returned in the same order as specified in the select clause of the query.

<xsd:complexType name="tTaskQueryResultRow">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="id" type="xsd:string"/>
 <xsd:element name="taskType" type="xsd:string"/>
 <xsd:element name="name" type="xsd:QName"/>
 <xsd:element name="status" type="tStatus"/>
 <xsd:element name="priority" type="htt:tPriority"/>
 <xsd:element name="taskInitiator"
 type="htd:tUser"/>
 <xsd:element name="taskStakeholders"
 type="htd:tOrganizationalEntity"/>
 <xsd:element name="potentialOwners"
 type="htd:tOrganizationalEntity"/>
 <xsd:element name="businessAdministrators"
 type="htd:tOrganizationalEntity"/>
 <xsd:element name="actualOwner" type="htd:tUser"/>
 <xsd:element name="notificationRecipients"
 type="htd:tOrganizationalEntity"/>
 <xsd:element name="createdOn" type="xsd:dateTime"/>
 <xsd:element name="createdBy" type="xsd:string"/>
 <xsd:element name="activationTime" type="xsd:dateTime"/>
 <xsd:element name="expirationTime" type="xsd:dateTime"/>
 <xsd:element name="isSkipable" type="xsd:boolean"/>
 <xsd:element name="hasPotentialOwners" type="xsd:boolean"/>
 <xsd:element name="startByExists" type="xsd:boolean"/>
 <xsd:element name="completeByExists" type="xsd:boolean"/>
 <xsd:element name="presentationName" type="tPresentationName"/>
 <xsd:element name="presentationSubject"
 type="tPresentationSubject"/>
 <xsd:element name="renderingMethodExists" type="xsd:boolean"/>
 <xsd:element name="hasOutput" type="xsd:boolean"/>
 <xsd:element name="hasFault" type="xsd:boolean"/>
 <xsd:element name="hasAttachments" type="xsd:boolean"/>
 <xsd:element name="hasComments" type="xsd:boolean"/>
 <xsd:element name="escalated" type="xsd:boolean"/>
 <xsd:element name="parentTaskId" type="xsd:string"/>
 <xsd:element name="hasSubTasks" type="xsd:boolean"/>
 <xsd:element name="primarySearchBy" type="xsd:string"/>
 <xsd:element name="outcome" type="xsd:string"/>
 <xsd:any namespace="##other" processContents="lax"/>
 </xsd:choice>

</xsd:complexType>
Complete Task View

The table below is the set of columns used when defining select clause, where clause, and order-by clause of query operations. Conceptually, this set of columns defines a universal relation. As a result the query can be formulated without specifying a from clause. A WS-HumanTask Processor MAY extend this view by adding columns.

	Column Name
	Type
	Constraints

	ID
	xsd:string
	

	TaskType
	Enumeration
	Identifies the task type. The following values are allowed:

· “TASK” for a human task

· “NOTIFICATION” for notifications

Note that notifications are simple tasks that do not block the progress of the caller,

	Name
	xsd:Qname
	

	Status
	Enumeration
	For values see section 4.9 “Human Task Behavior and State Transitions”

	Priority
	htt:tPriority
	

	UserId
	xsd:string
	

	Group
	xsd:string
	

	GenericHumanRole
	xsd:string
	

	CreatedOn
	xsd:dateTime
	The time in UTC when the task has been created.

	ActivationTime
	xsd:dateTime
	The time in UTC when the task has been activated.

	ExpirationTime
	xsd:dateTime
	The time in UTC when the task will expire.

	Skipable
	xsd:boolean
	

	StartBy
	xsd:dateTime
	The time in UTC when the task should have been started. This time corresponds to the respective start deadline.

	CompleteBy
	xsd:dateTime
	The time in UTC when the task should have been completed. This time corresponds to the respective end deadline.

	PresentationName
	xsd:string
	The task’s presentation name.

	PresentationSubject
	xsd:string
	The task’s presentation subject.

	RenderingMethodName
	xsd:Qname
	The task’s rendering method name.

	FaultMessage
	xsd:any
	

	InputMessage
	xsd:any
	

	OutputMessage
	xsd:any
	

	AttachmentName
	xsd:string
	

	AttachmentType
	xsd:string
	

	Escalated
	xsd:boolean
	

	ParentTaskId
	xsd:string
	

	HasSubTasks
	xsd:boolean
	

	PrimarySearchBy
	xsd:string
	

	Outcome
	xsd:string
	

6.1.4 Administrative Operations

Operations to be executed for administrative purposes. Actual definition of authorization for operations is outside the scope of this specification.

	Operation Name
	Description
	Parameters

	activate
	Activate the task, i.e. set the task to status Ready.
Sub tasks are always activated by WS-HumanTask Processor and cannot be activated manually.

	In

· task identifier

Out

· void

	nominate
	Nominate an organization entity to process the task. If it is nominated to one person then the new state of the task is Reserved. If it is nominated to several people then the new state of the task is Ready. This can only be performed when the task is in the state Created.
	In

· task identifier

· organizational entity (htd:tOrganizationalEntity)

Out

· void

	setGenericHumanRole
	Replace the organizational assignment to the task in one generic human role.
	In

· task identifier

· generic human role

· organizational entity (htd:tOrganizationalEntity)

Out

· void

6.1.5 Operation Authorizations

This section defines the required authorizations in terms of generic human roles to execute participant, query and administrative operations. Thus, it is a precise definition of the generic human roles as well.

	 Role

Operation
	Task Initiator
	Task Stakeholders
	Potential Owners
	Actual Owner
	Excluded Owners
	Business Administrator
	Notification Recipients

	claim
	
	x
	x
	
	
	x
	

	start
	
	
	x

(only in state Ready)
	x
	
	
	

	Stop
	
	x
	
	x
	
	x
	

	release
	
	x
	
	x
	
	x
	

	suspend
	
	x
	
	x
	
	x
	

	suspendUntil
	
	x
	
	x
	
	x
	

	resume
	
	x
	
	x
	
	x
	

	complete
	
	
	
	x
	
	
	

	remove
	
	
	
	
	
	
	x

	Fail
	
	
	
	x
	
	
	

	setPriority
	
	x
	x

(only in state Ready)
	x
	
	x
	

	addAttachment
	
	x
	x

(only in state Ready)
	x
	
	x
	

	getAttachmentInfos
	
	x
	x
	x
	
	x
	

	getAttachments
	
	x
	x
	x
	
	x
	

	deleteAttachments
	
	x
	
	x
	
	x
	

	addComment
	
	x
	x
	x
	
	x
	

	getComments
	
	x
	x
	x
	
	x
	

	Skip
	x
	x
	
	x
	
	x
	

	forward
	
	x
	x
	x
	
	x
	

	delegate
	
	x
	x

(only in state Ready)
	x
	
	x
	

	getRendering
	x
	x
	x
	x
	x
	x
	x

	getRenderingTypes
	x
	x
	x
	x
	x
	x
	x

	getTaskInfo
	x
	x
	x
	x
	x
	x
	x

	getTaskDescription
	x
	x
	x
	x
	x
	x
	x

	setOutput
	
	
	
	x
	
	
	

	deleteOutput
	
	
	
	x
	
	
	

	setFault
	
	
	
	x
	
	
	

	deleteFault
	
	
	
	x
	
	
	

	getInput
	
	x
	x
	x
	
	x
	

	getOutput
	
	x
	
	x
	
	x
	

	getFault
	
	x
	
	x
	
	x
	

	getOutcome
	x
	x
	x
	x
	x
	x
	

	getMyTaskAbstracts
	x
	x
	x
	x
	x
	x
	x

	getMyTasks
	x
	x
	x
	x
	x
	x
	x

	activate
	
	
	
	
	
	x
	

	nominate
	
	
	
	
	
	x
	

	setGenericHumanRole
	
	
	
	
	
	x
	

6.2 XPath Extension Functions

This section introduces XPath extension functions that are provided to be used within the definition of a human task or notification. A WS-HumanTask Processor MUST support the Xpath Functions listed below. When defining properties using these XPath functions, note the initialization order in section 4.9.1.

Definition of these XPath extension functions is provided in the table below. Input parameters that specify task name, message part name or logicalPeopleGroup name MUST be literal strings. This restriction does not apply to other parameters. Because XPath 1.0 functions do not support returning faults, an empty node set is returned in the event of an error.

XPath functions used for notifications in an escalation can access context from the enclosing task by specifying that task’s name.

	Operation Name
	Description
	Parameters

	getPotentialOwners
	Returns the potential owners of the task. It MUST evaluate to an empty htd:organizationalEntity in case of an error.

If the task name is not present the current task MUST be considered.

If the task returned has active sub tasks, then it must return an empty htd:organizationalEntity.
	In

· task name (optional)

Out

· potential owners (htd:organizationalEntity)

	getActualOwner
	Returns the actual owner of the task. It MUST evaluate to an empty htd:user in case there is no actual owner.

If the task name is not present the current task MUST be considered.

If the task returned has active sub tasks, then it must return an empty htd:user.
	In

· task name (optional)

Out

· the actual owner
(user id as htd:user)

	getTaskInitiator
	Returns the initiator of the task. It MUST evaluate to an empty htd:user in case there is no initiator.

If the task name is not present the current task MUST be considered.
	In

· task name (optional)

Out

· the task initiator
(user id as htd:user)

	getTaskStakeholders
	Returns the stakeholders of the task.

It MUST evaluate to an empty htd:organizationalEntity in case of an error.

If the task name is not present the current task MUST be considered.
	In

· task name (optional)

Out

· task stakeholders (htd:organizationalEntity)

	getBusinessAdministrators
	Returns the business administrators of the task.

It MUST evaluate to an empty htd:organizationalEntity in case of an error.

If the task name is not present the current task MUST be considered.
	In

· task name (optional)

Out

· business administrators (htd:organizationalEntity)

	getExcludedOwners
	Returns the excluded owners. It MUST evaluate to an empty htd:organizationalEntity in case of an error.

If the task name is not present the current task MUST be considered.
	In

· task name (optional)

Out

· excluded owners (htd:organizationalEntity)

	getTaskPriority
	Returns the priority of the task.

It MUST evaluate to “5” in case the priority is not explicitly set.

If the task name is not present the current task MUST be considered.
	In

· task name (optional)

Out

· priority (htt:tPriority)

	getInput
	Returns the part of the task’s input message.

If the task name is not present the current task MUST be considered.
	In

· part name

· task name (optional)

Out

· input message

	getSubtaskOutput

	Returns the part of a sub task’s output message. Only sub tasks of the current task may be considered
	In

· part name

· subtask name
Out

· output message

	getOutput
	Returns the part of the task's output message.

If the task name is not present the current task MUST be considered
	In

· part name

· task name (optional)

Out

· output message

	setOutputValue
	Set a specific value of the task's output message. The value set is the string representation of the value.
If the task name is not present the current task MUST be considered
	In

· part name

· path

· value

Out
· output message

	getNumberOfSubTasks
	Returns the number of subtasks of a task
If the task name is not present the current task MUST be considered
	In

· task name (optional)

Out

· Number of the task sub-tasks. If the task doesn't have sub tasks then 0 is returned

	getNumberOfSubTasksInState
	Returns the number of a task suubtasks that are in the specified state
If the task name is not present the current task MUST be considered
	In

· state

· task name (optional)

Out

· Number of the task sub tasks in the specified state. If the task doesn't have sub tasks then 0 is returned

	getNumberOfSubTasksWithOutcome
	Returns the number of a task sub tasks that match the given outcome
If the task name is not present the current task MUST be considered
	In

· outcome

· task name (optional)

Out

· Number of the task sub tasks that match the specified outcome. If the task doesn't have sub tasks then 0 is returned

	getLogicalPeopleGroup
	Returns the value of a logical people group. In case of an error (e.g., when referencing a non existing logical people group) the htd:organizationalEntity MUST contain an empty user list.

If the task name is not present the current task MUST be considered.
	In

· name of the logical people group

· The optional parameters that follow MUST appear in pairs. Each pair is defined as:

· the qualified name of a logical people group parameter

· the value for the named logical people group parameter; it can be an XPath expression

Out

· the value of the logical people group (htd:organizationalEntity)

	getOutcome
	Returns the outcome of the task. It MUST evaluate to an empty string in case there is no outcome specified for the task.

If the task name is not present the current task MUST be considered.
	In

· task name (optional)

Out

· the task outcome
(xsd:string)

	Union
	Constructs an organizationalEntity containing every user that occurs in either set1 or set2, eliminating duplicate users.
	In

· set1
(htd:organizationalEntity
|htd:users
|htd:user)

· set2
(htd:organizationalEntity
|htd:users
|htd:user)

Out

· result
(htd:organizationalEntity)

	Intersect
	Constructs an organizationalEntity containing every user that occurs in both set1 and set2, eliminating duplicate users.
	In

· set1
(htd:organizationalEntity
|htd:users
|htd:user)

· set2
(htd:organizationalEntity
|htd:users
|htd:user)

Out

· result
(htd:organizationalEntity)

	Except
	Constructs an organizationalEntity containing every user that occurs in set1 but not in set2.

Note: This function is required to allow enforcing the separation of duties (“4-eyes principle”).
	In

· set1
(htd:organizationalEntity
|htd:users
|htd:user)

· set2
(htd:organizationalEntity
|htd:users
|htd:user)

Out

· result
(htd:organizationalEntity)

7 Interoperable Protocol for Advanced Interaction with Human Tasks

Previous sections describe how to define standard invokable Web services that happen to be implemented by human tasks or notifications. Additional capability results from an application that is human task aware, and can control the autonomy and life cycle of the human tasks. To address this in an interoperable manner, a coordination protocol, namely the WS-HumanTask coordination protocol, is introduced to exchange life-cycle command messages between an application and an invoked human task. [image: image4.emf]Created

Inactive

Closed

Reserved

Ready

InProgress

Completed Failed Error Exited Obsolete

Suspended

Ready

Reserved

InProgress

(activate ||

nomination performed) &&

single potential owner

[Task created, coord context obtained]

Register task with coordinator

(activate || nomination performed) &&

(multiple potential owners || work queue)

claim || delegate

start start

revoke || forward

stop || delegate

revoke || forward

delegate

[Completion with response]

Send result

[Completion with fault response]

Send application fault

forward

[Non-recoverable error]

Send "WS-HT fault"

[WS-HT exit]

Exit task

[Skip && isSkippable]

Send „WS-HT skipped“

suspend

suspend

suspend

resume

resume

resume

A simplified protocol applies to notifications.

While we do not make any assumptions about the nature of the application in the following scenarios, in practice it would be hosted by an infrastructure that actually deals with the WS-HumanTask coordination protocol on the application’s behalf.

In case of human tasks the following message exchanges are possible.

Scenario 1: At some point in time, the application invokes the human task through its service interface. In order to signal to the WS-HumanTask Processor that an instance of the human task can be created which is actually coordinated by the parent application, this request message contains certain control information. This control information consists of a coordination context of the WS-HumanTask coordination protocol, and optional human task attributes that are used to override aspects of the human task definition.

· The coordination context (see [WS-C] for more details on Web services coordination framework used here) contains the element CoordinationType that MUST specify the WS-HumanTask coordination type http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803. The inclusion of a coordination context within the request message indicates that the life cycle of the human tasks is managed via corresponding protocol messages from outside the WS-HumanTask Processor. The coordination context further contains in its RegistrationService element an endpoint reference that the WS-HumanTask Processor MUST use to register the task as a participant of that coordination type.
Note: In a typical implementation, the parent application or its environment will create that coordination context by issuing an appropriate request against the WS-Coordination (WS-C) activation service, followed by registering the parent application as a TaskParent participant in that protocol.

· The optional human task attributes allow overriding aspects of the definition of the human task from the calling application. The WS-HumanTask Parent MAY set values of the following attributes of the task definition:

· Priority of the task

· Actual people assignments for each of the generic human roles of the human task

· The skipable indicator which determines whether a task can actually be skipped at runtime.

· The amount of time by which the task activation is deferred.

· The expiration time for the human task after which the calling application is no longer interested in its result.

After having created this request message, it is sent to the WS-HumanTask Processor (step (1) in Figure 1). The WS-HumanTask Processor receiving that message MUST extract the coordination context and callback information, the human task attributes (if present) and the application payload. Before applying this application payload to the new human task, the WS-HumanTask Processor MUST register the human task to be created with the registration service passed as part of the coordination context (step (2) in Figure 1). The corresponding WS-C Register message MUST include the endpoint reference (EPR) of the protocol handler of the WS-HumanTask Processor that the WS-HumanTask Parent MUST use to send all protocol messages to WS-HumanTask Processor. This EPR is the value contained in the Participant​Protocol​Service element of the Register message. Furthermore, the registration MUST be as a HumanTask participant by specifying the corresponding value in the ProtocolIdentifier element of the Register message. The WS-HumanTask Parent reacts to that message by sending back a Register​Response message. This message MUST contain in its Coordinator​ProtocolService element the EPR of the protocol handler of the parent application, which MUST be used by the WS-HumanTask Processor for sending protocol messages to the parent application (step (3) in Figure 1).

Now the instance of the human task is activated by the WS-HumanTask Processor, so the assigned person can perform the task (e.g. the risk assessment). Once the human task is successfully completed, a response message MUST be passed back to the parent application (step (4a) in Figure 1) by WS-HumanTask Processor.

Scenario 2: If the human task is not completed with a result, but the assigned person determines that the task can be skipped (and hence reaches its Obsolete final state), then a “skipped” coordination protocol message MUST be sent from the WS-HumanTask Processor to its parent application (step (4b) in Figure 1). No response message is passed back.

Scenario 3: If the WS-HumanTask Parent needs to end prematurely before the invoked human task has been completed, it MUST send an exit coordination protocol message to the WS-HumanTask Processor causing the WS-HumanTask Processor to end its processing. Response message SHOULD NOT be passed back by WS-HumanTask Processor.

In case of notifications to WS-HumanTask Processor, only some of the overriding attributes are propagated with the request message. Only priority and people assignments MAY be overridden for a notification, and the elements isSkipable, expirationTime and attachments MUST be ignored if present by WS-HumanTask Processor. Likewise, the WS-HumanTask coordination context, attachments and the callback EPR do not apply to notifications and MUST be ignored as well by WS-HumanTask Processor. Finally, a notification SHOULD NOT return WS-HumanTask coordination protocol messages. There SHOULD be no message exchange beyond the initiating request message between the WS-HumaTask Processor and WS-HumanTask Parent..

7.1 Human Task Coordination Protocol Messages

The following section describes the behavior of the human task with respect to the protocol messages exchanged with its requesting application which is human task aware. In particular, we describe which state transitions trigger which protocol message and vice versa. WS-HumanTask Parent MUST support WS-HumanTask Coordination protocol messages in addition to application requesting, responding and fault messages.

See diagram in section 4.9 “Human Task Behavior and State Transitions”.

1. The initiating message containing a WS-HumanTask coordination context is received by the WS-HumanTask Processor. This message MAY include ad hoc attachments that are to be made available to the WS-HumanTask Processor. A new task is created. As part of the context, an EPR of the registration service MUST be passed by WS-HumanTask Parent. This registration service MUST be used by the hosting WS-HumanTask Processor to register the protocol handler receiving the WS-HumanTask protocol messages sent by the requesting Application. If an error occurs during the task instantiation the final state Error is reached and protocol message fault MUST be sent to the requesting application by WS-HumanTask Processor.

2. On successful completion of the task an application level response message MUST be sent and the task moved to state Completed. When this happens, attachments created during the processing of the task MAY be added to the response message. Attachments that had been passed in the initiating message MUST NOT be returned. The response message outcome MUST be set to the outcome of the task.

3. On unsuccessful completion (completion with a fault message), an application level fault message MUST be sent and the task moved to state Failed. When this happens, attachments created during the processing of the task MAY be added to the response message. Attachments that had been passed in the initiating message MUST NOT be returned.

4. If the task experiences a non-recoverable error protocol message fault MUST be sent and the task moved to state Error. Attachments MUST NOT be returned.

5. If the task is skipable and is skipped then the WS-HumanTask Processor MUST send the protocol message skipped and task MUST be moved to state Obsolete. No attachments MUST be returned.

6. On receipt of protocol message exit the task MUST be moved to state Exited. This indicates that the requesting application is no longer interested in any result produced by the task.

The following table summarizes this behavior, the messages sent, and their direction, i.e., whether a message is sent from the requesting application to the task (“out” in the column titled Direction) or vice versa (“in”).

	Message
	Direction
	Human Task Behavior (and Protocol messages)

	application request with WS-HT coordination context
	in
	Create task (Register)

	application response
	out
	Successful completion with response

	application fault response
	out
	Completion with fault response

	htcp:Fault
	out
	Non-recoverable error

	htcp:Exit
	in
	Requesting application is no longer interested in the task output

	htcp:Skipped
	out
	Task moves to state Obsolete

7.2 Protocol Messages

All WS-HumanTask protocol messages have the following type:

<xsd:complexType name="ProtocolMsgType">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
</xsd:complexType>
This message type is extensible and any implementation MAY use this extension mechanism to define proprietary attributes and content which are out of the scope of this specification.

7.2.1 Protocol Messages Received by a Task Parent

The following is the definition of the htcp:skipped message.

<xsd:element name="skipped" type="htcp:ProtocolMsgType" />
<wsdl:message name="skipped">
 <wsdl:part name="parameters" element="htcp:skipped" />
</wsdl:message>
The htcp:skipped message is used to inform the task parent (i.e. the requesting application) that the invoked task has been skipped. The task does not return any result.

The following is the definition of the htcp:fault message.

<xsd:element name="fault" type="htcp:ProtocolMsgType" />
<wsdl:message name="fault">
 <wsdl:part name="parameters" element="htcp:fault" />
</wsdl:message>
The htcp:fault message is used to inform the task parent that the task has ended abnormally. The task does not return any result.
7.2.2 Protocol Messages Received by a Task

Upon receipt of the following htcp:exit message the task parent informs the task that it is no longer interested in its results.

<xsd:element name="exit" type="htcp:ProtocolMsgType" />
<wsdl:message name="exit">
 <wsdl:part name="parameters" element="htcp:exit" />
</wsdl:message>
7.3 WSDL of the Protocol Endpoints

Protocol messages are received by protocol participants via operations of dedicated ports called protocol endpoints. In this section we specify the WSDL port types of the protocol endpoints needed to run the WS-HumanTask coordination protocol.

7.3.1 Protocol Endpoint of the Task Parent

An application that wants to create a task and wants to become a task parent MUST provide an endpoint implementing the following port type. This endpoint is the protocol endpoint of the task parent receiving protocol messages of the WS-HumanTask coordination protocol from a task. The operation used by the task to send a certain protocol message to the task parent is named by the message name of the protocol message concatenated by the string Operation. For example, the skipped message MUST be passed to the task parent by using the operation named skippedOperation.

<wsdl:portType name="clientParticipantPortType">
 <wsdl:operation name="skippedOperation">
 <wsdl:input message="htcp:skipped" />
 </wsdl:operation>
 <wsdl:operation name="faultOperation">
 <wsdl:input message="htcp:fault" />
 </wsdl:operation>
</wsdl:portType>
7.3.2 Protocol Endpoint of the Task

For a WS-HumanTask Definition a task MUST provide an endpoint implementing the following port type. This endpoint is the protocol endpoint of the task receiving protocol messages of the WS-HumanTask coordination protocol from a task parent. The operation used by the task parent to send a certain protocol message to a task is named by the message name of the protocol message concatenated by the string Operation. For example, the exit protocol message MUST be passed to the task by using the operation named exitOperation.

<wsdl:portType name="humanTaskParticipantPortType">
 <wsdl:operation name="exitOperation">
 <wsdl:input message="htcp:exit" />
 </wsdl:operation>
</wsdl:portType>
7.4 Providing Human Task Context

The task context information is exchanged between the requesting application and a task or a notification. In case of tasks, this information is passed as header fields of the request and response messages of the task’s operation. In case of notifications, this information is passed as header fields of the request message of the notification’s operation.

7.4.1 SOAP Binding of Human Task Context

In general, a SOAP binding specifies for message header fields how they are bound to SOAP headers. In case of WS-HumanTask , the humanTaskContext element is simply mapped to a single SOAP header as a whole. The following listing shows the SOAP binding of the human task context in an infoset representation.

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:htc="http://docs.oasis-open.org/ns/bpel4people/ws-humantask/context/200803">
 <S:Header>
 <htc:humanTaskContext>
 <htc:priority>...</htc:priority>?
 <htc:peopleAssignments>...</htc:peopleAssignments>?
 <htc:isSkipable>...</htc:isSkipable>?
 <htc:expirationTime>...</htc:expirationTime>?
 <htc:outcome>...</htc:outcome>?
 <htc:attachments>...</htc:attachments>?
 </htc:humanTaskContext>
 </S:Header>
 <S:Body>
 ...
 </S:Body>
</S:Envelope>
The following listing is an example of a SOAP message containing a human task context.

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:htc="http://docs.oasis-open.org/ns/bpel4people/ws-humantask/context/200803">
 <S:Header>
 <htc:humanTaskContext>
 <htc:priority>0</htc:priority>
 <htc:peopleAssignments>
 <htc:potentialOwners>
 <htd:organizationalEntity>
 <htd:users>
 <htd:user>Alan</htd:user>
 <htd:user>Dieter</htd:user>
 <htd:user>Frank</htd:user>
 <htd:user>Gerhard</htd:user>
 <htd:user>Ivana</htd:user>
 <htd:user>Karsten</htd:user>
 <htd:user>Matthias</htd:user>
 <htd:user>Patrick</htd:user>
 </htd:users>
 </htd:organizationalEntity>
 </htc:potentialOwners>
 </htc:peopleAssignments>
 </htc:humanTaskContext>
 </S:Header>
 <S:Body>...</S:Body>
</S:Envelope>
7.5 Lean Task Interactions
To enable lightweight task definition and creation, there are four methods a conformant WS-HumanTask Processor SHOULD provide:
· New RegisterLeanTask API for registration

· New UnregisterLeanTask API for retraction

· New ListLeanTasks API for enumeration

· New CreateLeanTask API for task initiation
· RegisterLeanTask
 <xsd:element name="RegisterLeanTask">
 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="taskDefinition" ref="htd:tTask" />
 </xsd:sequence>
 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="RegisterLeanTaskResponse">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="taskName" type="xsd:NCName" />
 </xsd:sequence>
 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>
If a server receives a RegisterLeanTask element, supports this method, and the calling user has sufficient permissions, it MUST create a new Lean Task that is available for future listing and consumption by the ListLeanTasks and CreateLeanTask methods. If an existing Lean Task exists at the same name as the htd:tTask/@Name, the WSHumanTask Processor MAY either return an error or overwrite the existing registered Lean Task definition.
The htd:tTask MUST conform to the specification for a Lean Task, as defined in Section 4.5, Lean Tasks, which includes that it MUST NOT contain an interface or renderings element.
UnRegisterLeanTask
 <xsd:element name="UnRegisterLeanTask">
 <xsd:complexType>

 <xsd:complexContent>
 <xsd:extension base="tExtensibleElements">
 <xsd:element name="taskDefinition" type="xsd:NCName" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="UnRegisterLeanTaskResponse">
 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="taskName" type="xsd:NCName" />
 </xsd:sequence>
 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>
If a server receives a UnRegisterLeanTask element, supports this method, and the calling user has sufficient permissions,, it MUST remove the new Lean Task that is available for future listing and consumption by the ListLeanTasks and CreateLeanTask methods. If the Lean Task does not already eixst as a regiereted element, it MUST return an error.
ListLeanTasks
 <xsd:element name="ListLeanTasks">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements" />

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ListLeanTasksResponse">
 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="LeanTasks">
 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:sequence>
 <xsd:element name="Task" ref="htd:tTask" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>
 </xsd:sequence>
 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>
If a server receives a ListLeanTasks element, supports this method, and the calling user has sufficient permissions, it MUST return a listing of the htd:task elements that are registered Lean Tasks, as registered by the RegisterLeanTask method, or the ‘ToDoTask”, a built in Lean Task (see Section 4.5.3).
CreateLeanTask
 <xsd:element name="CreateLeanTask">
 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:element name="taskName" type="xsd:NCName" />

 <xsd:element name="inputMessage">
 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="tExtensibleElements">
 <xsd:sequence>
 <xsd:any processContents="lax" namespace="##any" />
 </xsd:sequence>
 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="taskDefinition" ref="htd:tTask" minOccurs="0" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

7.6 </xsd:element>
If a server receives a CreateLeanTask element, supports this method, and the calling user has sufficient permissions, it MUST create a Lean Task using the task definition named by the taskName attribute, using the contents of the inputMessage element as the input message to the task, and using the registered task definition merged with the taskDefinition element (if present) as the htd:task for the task.
The reason that the WS-HumanTask Processor MUST merge the registered task definition with the taskDefinition element is that collaboration subtasks often require slight variations of the task definition per task instance to capture the desired task semantic. For instance, adding an “Abstain” outcome, setting the deadlines, or enabling the creation of a sub task that only operates on a portion of the data from an existing task, necessitating a change in the messageSchema element
The server SHOULD allow the following elements to be overwritten in this manner: htd:task/possibleOutcomes

htd:task/messageSchema

htd:task/priority

htd:task/peopleAssignments

htd:task/delegation

htd:task/presentationElements

htd:task/outcome

htd:task/searchBy

htd:task/deadlines

The server SHOULD NOT allow the follow elements to be overwritten in this manner during CreateTask:

htd:task/interface

htd:task/renderings

7.7 htd:task/composition

7.8 If the WSHumanTask Processor receives a htd:task element lacking one of these sub elements, it MUST treat that as a requirement to default to the registered behavior of the Lean Task. If it receieves an empty element for one fo the sub elements, it MUST treat that as a requirement to act as if the element were removed from the registered lean task.
7.9 The interface and renderings elements are always banned for a Lean Task; the composition element is allowed for Lean Task definitions that are used in RegisterLeanTask, but not in CreateLeanTask.
7.10 Human Task Policy Assertion

In order to support discovery of Web services that support the human task contract that are available for coordination by another service, a human task policy assertion is defined by WS-HumanTask. This policy assertion can be associated with the business operation used by the invoking component (recall that the human task is restricted to have exactly one business operation). In doing so, the provider of a human task can signal whether or not the corresponding task can communicate with an invoking component via the WS-HumanTask coordination protocol.

The following describes the policy assertion used to specify that an operation can be used to instantiate a human task with the proper protocol in place:

<htp:HumanTaskAssertion wsp:Optional="true"? ...>
 ...
</htp:HumanTaskAssertion>
/htp:HumanTaskA​ssertion
This policy assertion specifies that the WS-HumanTask Parent, in this case sender, MUST include context information for a human task coordination type passed with the message. The receiving human task MUST be instantiated with the WS-Human Task protocol in place by the WS-HumanTask Processor.

/htp:HumanTaskAssertion/@wsp:Optional="true"

As defined in WS-Policy [WS-Policy], this is the compact notation for two policy alternatives, one with and one without the assertion. Presence of both policy alternatives indicates that the behavior indicated by the assertion is optional, such that a WS-HumanTask coordination context MAY be passed with an input message. If the context is passed the receiving human task MUST be instantiated with the WS-HumanTask protocol in place. The absence of the assertion is interpreted to mean that a WS-HumanTask coordination context SHOULD NOT be passed with an input message.

The human task policy assertion indicates behavior for a single operation, thus the assertion has an Operation Policy Subject. WS-PolicyAttachment [WS-PolAtt] defines two policy attachment points with Operation Policy Subject, namely wsdl:portType/wsdl:operation and wsdl:binding/wsdl:operation.

The <htp:HumanTaskAssertion> policy assertion can also be used for notifications. In that case it means that the WS-HumanTask Parent, in this case the sender, MAY pass the human task context information with the message. Other headers, including headers with the coordination context are ignored.

8 Providing Callback Information for Human Tasks

WS-HumanTask extends the information model of a WS-Addressing endpoint reference (EPR) defined in [WS-Addr-Core] (see [WS-Addr-SOAP] and [WS-Addr-WSDL] for more details). This extension is needed to support passing information to human tasks about ports and operations of a caller receiving responses from such human tasks.

Passing this callback information from a WS-HumanTask Parent (i.e. a requesting application) to a human task MAY override static deployment information that may have been set.

8.1 EPR Information Model Extension

Besides the properties of an endpoint reference (EPR) defined by [WS-Addr-Core] WS-HumanTask defines the following abstract properties:

[response action] : xsd:anyURI (0..1)

This property contains the value of the [action] message addressing property to be sent within the response message.

[response operation] : xsd:NCName (0..1)

This property contains the name of a WSDL operation.

Each of these properties is a child element of the [metadata] property of an endpoint reference. An endpoint reference passed by a caller to a WS-HumanTask Processor MUST contain the [metadata] property. Furthermore, this [metadata] property MUST contain either a [response action] property or a [response operation] property.

If present, the value of the [response action] property MUST be used by the WS-HumanTask Processor hosting the responding human task to specify the value of the [action] message addressing property of the response message sent back to the caller. Furthermore, the [destination] property of this response message MUST be copied from the [address] property of the EPR contained in the original request message by the WS-HumanTask Processor.

If present, the value of the [response operation] property MUST be the name of an operation of the port type implemented by the endpoint denoted by the [address] property of the EPR. The corresponding port type MUST be included as a WSDL 1.1 definition nested within the [metadata] property of the EPR (see [WS-Addr-WSDL]). The WS-HumanTask Processor hosting the responding human task MUST use the value of the [response operation] property as operation of the specified port type at the specified endpoint to send the response message. Furthermore, the [metadata] property MUST contain WSDL 1.1 binding information corresponding to the port type implemented by the endpoint denoted by the [address] property of the EPR.

The EPR sent from the caller to the WS-HumanTask Processor MUST identify the instance of the caller. This MUST be done by the caller in one of the two ways: First, the value of the [address] property can contain a URL with appropriate parameters uniquely identifying the caller instance. Second, appropriate [reference parameters] properties are specified within the EPR. The values of these [reference parameters] uniquely identify the caller within the scope of the URI passed within the [address] property.

8.2 XML Infoset Representation

The following describes the infoset representation of the EPR extensions introduced by WS-HumanTask:

<wsa:EndpointReference>
 <wsa:Address>xsd:anyURI</wsa:Address>
 <wsa:ReferenceParameters>xsd:any*</wsa:ReferenceParameters>?
 <wsa:Metadata>
 <htcp:responseAction>xsd:anyURI</htcp:responseAction>?
 <htcp:responseOperation>xsd:NCName</htcp:responseOperation>?
 </wsa:Metadata>
</wsa:EndpointReference>
/wsa:EndpointReference/wsa:Metadata

This element of the EPR MUST be sent by WS-HumanTask Parent, the caller, to the WS-HumanTask Processor . It MUST either contain WSDL 1.1 metadata specifying the information to access the endpoint (i.e. its port type, bindings or ports) according to [WS-Addr-WSDL] as well as a <htcp:responseOperation> element, or it MUST contain a <htcp:responseAction> element.

/wsa:EndpointReference/wsa:Metadata/htcp:responseAction

This element (of type xsd:anyURI) specifies the value of the [action] message addressing property to be used by the receiving WS-HumanTask Processor when sending the response message from the WS-HumanTask Processor back to the caller. If this element is specified the <htcp:responseOperation> element MUST NOT be specified by the caller.

/wsa:EndpointReference/wsa:Metadata/htcp:responseOperation

This element (of type xsd:NCName) specifies the name of the operation that MUST be used by the receiving WS-HumanTask Processor to send the response message from the WS-HumanTask Processor back to the caller. The value of this element is taken from the htd:remoteTask/@responseOperation attribute. If this element is specified the <htcp:responseAction> element MUST NOT be specified by the WS-HumanTask Parent.

Effectively, WS-HumanTask defines two ways to pass callback information from the caller to the human task. First, the EPR contains just the value of the [action] message addressing property that MUST be used by the WS-HumanTask Processor within the response message (i.e. the <htcp:responseAction> element). Second, the EPR contains the WSDL 1.1 metadata for the port receiving the response operation. In this case, for the callback information the WS-HumanTask Parent MUST specify which operation of that port is to be used (i.e. the <htcp:responseOperation> element). In both cases, the response is typically sent to the address specified in the <wsa:Address> element of the EPR contained in the original request message; note, that [WS-Addr-WSDL] does not exclude redirection to other addresses than the one specified, but the corresponding mechanisms are out of the scope of the specification.

The following example of an endpoint reference shows the usage of the <htcp:responseAction> element. The <wsa:Metadata> elements contain the <htcp:responseAction> element that specifies the value of the [action] message addressing property to be used by the WS-HumanTask Processor when sending the response message back to the caller. This value is http://example.com/LoanApproval/approvalResponse. The value of the [destination] message addressing property to be used is given in the <wsa:Address> element, namely http://example.com/LoanApproval/loan?ID=42. Note that this URL includes the HTTP search part with the parameter ID=42 which uniquely identifies the instance of the caller.

<wsa:EndpointReference
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Address>http://example.com/LoanApproval/loan?ID=42</wsa:Address>
 <wsa:Metadata>
 <htcp:responseAction>
 http://example.com/LoanApproval/approvalResponse
 </htcp:responseAction>
 </wsa:Metadata>
</wsa:EndpointReference>
The following example of an endpoint reference shows the usage of the <htcp:responseOperation> element and corresponding WSDL 1.1 metadata. The port type of the caller that receives the response message from the WS-HumanTask Processor is defined using the <wsdl:portType> element. In our example it is the LoanApprovalPT port type. The definition of the port type is nested in a corresponding WSLD 1.1 <wsdl:definitions> element in the <wsa:Metadata> element. This <wsdl:definitions> element also contains a binding for this port type as well as a corresponding port definition nested in a <wsdl:service> element. The <htcp:responseOperation> element specifies that the approvalResponse operation of the LoanApprovalPT port type is used to send the response to the caller. The address of the actual port to be used which implements the LoanApprovalPT port type and thus the approvalResponse operation is given in the <wsa:Address> element, namely the URL http://example.com/LoanApproval/loan. The unique identifier of the instance of the caller is specified in the <xmp:MyInstanceID> element nested in the <wsa:ReferenceParameters> element.

<wsa:EndpointReference
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address>
 <wsa:ReferenceParameters>
 <xmp:MyInstanceID>42</xmp:MyInstanceID>
 </wsa:ReferenceParameters>
 <wsa:Metadata>
 <wsdl:definitions ...>
 <wsdl:portType name="LoanApprovalPT">
 <wsdl:operation name="approvalResponse">...</wsdl:operation>
 ...
 </wsdl:portType>
 <wsdl:binding name="LoanApprovalSoap" type="LoanApprovalPT">
 ...
 </wsdl:binding>
 <wsdl:service name="LoanApprovalService">
 <wsdl:port name="LA" binding="LoanApprovalSoap">
 <soap:address

 location="http://example.com/LoanApproval/loan" />
 </wsdl:port>
 ...
 </wsdl:service>
 </wsdl:definitions>
 <htcp:responseOperation>approvalResponse</htcp:responseOperation>
 </wsa:Metadata>
</wsa:EndpointReference>

8.3 Message Addressing Properties

Message addressing properties provide references for the endpoints involved in an interaction at the message level. For this case, WS-HumanTask Processor uses the message addressing properties defined in [WS-Addr-Core] for the request message as well as for the response message.

The request message sent by the caller (i.e. the requesting application) to the human task uses the message addressing properties as described in [WS-Addr-Core]. WS-HumanTask refines the use of the following message addressing properties:

· The [reply endpoint] message addressing property MUST contain the EPR to be used by the WS-HumanTask Processor to send its response to.

Note that the [fault endpoint] property MUST NOT be used by WS-HumanTask Processor. This is because via one-way operation no application level faults are returned to the caller.

The response message sent by the WS-HumanTask Processor to the caller uses the message addressing properties as defined in [WS-Addr-Core] and refines the use of the following properties:

· The value of the [action] message addressing property is set as follows:

· If the original request message contains the <htcp:responseAction> element in the <wsa:Metadata> element of the EPR of the [reply endpoint] message addressing property, the value of the former element MUST be copied into the [action] property of the response message by WS-HumanTask Processor.

· If the original request message contains the <htcp:responseOperation> element (and, thus, WSDL 1.1 metadata) in the <wsa:Metadata> element of the EPR of the [reply endpoint] message addressing property, the value of the [action] message addressing property of the response message is determined as follows:

· Assume that the WSDL 1.1 metadata specifies within the binding chosen a value for the soapaction attribute on the soap:operation element of the response operation. Then, this value MUST be used as value of the [action] property by WS-HumanTask Processor.

· If no such soapaction attribute is provided, the value of the [action] property MUST be derived as specified in [WS-Addr-WSDL] by WS-HumanTask Processor.

· Reference parameters are mapped as specified in [WS-Addr-SOAP].

8.4 SOAP Binding

A SOAP binding specifies how abstract message addressing properties are bound to SOAP headers. In this case, WS-HumanTask Processor MUST use the mappings as specified by [WS-Addr-SOAP].

The following is an example of a request message sent from the caller to the WS-HumanTask Processor containing the <htcp:responseAction> element in the incoming EPR. The EPR is mapped to SOAP header fields as follows: The endpoint reference to be used by the human task for submitting its response message to is contained in the <wsa:ReplyTo> element. The address of the endpoint is contained in the <wsa:Address> element. The identifier of the instance of the caller to be encoded as reference parameters in the response message is nested in the <wsa:ReferenceParameters> element. The value of the <wsa:Action> element to be set by the human task in its response to the caller is in the <htcp:responseAction> element nested in the <wsa:Metadata> element of the EPR.

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:htcp="http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803">
 <S:Header>
 <wsa:ReplyTo>
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address>
 <wsa:ReferenceParameters>
 <xmp:MyInstanceID>42</xmp:MyInstanceID>
 </wsa:ReferenceParameters>
 <wsa:Metadata>
 <htcp:responseAction>
 http://example.com/LoanApproval/approvalResponse
 </htcp:responseAction>
 </wsa:Metadata>
 </wsa:ReplyTo>
 </S:Header>
 <S:Body>...</S:Body>
</S:Envelope>
The following is an example of a response message corresponding to the request message discussed above. This response is sent from the WS-HumanTask Processor back to the caller. The <wsa:To> element contains a copy of the <wsa:Address> element of the original request message. The <wsa:Action> element is copied from the <htcp:responseAction> element of the original request message. The reference parameters are copied as standalone elements (the <xmp:MyInstanceID> element below) out of the <wsa:ReferenceParameters> element of the request message.

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <S:Header>
 <wsa:To>
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address>
 </wsa:To>
 <wsa:Action>
 http://example.com/LoanApproval/approvalResponse
 </wsa:Action>
 <xmp:MyInstanceID wsa:IsReferenceParameter='true'>
 42
 </xmp:MyInstanceID>
 </S:Header>
 <S:Body>...</S:Body>
</S:Envelope>
The following is an example of a request message sent from the caller to the WS-HumanTask Processor containing the <htcp:responseOperation> element and corresponding WSDL metadata in the incoming EPR. The EPR is mapped to SOAP header fields as follows: The endpoint reference to be used by the WS-HumanTask Processor for submitting its response message to is contained in the <wsa:ReplyTo> element. The address of the endpoint is contained in the <wsa:Address> element. The identifier of the instance of the caller to be encoded as reference parameters in the response message is nested in the <wsa:ReferenceParameters> element. The WSDL metadata of the endpoint is contained in the <wsdl:definitions> element. The name of the operation of the endpoint to be used to send the response message to is contained in the <htcp:responseOperation> element. Both elements are nested in the <wsa:Metadata> element of the EPR. These elements provide the basis to determine the value of the action header field to be set by the WS-HumanTask Processor in its response to the caller.

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:htcp="http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803">
 <S:Header>
 <wsa:ReplyTo>
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address>
 <wsa:ReferenceParameters>
 <xmp:MyInstanceID>42</xmp:MyInstanceID>
 </wsa:ReferenceParameters>
 <wsa:Metadata>
 <wsdl:definitions
 targetNamespace="http://example.com/loanApproval"
 xmlns:wsdl="..." xmlns:soap="...">
 <wsdl:portType name="LoanApprovalPT">
 <wsdl:operation name="approvalResponse">
 <wsdl:input name="approvalInput" ... />
 </wsdl:operation>
 ...
 </wsdl:portType>
 <wsdl:binding name="LoanApprovalSoap"
 type="LoanApprovalPT">
 ...
 </wsdl:binding>
 <wsdl:service name="LoanApprovalService">
 <wsdl:port name="LA" binding="LoanApprovalSoap">
 <soap:address
 location="http://example.com/LoanApproval/loan" />
 </wsdl:port>
 ...
 </wsdl:service>
 </wsdl:definitions>
 <htcp:responseOperation>
 approvalResponse
 </htcp:responseOperation>
 </wsa:Metadata>
 </wsa:ReplyTo>
 </S:Header>
 <S:Body>...</S:Body>
</S:Envelope>
The following is an example of a response message corresponding to the request message before; this response is sent from the WS-HumanTask Processor back to the caller. The <wsa:To> element contains a copy of the <wsa:Address> field of the original request message. The reference parameters are copied as standalone element (the <xmp:MyInstanceID> element below) out of the <htcp:ReferenceParameters> element of the request message. The value of the <wsa:Action> element is composed according to [WS-Addr-WSDL] from the target namespace, port type name, name of the response operation to be used, and name of the input message of this operation given in the code snippet above.

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:htd="http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803">
 <S:Header>
 <wsa:To>http://example.com/LoanApproval/loan</wsa:To>
 <wsa:Action>
 http://example.com/loanApproval/...
 ...LoanApprovalPT/approvalResponse/ApprovalInput
 </wsa:Action>
 <xmp:MyInstanceID wsa:IsReferenceParameter='true'>
 42
 </xmp:MyInstanceID>
 </S:Header>
 <S:Body>...</S:Body>
</S:Envelope>
9 Security Considerations

WS-HumanTask does not mandate the use of any specific mechanism or technology for client authentication. However, a client MUST provide a principal or the principal MUST be obtainable by the infrastructure.

When using task APIs via SOAP bindings, compliance with the WS-I Basic Security Profile 1.0 is RECOMMENDED.

10 Conformance

(tbd.)

11 References

[RFC 1766]

Tags for the Identification of Languages, RFC 1766, available via http://www.ietf.org/rfc/rfc1766.txt

[RFC 2046]

Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, RFC 2046, available via http://www.isi.edu/in-notes/rfc2046.txt (or http://www.iana.org/assignments/media-types/)

[RFC 2119]

Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, available via http://www.ietf.org/rfc/rfc2119.txt
[RFC 2396]

Uniform Resource Identifiers (URI): Generic Syntax, RFC 2396, available via http://www.faqs.org/rfcs/rfc2396.html
[RFC 3066]

Tags for the Identification of Languages, H. Alvestrand, IETF, January 2001, available via http://www.isi.edu/in-notes/rfc3066.txt

[WSDL 1.1]

Web Services Description Language (WSDL) Version 1.1, W3C Note, available via http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[WS-Addr-Core]

Web Services Addressing 1.0 - Core, W3C Recommendation, May 2006, available via http://www.w3.org/TR/ws-addr-core

[WS-Addr-SOAP]

Web Services Addressing 1.0 – SOAP Binding, W3C Recommendation, May 2006, available via http://www.w3.org/TR/ws-addr-soap

[WS-Addr-WSDL]

Web Services Addressing 1.0 – WSDL Binding, W3C Working Draft, February 2006, available via http://www.w3.org/TR/ws-addr-wsdl
[WS-C]

Web Services Coordination (WS-Coordination) Version 1.1, OASIS Committee Specification, February 2007, available via http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html

[WS-Policy]

Web Services Policy 1.5 - Framework, W3C Candidate Recommendation 30 March 2007, available via http://www.w3.org/TR/ws-policy/

[WS-PolAtt]

Web Services Policy 1.5 - Attachment, W3C Candidate Recommendation 30 March 2007, available via http://www.w3.org/TR/2007/CR-ws-policy-attach-20070330/

[XML Infoset]

XML Information Set, W3C Recommendation, available via http://www.w3.org/TR/2001/REC-xml-infoset-20011024/

[XML Namespaces]

Namespaces in XML 1.0 (Second Edition), W3C Recommendation, available via http://www.w3.org/TR/REC-xml-names/

[XML Schema Part 1]

XML Schema Part 1: Structures, W3C Recommendation, October 2004, available via http://www.w3.org/TR/xmlschema-1/

[XML Schema Part 2]

XML Schema Part 2: Datatypes, W3C Recommendation, October 2004, available via http://www.w3.org/TR/xmlschema-2/

[XMLSpec]

XML Specification, W3C Recommendation, February 1998, available via http://www.w3.org/TR/1998/REC-xml-19980210

[XPATH 1.0]

XML Path Language (XPath) Version 1.0, W3C Recommendation, November 1999, available via http://www.w3.org/TR/1999/REC-xpath-19991116

B. Portability and Interoperability Considerations

This section illustrates the portability and interoperability aspects addressed by WS-HumanTask:

· Portability - The ability to take human tasks and notifications created in one vendor's environment and use them in another vendor's environment.

· Interoperability - The capability for multiple components (task infrastructure, task list clients and applications or processes with human interactions) to interact using well-defined messages and protocols. This enables combining components from different vendors allowing seamless execution.

Portability requires support of WS-HumanTask artifacts.

Interoperability between task infrastructure and task list clients is achieved using the operations for client applications.

Interoperability between applications and task infrastructure from different vendors subsumes two alternative constellations depending on how tightly the life-cycles of the task and the invocating application are coupled with each other. This is shown in the figure below:

Tight Life-Cycle Constellation: Applications are human task aware and control the life cycle of tasks. Interoperability between applications and WS-HumanTask Processors is achieved using the WS-HumanTask coordination protocol.

Loose Life-Cycle Constellation: Applications use basic Web services protocols to invoke Web services implemented as human tasks. In this case standard Web services interoperability is achieved and applications do not control the life cycle of tasks.

C. WS-HumanTask Language Schema

Note to specification editors: the WS-HumanTask XML Schema definition is separately maintained in an artifact

ws-humantask.xsd

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., as a committee draft.

D. WS-HumanTask Data Types Schema

Note to specification editors: the WS-HumanTask data types XML Schema definition is separately maintained in artifact

ws-humantask-types.xsd

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., as a committee draft.

E. WS-HumanTask API Port Types

Note to specification editors: the WS-HumanTask API WSDL definition is separately maintained in artifact

ws-humantask-api.wsdl

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., as a committee draft.

F. WS-HumanTask Protocol Handler Port Types

Note to specification editors: the WS-HumanTask protocol WSDL definition is separately maintained in an artifact

ws-humantask-protocol.wsdl

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., as a committee draft.

G. WS-HumanTask Context Schema

Note to specification editors: the WS-HumanTask context XML Schema definition is separately maintained in an artifact

ws-humantask-context.xsd

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., as a committee draft.

H. WS-HumanTask Policy Assertion Schema

Note to specification editors: the WS-HumanTask policy assertion XML Schema definition is separately maintained in an artifact

ws-humantask-policy.xsd

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., as a committee draft.

I. Sample

This appendix contains the full sample used in this specification.

WSDL Definition

Note to specification editors: the WS-HumanTask example WSDL definition is separately maintained in an artifact

ws-humantask-example-claim-approval.wsdl

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., as a committee draft.

Human Interaction Definition

Note to specification editors: the WS-HumanTask example Human Task definition is separately maintained in an artifact

ws-humantask-example-claim-approval.tel

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., as a committee draft.

J. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Members of the BPEL4People Technical Committee: MACROBUTTON
Ashish Agrawal, Adobe Systems

Mike Amend, BEA Systems, Inc.

Stefan Baeuerle, SAP AG

Charlton Barreto, Adobe Systems

Justin Brunt, TIBCO Software Inc.

Martin Chapman, Oracle Corporation

James Bryce Clark, OASIS

Luc Clément, Active Endpoints, Inc.

Manoj Das, Oracle Corporation

Mark Ford, Active Endpoints, Inc.

Sabine Holz, SAP AG

Dave Ings, IBM

Gershon Janssen, Individual

Diane Jordan, IBM

Anish Karmarkar, Oracle Corporation

Ulrich Keil, SAP AG

Oliver Kieselbach, SAP AG

Matthias Kloppmann, IBM

Dieter König, IBM

Marita Kruempelmann, SAP AG

Frank Leymann, IBM

Mark Little, Red Hat

Ashok Malhotra, Oracle Corporation

Mike Marin, IBM

Mary McRae, OASIS

Vinkesh Mehta, Deloitte Consulting LLP

Jeff Mischkinsky, Oracle Corporation

Ralf Mueller, Oracle Corporation

Krasimir Nedkov, SAP AG

Benjamin Notheis, SAP AG

Michael Pellegrini, Active Endpoints, Inc.

Gerhard Pfau, IBM

Karsten Ploesser, SAP AG

Ravi Rangaswamy, Oracle Corporation

Alan Rickayzen, SAP AG

Michael Rowley, BEA Systems, Inc.

Ron Ten-Hove, Sun Microsystems

Ivana Trickovic, SAP AG

Alessandro Triglia, OSS Nokalva

Claus von Riegen, SAP AG

Peter Walker, Sun Microsystems

Franz Weber, SAP AG

Prasad Yendluri, Software AG, Inc.

WS-HumanTask 1.0 Specification Contributors: MACROBUTTON
Ashish Agrawal, Adobe

Mike Amend, BEA

Manoj Das, Oracle

Mark Ford, Active Endpoints

Chris Keller, Active Endpoints

Matthias Kloppmann, IBM

Dieter König, IBM

Frank Leymann, IBM

Ralf Müller, Oracle

Gerhard Pfau, IBM

Karsten Plösser, SAP

Ravi Rangaswamy, Oracle

Alan Rickayzen, SAP

Michael Rowley, BEA

Patrick Schmidt, SAP

Ivana Trickovic, SAP

Alex Yiu, Oracle

Matthias Zeller, Adobe

The following individuals have provided valuable input into the design of this specification: Dave Ings, Diane Jordan, Mohan Kamath, Ulrich Keil, Matthias Kruse, Kurt Lind, Jeff Mischkinsky, Bhagat Nainani, Michael Pellegrini, Lars Rueter, Frank Ryan, David Shaffer, Will Stallard, Cyrille Waguet, Franz Weber, and Eric Wittmann.

K. Non-Normative Text

L. Revision History

 MACROBUTTON NoMacro [optional; should not be included in OASIS Standards]
	Revision
	Date
	Editor
	Changes Made

	WD-01
	2008-03-12
	Dieter König
	First working draft created from submitted specification

	WD-02
	2008-03-13
	Dieter König
	Added specification editors

Moved WSDL and XSD into separate artifacts

	WD-02
	2008-06-25
	Ivana Trickovic
	Resolution of Issue #4 incorporated into the document/section 2.4.2

	WD-02
	2008-06-25
	Ivana Trickovic
	Resolution of Issue #4 incorporated into the ws-humantask.xsd

	WD-02
	2008-06-25
	Ivana Trickovic
	Resolution of Issue #8 incorporated into the document/section 6.2

	WD-02
	2008-06-25
	Ivana Trickovic
	Resolution of Issue #9 incorporated into the document/section 4.6 (example), and ws-humantask “ClaimApproval” example and WSDL file

	WD-02
	2008-06-28
	Dieter König
	Resolution of Issue #13 applied to complete document and all separate XML artifacts

	WD-02
	2008-06-28
	Dieter König
	Resolution of Issue #21 applied to section 2

	WD-02
	2008-07-08
	Ralf Mueller
	Resolution of Issue #14 applied to section 6,

ws-humantask-api.wsdl and ws-humantask-types.xsd

	WD-02
	2008-07-15
	Luc Clément
	Updated Section 6.2 specifying (xsd:nonNegativeInteger) as the type for priority

	WD-02
	2008-07-25
	Krasimir Nedkov
	Resolution of Issue #18 applied to this document and all related XML artifacts.

Completed the resolution of Issue #7 by adding the attachmentType input parameter to the addAttachment operation in section 6.1.1.

	WD-02
	2008-07-29
	Ralf Mueller
	Update of resolution of issue #14 applied to section 3.4.4, 6.1.2 and ws-humantask-types.xsd

	CD-01-rev-1
	2008-09-24
	Dieter König
	Resolution of Issue #25 applied to section 3.4.3.1 and ws-humantask-types.xsd

	CD-01-rev-2
	2008-10-02
	Ralf Mueller
	Resolution of Issue #17 applied to section 2.3

Resolution of Issue #24 applied to section 7 and ws-humantask-context.xsd

	CD-01-rev-3
	2008-10-20
	Dieter König
	Resolution of Issue #23 applied to section 3.2.1

Resolution of Issue #6 applied to section 6.2

Resolution of Issue #15 applied to section 6.2

Formatting (Word Document Map)

	CD-01-rev-4
	2008-10-29
	Michael Rowley
	Resolution of Issue #2

Resolution of Issue #40

	CD-01-rev-5
	2008-11-09
	Vinkesh Mehta
	Issue-12, Removed section 7.4.1, Modified XML artifacts in bpel4people.xsd, humantask.xsd, humantask-context.xsd

	CD-01-rev-6
	2008-11-10
	Vinkesh Mehta
	Issue-46, Section 6.1.1 wrap getFaultResponse values into single element

	CD-01-rev-7
	2008-11-10
	Vinkesh Mehta
	Issue-35, section 6.1.1 remove potential owners from the authorized list of suspended, suspendUntil and resume

	CD-01-rev-8
	2008-11-21
	Ivana Trickovic
	Issue-16, sections 1, 2, 3, and 6

	CD-01-rev-9
	2008-11-21
	Dieter König
	Issue-16, sections 4, 5

	CD-01-rev10
	2008-11-30
	Vinkesh Mehta
	Issue-16, sections 7,8,9,10,11 Appendix A through H

	CD-01-rev11
	2008-12-15
	Vinkesh Mehta
	Issue-16, Updates based upon Dieter’s comments

	CD-01-rev-12
	2008-12-17
	Ivana Trickovic
	Issue-16, sections 1, 2, 3, and 6 updates based on comments

	CD-01-rev-13
	2008-12-17
	Dieter König
	Issue-16, sections 4, 5 updates based on comments

	CD-01-rev-14
	2008-12-23
	Vinkesh Mehta
	Issue-16, Updates based upon Ivana’s comments

	CD-01-rev-15
	2009-01-06
	Krasimir Nedkov
	Issue-43. Added section 6.1.5, column “Authorization” removed from the tables in section 6.1, edited texts in section 6.1.

Task

invocation

Application

Loose Life-Cycle

Constellation

Application

Callable WSDL

Interface

Standalone Human Task

Web service invocation

Tight Life-Cycle

Constellation

HT-Protocol

Interface

Callable WSDL

Interface

Standalone Human Task

Figure � SEQ Figure * ARABIC �1�: Message Exchange between Application and WS-HumanTask Processor

�PAGE \# "'Page: '#'�'" ��How does Excluded owners fit with patterns?

�TODO: Discuss validity concerning routing patterns

�This section could be fleshed out with references to CreateLeanSubTask, but it may be intended to allow for any type of task.

�TODO

�By taking the potentialOwners element out of the genericHumanRole element, it can no longer be overwritten on people activity level (BPEL4People spec)

�The potentialOwners element should be overwritable on people activity level (BPEL4People spec).

On the other hand, fromPattern expressions ((indicating a routing pattern task) have to be part of the WS-HT task and must not be overwritten on people activity level.

Proposal:

Allow multiple from elements within potentialOwners / genericHumanRole element, but define the semantic on how to deal with these from elements (e.g. treat as a sequence, treat as parallel, treat all from clauses like a single one (no routing)) outside of the genericHumanRole element.

�This section should focus on the people assignment for routing patterns. The general concept should be described in 3.3

�If a definition of the htd:task that is the ToDoTask is required, it should be in section 4, not section 3.

�Parallel routing pattern being realized via subtasks should be described in the overall concept description (3.3)

�Routing pattern specific input / output data handling should be described in routing pattern section (3.3)

Handling of attachments see subtask syntax (4.1)

�TODO

�Adjust & move parts of this section into overall concept section 3.3?

�Need some error handling here (here: division by zero)

�Introduction of completion behavior could be independent concept valid for all kind of tasks

�Discuss and agree on whether the sequential routing pattern is realized via sub tasks or not

�To be discussed; related to the decision whether or not the sequential routing pattern is realized via sub tasks

�See section 4.8.8 below

�This is about specific routing pattern behavior, not true for sub tasks in general

�See section 4.8.8 below

�See section 4.8.8 below

�See section 4.8.8 below

�Might be out of scope

�Might be out of scope

�Might be out of scope

�Might be out of scope

�This might be true for routing pattern sub tasks, but not for all kind of sub tasks; should be described in some routing pattern section

�TODO: Discuss whether we want to introduce getOutput function in general or only for composite task scenarios

�Implies that composite tasks are not allowed in calling CreateLeanTask, but that routing patterns are.

PAGE
ws-humantask-spec-cd-02
6 January 2009

Copyright © OASIS® 2009. All Rights Reserved.
Page 1 of 1

