
4 Human Tasks

(...)

4.9 Human Task Behavior and State Transitions

 (…)
[Delete all existing sections 4.9.4 – 4.9.8, and insert the following new section]

4.9.4 Sub Task Event Propagation
Task state transitions may be caused by the invocation of API operations (see section 7 “Programming Interfaces”) or by events (see section 8 “Interoperable Protocol for Advanced Interaction with Human Tasks”). 
If a task has sub tasks then some state transitions are propagated to these sub tasks. Conversely, if a task has a parent task then some state transitions are propagated to that parent task. 
The following table defines how task state transitions MUST be propagated to sub tasks and to parent tasks. 
	Task Event
	Effect on Sub Tasks
(downward propagation)
	Effect on Parent Task
(upward propagation)

	suspend operation invoked
	suspend (ignored if not applicable, e.g., if the sub task is already suspended or in a final state)
	none

	suspend event received (from a parent task)
	
	

	resume operation invoked
	resume (ignored if not applicable, e.g., if the sub task is not suspended or in a final state)
	none

	resume event received (from a parent task)
	
	

	complete operation invoked
	exit (ignored if the sub task is in a final state)
	completion may be initiated (see section 4.7 “Completion Behavior”)

	complete event received
	
	

	fail operation invoked
	exit (ignored if the sub task is in a final state)
	none (if “manual” activation pattern), otherwise fail

	fail event received
	
	

	non-recoverable error event received
	
	

	exit event received
	exit (ignored if the sub task is in a final state)
	none

	skip operation invoked (and the task is “skipable”)
	skip
	completion may be initiated (see section 4.7 “Completion Behavior”)


All other task state transitions MUST NOT affect sub tasks or a parent task. 
