
Actors, Terminology and Transaction Model

Pal Takacsi-Nagy, BEA Systems Inc. (pal.takacsi@bea.com)



Status of this Document

This document is part of the on-going work of the OASIS Business Transactions Protocol Technical Committee.


Copyright Notice

Copyright (C) BEA Systems, Inc. 2001. All Rights Reserved.













































































































































































































































Introduction

The purpose of this document is to capture the work that has been done at the April 24 2001 face-to-face meeting of the Business Transactions Technical committee. The content of this document reflects the consensus of the participants of the f2f meeting and it will be included in the Requirements Draft.

Terminology and Model
Business Transaction Protocol

The name of the protocol is business transaction protocol or BTP abbreviated. The purpose of BTP is to orchestrate loosely coupled software services (e.g. web services) into a single business transaction. There are two kinds of business transactions: cohesive and atomic. This committee will first focus on atomic business transactions. The transaction model and the actors that are described in this document are applicable to the atomic transactions.
Atomic business transactions

Atomic business transactions are made up of services that all agree to enforce a common outcome of the transaction: in case of a failure all services un-do (compensate, roll-back) their operations that were invoked during the transaction, in case of a success all services make the results of their operation permanent.
Cohesive business transactions
Cohesive business transactions are made up of several atomic transactions.
Actors

Initiator
The initiator is a piece of application software that starts a business transaction by invoking the Coordinator. The Initiator also sends messages or invokes operations on other services with the transaction context propagated onto the request message.
Coordinator
The Coordinator is a piece of system software that 
· Starts a new transaction on the Initiator’s request

· Maintains a list of currently enrolled participant for a transaction

· Drives the termination protocol of the business transaction
Service
A service is a piece of application software that offers a set of operations (service interface). A service is “BTP aware” if

· It is able to recognize the business transaction context inside a request messages
· It is able to trigger the enrollment of a Participant with the Coordinator, if it decides that the work done by its operation(s) should be part of the business transaction
· It is capable of propagating the transactional context to subsequent service operation invocations (Note: that both the Service and the Initiator actors have the inherent role of propagator)
Participant
The Participant is a piece of system software that executes the termination protocol on behalf of a set of services that are associated with it. A Participant is responsible for 
· deciding the timing of making the results durable (immediately, after timed period, when notified of successful termination)

· making the results of all the operations of associated services invoked inside the transaction permanent if terminated with success,
· or to execute compensating operations for all associated services if the business transaction terminates with failure.
Transaction Context
The Transaction Context is a data structure propagated onto messages passed between the initiator and the services inside a business transaction. The Transaction Context is unique to a transaction instance and it contains information that helps the actors the execute BTP.
Model

The diagram below illustrates the transaction model for BTP:

[image: image8.wmf]Initiator

Service1

oper1()

oper2()

oper3()

Service2

oper1()

oper2()

oper3()

Service3

oper1()

oper2()

oper3()

Coor

-

dinator

prepare()

confirm()

cancel()

Parti

-

icipant1

prepare()

confirm()

cancel()

Parti

-

cipant2

vote()

enroll()

resign()

business message

protocol message


Issues

There was no clear consensus on the following issues:

· Are the Service and Participant two separate actors? We will define the protocol such that they can be implemented by a single component (service).
· How is the Participant registered with the Coordinator? Implicitly or via an explicit protocol message? The latter solution can raise some performance and security issues. Bill Pope will look into the security aspects.


































































04/24/01
BEA Systems, Inc.
2

_1045162563.ppt






Main Coordinator

Initiator

terminate

terminate

terminate

terminate completion

terminate

completion

terminate



Time

Subordinate Coordinator

Subordinate Coordinator

Participant

Participant








_1045221300.ppt






terminate

terminate completion

Initiator

terminate

Participant

terminate



terminate completion

Main Coordinator

Log record (eager)

start-of-termination

Log record (eager)

terminate-completion

-from-subordinate

Log record (lazy)

terminate-completion

Subordinate Coordinator

Log record (eager)

start-of-termination

Log record (eager)

terminate-completion



Time

1



1



2



3



2



3



4










_1045937453.ppt






Initiator

Participant

Subordinate

Coordinator

Main 

Coordinator

4: receive business message

5: enlist participant

10: transaction terminated

3: send message

7: enlist subordinate

9: terminate transaction

11: transaction terminated

coordinator

1: create transaction

2: send message

8: terminate transaction

12: transaction terminated

6: register








_1049649677.ppt






Initiator

Coor-

dinator

vote()

enroll()

resign()

business message

protocol message

Service1













oper1()

oper2()

oper3()

Service2













oper1()

oper2()

oper3()

Service3













oper1()

oper2()

oper3()













prepare()

confirm()

cancel()

Parti-

icipant1













prepare()

confirm()

cancel()

Parti-

cipant2








_1045215008.ppt






Initiator

terminate

terminate

terminate completion

Participant

terminate



terminate completion

Main Coordinator

Log record (eager)

start-of-termination

Log record (eager)

terminate-completion

-from-subordinate

Log record (lazy)

terminate-completion

Subordinate Coordinator

Log record (eager)

start-of-termination

Log record (eager)

terminate-completion



Time








_1045052611.ppt






Check

product 

price

Place 

Order

Arrange

shipping



Commit

Abort

Calculate

product 

price

Wait 

for order

Book order

Check

truck

schedule

Reserve 

shipping

Decline

customer

Business message 



Time



Shipper



Manufacturer



Supplier








_1045052921.ppt






Messages

Hub

Transaction

Coordinator

Trading Partner 1

Trading Partner 2

Trading Partner 3

Application

B2B Server

Transaction

Coordinator

Application

B2B Server

Transaction

Coordinator

Application

B2B Server

Transaction

Coordinator








_1045051998.ppt






Messages

Trading Partner 2

Trading Partner 1

Trading Partner 3

Application

B2B Server

Transaction

Coordinator

Application

B2B Server

Transaction

Coordinator

Application

B2B Server

Transaction

Coordinator








