Below is the proposal for issue BP-90 - http://www.osoa.org/jira/browse/BP-90

1) Drop Section 3.4.6 Routing Patterns

2) Changes to sections 3.3 and 4.7.1 are below

3.3 Routing Patterns

A Routing Pattern is a special form of potential owner assignment in which a Task is assigned to people in a well-defined order. Routing patterns allow the assignment of a Task in sequence or parallel. The htd:parallel element defines a parallel routing pattern and the htd:sequence element defines a sequential routing pattern. Those patterns MAY be used in any combination to create complex task routing to people. Routing patterns can be used in both tasks and sub tasks.
4.7.1 Routing Patterns

Tasks can be assigned to people in sequence and parallel. Elements htd:sequence and htd:parallel elements in htd:potentialOwners are used to represent such assignments.

4.7.1.1 Parallel Pattern

A task can be assigned to people in parallel using the htd:parallel element. The htd:parallel element is defined as follows:
· The htd:from element defines the parallel potential owners. This can evaluate to multiple users/groups.
· The attribute ‘type’ in htd:parallel identifies how parallel assignments are created for the multiple users/groups returned from htd:from. If type is ‘all’ then an assignment MUST be created for each user returned by htd:from. If type is ‘single’ then an assignment MUST be created for each htd:from clause (this assignment could have with n potential owners). The default value of type is ‘all’.

·
·
· The htd:parallel and htd:sequence elements define nested routing patterns within the parallel routing pattern
· The htd:completionBehavior defines when the routing pattern completes. The completion criteria also define how the result is constructed for the parent task when a parallel routing pattern is complete.

Each parallel assignment MUST result in a separate sub task. Sub tasks created for each parallel assignment MUST identify the parent task using the htd:parentTaskId.

Operations that can be performed by a parallel user

All operations like reassign, claim, etc. can be performed by an assignee working in parallel. Such operations MUST NOT alter the assignments of the other parallel branch.

Syntax:
<htd:potentialOwners>
 <htd:parallel type="all|single"?>

 <htd:completionBehavior>
 <htd:from>...</htd:from>*
 pattern*
 </htd:parallel>

</htd:potentialOwners>
Example:
<htd:peopleAssignments>
 <htd:potentialOwners>
 <htd:parallel type=”all”>

 <htd:from>

 htd:getInput("ClaimApprovalRequest")/claimAgent

 </htd:from>

 </htd:parallel>
 </htd:potentialOwners>
</htd:peopleAssignments/>
4.7.1.2 Sequential Pattern

A task can be assigned to people in sequence using the htd:sequence element. The htd:sequence is defined as follow
· The htd:from element can evaluate to multiple users/groups.
· The attribute ‘type’ in htd:sequence identifies how sequential assignments are created for the multiple users/groups returned from htd:from. If type is ‘all’ an assignment MUST be created for each user returned by htd:from. If type is ‘single’, an assignment MUST be created for each htd:from clause (this assignment could have with n potential owners). The default value of type is ‘all’.

·
·
· The htd:parallel and htd:sequence elements define nested routing patterns within the sequential routing pattern
· The htd:completionBehavior defines when the routing pattern completes. The completion criteria also define how the result is constructed for the parent task when a sequential routing pattern is complete.

Sequential routing patterns MUST use a separate sub task for each step in a sequential pattern. Sub tasks created for each sequential assignment MUST identify the parent task using the htd:parentTaskId.
Syntax:
<htd:potentialOwners>
 <htd:sequence type="all|single"?>
 <htd:completionBehavior>?
 <htd:from>...</htd:from>*
 pattern*
 </htd:sequence>
</htd:potentialOwners>
Example:
<htd:peopleAssignments>
 <htd:potentialOwners>
 <htd:sequence type="all">
 <htd:from logicalPeopleGroup="regionalClerks">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 <htd:from logicalPeopleGroup="regionalManager">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 </htd:sequence>

 </htd:potentialOwners>
</htd:peopleAssignments/>
