1.0 The Business Transaction Protocol (BTP)
By their very nature, web services operate in a loosely coupled, geographically disperse environment. From an infrastructure perspective, what does this mean for transaction processing systems? Do the traditional, old school approaches to handling transactions through the use of an XA-compliant, two-phase commit transaction manager apply directly to web services? Typical transaction management infrastructures have complete control over the resources that participate in a transaction: either every resource fully commits or fully rolls back.

In a web services environment, however, the resources that need to participate in a business transaction need to be aligned, but not dictated to. The business actions of one service need to coordinate and align themselves with business actions of another service. Even though each node / participant in a web service can have an independent workflow that executes on its own business rules, the entire business transaction still needs to behave as a single unit. In a loosely coupled environment, there cannot be a central transaction manager dictating all of the rules, commits, and rollbacks. In many circumstances the business rules of an individual participant may decide to override the intentions of the business transaction. In a business world, transactions need to be coordinated with oversight while still providing voting privileges of the participants. Additionally, just because some participants may not favor the outcome of the business transaction and/or vote against it, the transaction may still continue to commit.

In a business environment, this is analogous to any negotiation. For example, when an author negotiates a new book contract, that author negotiates the terms and arrangements with multiple publishers. Some publishers may offer higher royalties while others may commit senior editors to oversee a project. The author and each of the publishers need to participate in a single business transaction. In this scenario, as long as the author and at least one publisher are still participating, the business transaction can continue. The business transaction could still fully commit even though some of the publishers opt to roll back their individual participation. In an XA-compliant, two-phase commit transaction scenario, the flagging of rollback from any resource eventually causes the entire transaction to rollback.
As another example, a car manufacturer may only want a business transaction to fully commit if they can purchase 100,000 tires for less than $1,000,000 and subcontract the painting and detailing of their cars for less than $500 per car. If one of these conditions can’t be met by either trading partner, then the entire transaction needs to roll back. In order for the tire manufacturer to commit to delivering 100,000 tires, they need to lock up the resources necessary to produce the tires. Additionally, in order for the painting subcontractor to commit to the transaction, they need to ensure availability of supplies. At any given time, any participant can back out of the negotiation and the business transaction. And, based upon the demands and rules of engagement, the transaction can continue or be cancelled.

Businesses naturally run this way and a technology infrastructure to support the same type of behavior is needed. A technology infrastructure is required to link business actions into a cohesive unit across departmental or corporate boundaries. This fall the OASIS Business Transactions technical committee (http://www.oasis-open.org/committees/business-transactions/) will adopt the Business Transaction Protocol (BTP) as an OASIS Committee Specification. The BTP extends two-phase commit transaction management approach to address the needs of disparate trading partners that use XML to exchange data. This article provides some basic information about the BTP. Architects, developers, and businesses expecting to perform intra-enterprise or trading partner integration will find the BTP a critical component for their future projects.

1.1 The Basics of Business Transactions
At the lowest levels of the BTP, there are two types of work orders: atoms and cohesions. An atom is the simplest unit of work and behaves like the old school XA-compliant, two phase commit transaction manager views it. An atom of work follows the traditional ACID (Atomic, Consistent, Isolated, Durable) properties and must either fully commit or fully roll back. In a web services environment, the operations exposed by a single web service and / or the internal processes of that web service would usually make up a single atom. It is possible to have an atom that spans web services, but there are many limitations to allowing that.
A cohesion is a set of atoms that can be manipulated by the business transaction’s initiator. With a cohesion, the initiator is allowed to dictate whether each atom within the cohesion succeeds or fails, even if the atom is capable of succeeding. A cohesion is a transaction that is run by a voting / enrollment process where the initiator of the transaction has the final approval or rejection vote. The initiator can apply business rules to its decision-making process in full light of the recommendations made by all of the atoms in the transaction. Another way to view a cohesion is as a reduction process: when a cohesion begins, many atoms can be enlisted as part of the business transaction, but the cohesion provides a structured approach to reducing the choices available with the intention of driving a single, successful outcome in the end.
A cohesion can easily be structured to be run by a program. For example, this sample code demonstrates what creating an atom and cohesion may look like. Note that the BTP does not define a standard API and that this is purely for demonstration purposes.
void cohesion()

 {
 // We only need one supplier with the best quote.
Atom supplier1 = new Atom();

Atom supplier2 = new Atom();

Atom supplier3 = new Atom();

// Get quotes from each supplier here (not listed).
// After getting quotes from each supplier, we need to make sure that they

// can commit with the appropriate resources.
supplier1.prepare(); // If no exception, they can fully commit.
supplier2.prepare(); // ditto

supplier3.prepare(); // ditto

// Do business logic here to determine which supplier should be used.
// Let’s assume that supplier 2 wins the contract.
//
// The cohesion must be completed by letting each supplier know their

// individual outcome.

supplier1.cancel();

supplier2.confirm();

supplier3.cancel();

 }
1.2 The Roles in a Business Transaction
The specification defines its scope based upon the actors that can be involved with a business transaction. There are a variety of roles that are defined in the specification:
· Initiator – This is a software agent that initiates a business transaction. The initiator sends application messages to a web service in order to invoke operations. The service responds to the initiator in kind. The initiator’s organization is considered the Party and the web service’s organization is considered the Counterparty. In a business transaction, there can be a single Party and many Counterparties, each of which containing multiple web services.

· Coordinator – This is a software agent that can decide the outcome of a single atom. The coordinator tracks the set of participants that are enrolled in a single atom and has the same lifetime of an atom. A coordinator instructs participates to prepare, cancel, and/or confirm. The coordinator makes its decisions based upon input from participants and the initiator.

· Participant – This is a software agent that is capable of executing prepare, cancel, and/or confirm commands issued by a coordinator. The participant has a designated business transaction protocol communication address where communication with the coordinator occurs. A participant is responsible for executing the termination protocol (ie, if a confirm command is sent then the results of all actions of the services contained within the participant must be made permanent and if a cancel command is sent then the actions of the services must be undone).
· Service – A software agent that handles and responds to application messages. A service participates in a business transaction by way of a participant.
Figure 1 shows the relationships that the different actors can have. Even though there are four different relationships that can occur, the BTP specification only defines the coordination protocol between the Coordinator and the Participant and the operation invocation protocol between the Initiator and the Service. The definition of the demarcation and participant API is left to other bodies such as the Java Community Process. The code snippet provided in this article is a simple example of a demarcation API that may be created for cohesions and atoms.
It is important to understand that the operation invocation protocol is not a competitor or likeness of SOAP. Rather, it defines extensions to existing XML-based interoperability standards to facilitate invocation operations under the context of an atomic or cohesive business transaction. Transaction identifiers and other context information about entities participating in a business transaction must be relayed on every message passed between two processes. The operation invocation protocol defines the extensions necessary to facilitate this behavior.
1.3 Understanding the Protocol

Figure 2 shows a big picture view of the actors and the invocations that they can make upon one another. There are a variety of invocations that can be done as part of the BTP, most of which take place behind the scenes from a typical application. The specification defines its scope based upon the actors that can be involved with a business transaction.
There are a variety of messages that are communicated between actors:

· Operations – An initiator invokes the operations of a service using a BTP supported operation invocation protocol. The BTP operation invocation protocol could work over SOAP or the ebXML TRP, for example.

· prepare() – This message is sent from a coordinator to a participant. A participant returns successfully if the set of operations that is participating in the atom is capable of successfully canceling or confirming. It’s similar to the first phase of a two phase commit.

· cancel() – This message is sent from a coordinator to a participant. This instructs a participant to process a countereffect for the current effect of a set of procedures. It is essentially the roll back of an atom.

· confirm() – This message is sent from a coordinator to a participant. This instructs a participant to ensure that the effect of a set of procedures is made permanent. It is the commit of an atom.

· vote() – This message is sent from a participant to a coordinator. It can either be unsolicited or in response to a previous prepare() message. A participant can vote to cancel, ready, ready with inability to cancel after timeout, or ready with cancel after timeout. The participant uses these messages to let the coordinator be informed of the current and upcoming status of the participant.
· enroll() – This message is sent from a participant to a coordinator when a participant has a set of services that want participate in an atom. When an initiator first makes an invocation on a remote service, the invocation will have the atom identifier associated with it. The service will relay that identifier to a local participant which will contact the coordinator and ask to enroll in the atom.
· resign() – This message is sent from a participant to a coordinator. A participant sends this message when the operations on the service have had no effect on the atom. It informs the coordinator that the service should no longer participate in the atom.
1.4 Where to Get the Protocol
Currently, there aren’t any infrastructures that support BTP, but it should rapidly be adopted over the upcoming year. BEA Systems, HP Arjuna, Choreography, and Interwoven have all indicated their intent to provide a BTP infrastructure in the very near future. Also, upon acceptance of the BTP within OASIS, Microsoft and the Java Community Process would likely follow suit by forming committees to create standard demarcation and participant APIs. Additionally, Choreography currently has a simple trading demo that is based upon the BTP. It can be downloaded from XXXXXXXXXX.

1.5 Conclusion

The BTP specification provides a much-needed addition to the infrastructure community. It’s support among transaction managers will provide flexibility not currently available within XA-compliant, two phase commit transaction engines. The BTP specification provides participant autonomy so that the decisions of one participant mimic the behavior of a corporate negotiation. Corporate negotiation requires compensation-based reversals, participant defined timeouts that can impact an atom, but not necessarily a cohesion, and coordination of cohesions. Additionally, the BTP allows for a transaction to operate with discontinuous services that may come and go. In a real organization quotes and contract negotiations can last milliseconds or years; the BTP allows for long running transactions without limiting the scalability of any single participant (a participant is allowed to cancel based upon a timeout that is based upon its business requirements). Also, the BTP is designed to be interoperable via XML across any number of communication protocols allowing it to work with an application built on any popular platform.
If you would like more information about the BTP or to see the latest draft, visit the OASIS web site at http://www.oasis-open.org.

·
·

·
·
·
·
·

·
·
·
·

1.
2.

·
·
·
·

·
·
·

1.
2.
3.

1.
2.

·
·
·
·

3.

1.
2.
3.
4.
5.
6.
�PAGE \# "'Page: '#'�'" ��

�PAGE \# "'Page: '#'�'" ��Add diagram here

