Proposed extensions to the OASIS BTP Specification

Alastair Green/Peter Furniss
10 August 2001

Mark Little comments 12 August

Alastair Green responses 13 August
<ml> </ml> Mark Little responses 14 August

<ag> </ag> Alastair Green responses 14 August

<ml> </ml> Mark Little responses 15 August

<ag> </ag> Alastair Green responses 16 August

Copyright © 2001, Choreology Ltd.

Submitted to OASIS as part of the work of the BT Technical Committee. Subject to OASIS IPR Policy.

1. Volatile Cohesion Terminator – Composer relations

The fundamental idea is that we “vectorize” the relationship between a Volatile Terminator and an Inferior-qua-Superior (i.e. a Coordinator or Composer). We retain the concept of “requesting confirmation”, because confirmation logging rests with the I-qua-S, which may autonomously cancel if it fails to log.

We allow one confirm decision to be made (i.e. if we request confirmation of some atoms then we implicitly request cancellation of all others).We therefore preclude the cohesion splitting into multiple atoms.

Just to clarify: if a user wants to confirm different subsets of atoms they must therefore have multiple cohesions?

There are two possibilities in front of us. We could allow a cohesion to decompose into multiple atomic outcomes. In practice this would mean that we would confirm some atoms, cancel others, and hold some in abeyance (for later triage into confirmed and cancelled. When a failure occurred we would have logged outcomes for the confirms, no trace of the cancels, and (presumably) logged “in abeyances” (a.k.a. prepared). We would recover the Atoms that are prepared, and they would wait for the outcome to be delivered. But, the moment we do this we depend on the recovery of the “outcome deliverer”, the entity which will finally decide which way those prepared Atoms are to go. If that entity does not recover then we end up with a dangling sub-set. Now, we must assume non-recovery because (at the top of the tree) there may be some application entity (in our terms a Terminator) which cannot be deemed to be persistent and recoverable. (If you deem it always is then you merely postpone the problem until you get to its ultimate application client for termination purposes.) If someone wants to write an application that keeps durable track of its stages and steps, and which (outside this protocol) is therefore guaranteed to restart intelligently, then that is fine, but it’s not the job of this protocol. (It’s a recoverable workflow.) So, a simple rule seems best: if you confirm some you cancel the rest.
<ml> Agreed. I really just wanted to make sure that the text is explicit on this. </ml>
The kind of functionality we require is certainly for prepare, confirm and undo to be vectorized but prepare at least to be callable multiple times.

Yes. As detailed later, there may be several shots at prepare (the set of Atoms may be complete, but not ready as a whole, or the set may be incomplete). For each Atom (Inferior) as per Sanjay’s simplification there will be one vote value, but replayable prepares; here we are talking about several vector prepares to arrive at a fully-prepared set.
 <ml> Just to clarify: I can call prepare(1,2, 3) (for example) and get (hopefully) ok back, later call prepare (4, 7, 10), and if this returns not-ok (i.e., undone) it will implicitly have forced an undo on 1, 2, 3?</ml>
<ag> A prepare to Atom X that responds CANCELLED means that Atom X has cancelled. As this is a cohesion this has no necessary implication for other Atoms. In effect we are carrying out an open-topped coordination of a single Atom, multiple times. If I send PREPARE to an open-topped coordinator and receive a CANCELLED then it may well imply that one of four enrolled Inferiors of the Atom has CANCELLED, causing all other Inferiors to die. But this death does not affect any other Atom that I may happen to be manipulating, because there is no contractual statement about their relative confirmation. Each Atom is dealt with in a separate bilateral relationship from its standpoint as an Inferior; the contract is that the Superior (the cohesion’s Composer) will durably record and replay a confirm outcome, i.e. will take responsibility for deciding the Atom’s fate. The return on PREPARE is not CANCELLED or CONFIRMED or HAZARD++, but simply INFERIOR_STATUSES.

So, if I call prepare(1,2,3,4) and get back (CANCELLED, PREPARED, PREPARED, PREPARED) that’s fine. The cohesion is still alive, and capable of producing an atomic outcome across Inferiors 2 and 3, cancelling 4, if it chooses to do so. The application (VCT) must now decide what the cancellation of 1 means to it. Is there a substitute for 1? Does it need to invoke a new Service to get a replacement? Must the whole thing be aborted? Can we go ahead and confirm, even though we’ve only got goods and shipping, and insurance is not available at this time? These are application logic-driven decisions. Once the VCT decides 2 and 3 together make sense it must send REQUEST_CONFIRM (1,2) to the Composer, which logs [1,2] and then sends CANCEL to 4, CONFIRM to 1 and 2 etc etc. </ag>

<ml>Good. That’s kind of what I hoped you’d say, and my statement was loaded ;-) [I think my reading of the original text may have been deliberately skewed to try to see what other interpretations were possible – as you know, the OTS specification, for example, is littered with good intentions that can be overloaded badly.] In essence I think that an example (and the one you just gave) would be valuable in the accompanying text.</ml>

The cohesion composer does not necessarily know the set of atoms it wants to prepare (and subsequently confirm) in a single visit to the cohesion coordinator. Subsequent prepares may need to be sent. In addition, the return “value” from prepare and confirm should be a vector of responses.

Yes, this is so in the proposal.

We allow “open-topped” behaviour, i.e. the PREPARE may happen independently from the REQUEST_CONFIRM, because failure to PREPARE may affect the final confirmed set, through the observation and action of the application (the Volatile Terminator).

A mental picture that includes the following diagram will probably help:

Addition to Abstract Messages

PREPARE

Add the following text:

inferior indices An unordered set of inferior index, which may be omitted. A PREPARE message where this element is present is referred to as “PREPARE/inferiors”. A PREPARE message where this element is omitted is referred to as “PREPARE/whole” If present then each inferior index identifies an Inferior enrolled with the Superior to which this message is sent.

It is important for the cohesion composer to have some structure on the participant identity in order that it can somehow relate them to the web services it contacted. For example, in a traditional transaction system I may have 4 XA resources enlisted with a transaction, each for a separate database. If somehow I am able to commit or roll them back independently, I’d need to know how they relate to whatever application invocation caused them to be enlisted. In a loosely coupled environment like the Web, where services may not enlist participants, or may enlist multiple participants during the lifetime of a BT, this becomes even more important. Simply having an index isn’t sufficient. Leaving it up to the implementer isn’t a good idea if we want interoperability. One possibility (though not the only one) would be for each participant identity to contain the URI of the service that enlisted it.

I think that the only fundamental problem is asynchronicity. If several application messages and ENROLs are interleaved then we cannot know which ENROLs relate to which message.
<ml>I agree.</ml>
 This knowledge is critical for the behaviour of cohesions. The Inferior Identity is unique, but it is chosen by the Enroller, or by the Inferior, and may not be capable of being related to its use by the Client-Service axis.

Therefore, allow an alias or label to be embedded in ENROL which should be free-form. It must also appear in the BEGIN of BEGIN & CONTEXT. Call this “enroller”.
<ml>So an atom can get at this information, but can a cohesion (can the business logic enquire as to this information at arbitrary points?) </ml>
<ag>A Client application decides to create three new atoms within a cohesion. To do this it issues

(BEGIN/cohesion

(BEGUN/cohesion & CONTEXT/cohesion

(BEGIN/atom (“OPTIONS”) & CONTEXT/cohesion

(CONTEXT/atom (“OPTIONS”)

(BEGIN/atom (“OPTIONS”) & CONTEXT/cohesion

(CONTEXT/atom (“OPTIONS”)

(BEGIN/atom (“OPTIONS”) & CONTEXT/cohesion

(CONTEXT/atom (“OPTIONS”)

(Of course, we might say OPTIONS-NOMURA, OPTIONS-ABN-AMRO, OPTIONS-ML if we wanted to keep the three Atoms distinct in our mind. That’s an application choice).

Now, if I send REQUEST_STATUS/inferiors=true to the Composer of the Cohesion (i.e. to the address-as-composer in BEGUN-cohesion) then it will return an INFERIOR_STATUSES. Clearly we must now add “enroller” or “inferior alias” or whatever we decide to call it (I prefer “enroller”) to the

<ml>Agreed, and is there an issue with not calling it enroller?</ml>

<ag>No, I was just musing</ag>

elements in the scalar INFERIOR_STATUS. I will now see something like this:

{{active, 1, OPTIONS}, {active, 2, OPTIONS}, {active, 3, OPTIONS}}

returned to me.

If I associate the CONTEXT-atom of the second Atom with an app message to a Service offered by Nomura, requesting an option quote, and it chooses to enrol a Participant with that Atom (this is all unrealistic, but illustrates the facility), then it would send ENROL to the Coordinator, and could embed “NOMURA” in its message. It would be notified in ENROLLED that it was the first Inferior of the Coordinator-qua-Superior (receive back index value 1). If I were to send REQUEST_STATUS/inferiors=true to the Coordinator of that Atom then I would expect to see:

{{active, 1, NOMURA}}.

</ag>

We could also provide a standard qualifier for CONTEXT which allows an invocation label to be provided, which could be taken as a hint by the Enroller as to the contents of its enroller element.

<ml>I would definitely like to see such a qualifier: audit trails and distributed debugging.</ml>

<ag>An interesting question to consider, here. What is the impact of an Enroller refusing to identify its enrolments? We cannot force it to do so.

<ml>From a security/trust p.o.v. I agree that we cannot and should not force this. As you say, it has to be up to the implementation and the circumstances in which it finds itself.</ml>

We cannot force it to uniquely identify its enrolments. Therefore, its identification policy is only an assistance to a client which needs to discriminate between enrolled Inferiors, aka a VCT atop a Composer. A VAT controlling an Atom is much less interested in the identity of Inferiors (they are always treated identically, irrespective of their identity). Therefore, the value of supplying an identifier in a CONTEXT/atom, which is the only type of CONTEXT to be associated with an application message, is very limited. Most often we will want the kind of broad-gauge guarantee that CONTEXT_REPLY offers (everything is enrolled that needs to be.</ag>

<ml>I think that as long as the cohesion composer has the information to identify specific atoms and the states they are in, then that is the important point.</ml>

The receiving Superior (addressed via its address-as-inferior) is responsible for issuing PREPARE/whole to each Inferior so identified. If this element is omitted then the receiving Inferior is responsible for issuing PREPARE/whole to all of the Inferiors enrolled with it qua Superior, and must send PREPARED, CANCELLED or HAZARD & INFERIOR_STATUSES to the Superior which issued the original PREPARE.

and mutatis mutandis, add the same text to CONFIRM and CANCEL.

As stated previously, does this imply that prepare, confirm and cancel can only be called once?

No.

This is too restrictive for a cohesion composer with arbitrary business logic. When I write my business logic that is BTP aware I want to be able to prepare a subset of the participants at arbitrary points during the lifetime of the transaction, and based upon those results (hence the vectorized returns) do other work, followed by other prepare invocations on the cohesion coordinator. I agree with the ability to say “prepare all” and “confirm all” or “cancel all”; what I’m suggesting would work with what is proposed. Also, I may want to send cancel many times simply as a service to those participants. Agreed, I need not, since they will eventually implicitly get a cancel, but by that time they may well have decided to “heuristically” confirm.

Exactly in line with our thinking. The proposal is intended to allow such complex behaviours.

ENROLLED

Add inferior index to the table, and the following text to the Explanation

inferior index This contains a positive integer value which uniquely identifies the enrolled Inferior within the scope of the Superior.

I don’t believe that this is sufficient.

Agreed. See above.

INFERIOR_STATUS

STATUS, plus an inferior index, plus an optional QUALIFIERS. This allows the QUALIFIERS from a PREPARED to be pushed up to the VCT, which allows it to use that information to make its decisions.

This is the vectorized return we’re after.

The vector is INFERIOR_STATUSES below. This is the scalar of that vector. The optional (NB) QUALIFIERS is all the qualifier information that the PREPARED of a single INFERIOR carried with it. This means that timeouts can be propagated up to the VCT.

So, all we would require is the ability to call prepare, cancel, confirm (?) multiple times with different parameters. Obviously we’d have to address the possibility of an attempt to prepare the same participant more than once.

Intended to be handled by inference. The proposed text states (or it should do) that a PREPARE is sent to each Inferior “listed” in the vector. The normal behaviour dictated by the state tables applies to each scalar’s interchange with its counterparty. An invalid repeat prepare with a new value (repeat prepare per se is fine) would be thrown on the ground, if I recall correctly. Will check with Peter on this at the end of this week. I believe we concluded there was no need to store FAULTs in the vector.

<ag>On revisiting this, I realize that it’s partially true, and partially false. It is true that a prepare sent more than once is just thrown on the ground. That is part of Sanjay’s simplification. The change of value would not affect this. Which raises the issue, that I had in my mind something which was decided in Mount Laurel and has got … dropped on the ground inadvertently. At present there is no record in the draft spec workings of the Mt Laurel decision suggested by you, namely that PREPARE can have a symmetrical qualifier (as yet unspecified, a gap in the abstract message set), which is the time to autonomously cancel/confirm. This was intended to send a demand to the Inferior: if you cannot promise to hold off auto-cancellation or confirmation for n seconds, just send me CANCELLED.

We would also like to see another standard qualifier on PREPARE which would enable the Superior to state “I will not accept any autonomous nonsense from you: send me CANCELLED if you cannot agree to this”, which can be refined to “do not auto confirm”/”do not auto cancel”/”don’t do either” of which the most interesting is “don’t auto confirm”, I think.</ag>

[details TBD]

INFERIOR_STATUSES

A message which is a set of INFERIOR_STATUS, each of which is related to the set by an &.

[details TBD]

Addition to Actors, Roles and Relationships

Volatile Cohesion Terminator (VCT)

Requests preparation of, and sends an Outcome to, each of the Atoms that make up a Cohesion, by exchanging messages with the Cohesion’s Composer.

	Sends
	Receives

	REQUEST_STATUS/inferiors=true
	INFERIOR_STATUSES

	PREPARE/whole
	CANCELLED

	REQUEST_CONFIRM/whole
	CONFIRMED

	CANCEL/whole
	HAZARD & INFERIOR_STATUSES

	PREPARE/inferiors
	

	REQUEST_CONFIRM/inferiors
	

	CANCEL/inferiors
	

If a VCT sends PREPARE/whole then it will receive one of INFERIOR_STATUSES, CANCELLED or HAZARD & INFERIOR_STATUSES in response.

If a VCT sends REQUEST_CONFIRM/whole then it will receive one of CONFIRMED, CANCELLED or HAZARD & INFERIOR_STATUSES in response.

If a VCT sends CANCEL/whole then it will receive one of CANCELLED or HAZARD & INFERIOR_STATUSES in response.

A VCT may send a REQUEST_STATUS/inferiors=true at any time. The current status of all the Composer’s Inferiors is returned as an INFERIOR_STATUSES. Each status is identified by an inferior index, which matches the value of the inferior index returned in ENROLLED.

The value “inferiors” on PREPARE, REQUEST_CONFIRM and CANCEL indicate that the corresponding “whole”-valued message is intended to be sent to those Inferiors whose inferior index value is contained in the inferior indices element. For full details see the entries for “PREPARE”, “CONFIRM” and “CANCEL” in “Abstract Messages”.

If a VCT sends PREPARE/inferiors then it will receive INFERIOR_STATUSES in response. [This should be configurable] The value of the inferior indices element may change from one transmission to the next. This message should not be sent after a CONFIRM/whole or CONFIRM/inferiors has been sent.

If a VCT sends CANCEL/inferiors then it will receive INFERIOR_STATUSES in response. [This should be configurable] The Cohesion will not be cancelled until a VCT has sent CANCEL/whole, as new Inferiors may be enrolled with the Composer at any time prior to it receiving that message. The value of the inferior indices element may change from one transmission to the next.

This seems to imply that cancel (prepare) can be called multiple times? If so, great.

Yes.

This message should not be sent after a CONFIRM/whole or CONFIRM/inferiors has been sent.

So if I want to cancel participants (so that they definitely do cancel rather than relying on their timeouts) I must do so before confirming the remainder? I don’t have a problem with this, as long as it is possible.

If you send REQUEST_CONFIRM/inferiors then all unreferenced inferiors will be sent CANCEL (see your next comment). This avoids you having to do the job by hand. You may send CANCEL/inferiors any number of times, leading to explicit CANCELs to any number of inferiors, prior to issuing REQUEST_CONFIRM.

If a VCT sends REQUEST_CONFIRM/inferiors then the receiving Composer must
1. Send CANCEL to all of the Inferiors not present in inferior indices.

OK, but can I send a cancel<indices> prior to this?

Yes.

2. Send PREPARE to each unprepared Inferior present in inferior indices. If any Inferior responds CANCELLED then CANCEL is sent to all the Composer’s other uncancelled Inferiors, and CANCELLED is sent to the VCT as a response.

3. Attempt to durably record the inferior indices element.

4. If 3. is successful, send CONFIRM/whole to those Inferiors present in inferior indices and then send CONFIRMED as a response to the VCT. If the CONFIRM/inferiors is qualified by QUALIFIER/ReportHazard then the CONFIRMED response will not be sent until all Inferiors of the Composer have responded with the expected acknowledgement (CONFIRMED or CANCELLED). If the expected acknowledgements are not returned then HAZARD & INFERIOR_STATUSES will be sent to the VCT as a response.

[And note that a similar tale must be told for VATs and for CONFIRM/whole in this section]

5. If 3. fails then the Composer must send CANCEL to all uncancelled Inferiors and to the VCT in response.

With a note that by this point some atom participants may not be able to CANCEL?

I don’t think this is necessary or appropriate. A Cohesion promises nothing in respect of relative confirmation (i.e. it has lots of bilateral relationships, but makes no multilateral commitments). An Atom, by contrast, is implicitly promising to deliver common outcomes to all Inferiors, and if it fails to do so, is causing damage to the collective cause of shared data.
</ml>Agreed, but my point was that the caller of confirm on the composer should expect the possibility that contradictions will be returned to him/her.</ml>
<ag>My original comment was apropos of nothing. More to the point: First, the last line before this set of comments should read “… and send CANCELLED to the VCT in response”. Second, if Step 5. occurs then the whole Cohesion will definitely cancel, either by commission (successful delivery of CANCEL to all parties) or by omission (no log, failure, no log, therefore assume cancel.) This is not a situation where contradictory outcomes can result.</ag>

<ml>Sorry, but I must be missing something here. If a cohesion has sent PREPARE to all of the atoms involved, the participants enrolled with those atoms may well have given some timeout period for which they can successfully PREPARE, and after which they may either cancel or confirm independently. Now, take the relatively simply case where the cohesion then sends CONFIRM to only one of those atoms. This atom sends CONFIRM to the participants and finds that some of them have in fact undone because the cohesion took too long to reach a decision. So, I now have the situation where some participants have confirmed, whilst other have not. Surely this is a heuristic outcome (contradiction)? The atom cannot guarantee that all of the participants will reach the same final outcome because we have the capacity in the protocol for the participants to take unilateral decisions. At the level of the cohesion (i.e., “within the cohesion”) this information is available when the composer sends a CONFIRM message to the atom, so all I’m saying is that this information must also be available to whoever calls CONFIRM(X) on the composer.</ml>

<ag>I think we are at cross purposes, but in agreement. Step 5 says “if 3 fails”. Step 3 says: attempt to write the log (the confirmed sub-set vector, the inferior indices). If this fails, the whole thing is dead, because it’s not recoverable. This is directly analogous to a coordinator discovering it cannot log the identity of its participants, which is its commit log, and therefore it is not able to satisfy the “request to commit” that a classic client applies to a classic coordinator. Therefore it attempts to rollback all participants, and if it fails to do so they will eventually rollback through recovery mechanism.

Now, it is true that the attempt to cancel everything can collide with upbound CONFIRMEDs. The Composer will recognize this fact, because it will hang around to receive the CANCELLEDs. stays alive long enough to recognize this fact then it can flip to reporting HAZARD & INFERIOR_STATUSES (non-uniform result). If it recovers after a failure (which means its guardian angel recovers, because there is no durable record) then its guardian angel will send CONTRADICTION to the auto-confirming Inferior, and may (unspecified) create a management alert, but cannot tell the VCT about this, because it has no memory of the VCT, or the VCT’s address, even if the VCT is still hanging around. By “guardian angel” I meand: that entity which fields messages to the Composer’s Address-as-superior even though there is no durable record of the existence or state of the Composer.</ag>

Composer

Add some text that mirrors the VCT text.

Volatile Atom Terminator

Add REQUEST_STATUS/inferiors=true and INFERIOR_STATUSES as an optional response. Add HAZARD & INFERIOR_STATUSES.

Sub-composer

A Composer which is an Inferior, i.e. can be subordinated to a Persistent Terminator. Note that a Composer per se is not an Inferior, as a Volatile Cohesion Terminator is not a Superior (because it does not durably record its intentions).

Implementer’s View

In practical terms playing the role of Sub-composer means that an implementation must provide a means for application logic to be inserted into the operations that are invoked in response to receiving PREPARE, CANCEL and CONFIRM. reaction of the Sub-composer. This could be done through pluggable interfaces, callback registration

And scripting

Can you elaborate? I don’t quite understand.

or the like. In any event, the designer of a Sub-composer needs a way of influencing the final outcome of the Cohesion.

Notes in the light of telephone meeting of 9th August

1. We have considered the possibility of allowing an Enroller to supply an arbitrary identifier in the ENROL, which would be used to supplement the inferior index in identifying or describing the Inferior. This could be used to label an Inferior with the name of the Service, for example. The label could be used by the Superior in audit trails or in management events, for ease of human or application recognition.

I think it is much more important than “just” for audit trails. See above.

Given the asynch problem, I agree. I like the feature anyway. It makes application building just that little bit easier.

2. CONTEXT acknowledgement

Premise: when a CONTEXT/atom is sent to an application Service, it is possible that one or more Participants may be enrolled as a result. If an ENROL is not acknowledged by an ENROLLED then the Participant may be unknown to the Superior. Such an event must result in the Atom being cancelled.

Note, in passing, that the Enroller must receive ENROLLED in some time span. This span may either be a timeout interval, or it may be the interval concluded by the transmission of an application response.

Note further that it must be assumed that communications between the Enroller and Superior are broken when the failure to receive ENROLLED is detected.

There are two approaches that will ensure the necessary cancellation outcome, and which will therefore preserve the integrity of the Atom.

The Enroller sends a CONTEXT_REPLY/processed to the client-side Communicator when it has successfully completed all enrolments that it desires (i.e. has received ENROLLED for each of them).

And presumably this can be boxcarred.

Absolutely. Anything can be. In this case the boxcarring allows the natural optimisation.

If it fails to complete all desired enrolments then the Enroller sends a CONTEXT_REPLY/repudiated to the Communicator. The Communicator must be able to associate the CONTEXT_REPLY (in either case) with the CONTEXT related to the original Application Request.

If the participant (or whatever attempted to enrol it) does not receive the ENROLLED response it sends a CANCEL to the atom. Since the service (or participant) has the atom id, why does the current text seem to imply that only the client can do the CANCEL?

Above it is stated “Note further that it must be assumed that communications between the Enroller and Superior are broken when the failure to receive ENROLLED is detected.” Given such a failure, and given the greater likelihood of Client/Service communication being good, we need a way of circumventing the Enroller/Superior comms failure. In a sense this whole section is precisely to cater for that circumstance, otherwise send CANCEL would solve the problem.

Also, one might be reluctant to accept CANCEL from out of the blue, as opposed to an enrolled Inferior. Interesting question, from a security standpoint. In other words, should one allow any application element to mark for rollback? I guess so. If they can enrol they can CANCEL. However, prior enrolment allows some kind of mutual authentication. The proposal allows both approaches.
<ml>OK</ml>
The Sending Communicator is responsible for creating the relationship between the CONTEXT and the Application Request.

Client (Communicator (Service (Enroller

Client (Communicator (Enroller

This implies that a CONTEXT must contain a reply to address when sent to a Service. This element can be null when the CONTEXT is returned from the Factory.

Implementer’s View

The fact of relationship between the Application Request and the CONTEXT/Atom can be represented in any way that the client-side Communicator Service jointly agree. The presence of the CONTEXT/Atom in a SOAP Header whose Body contains the Application Request is an interoperable statement that a relationship exists. Other statements of relationship are possible, but they are not defined, and are therefore not interoperable.

There is no need for an Application Response (Service to Client Message) to be sent in this situation. If an Application Message is sent as a response then the CONTEXT_REPLY can travel with it as an associated SOAP Header.

b) The apparatus described in a) is not used. A mechanism for reporting the number and identity of all enrolled Inferiors belonging to a Superior is provided. This information is used by the Terminator to decide whether Atom termination is safe. This would naturally re-use the messages proposed for Volatile Cohesion Terminator-Composer relations. In this case the Inferior qua Superior (Coordinator) will be allowed to refuse to supply the information requested.

If b) is useful in a concrete case then it can be used in preference to a), but should not be required. Therefore, we could provide both, but a) is primordial, because it does not require knowledge of the underlying participant structure.

Notes in the light of telephone meeting of 9th August

It is not clear to me [AG] that there is a strong need for option b), although I have no objection at all to allowing a Superior to report its immediate enrolled Inferiors if it feels like it.

Agreed. I would think that a) would be used more often than not. However, I have no objection to b).

Ditto.

It is overwhelmingly likely that a Client application which begins an Atom and then requests service within that Atom will have an application response, and will rely on the nature of that application response to decide whether to confirm or cancel the Atom. If that is not true then the Client has little business beginning or terminating the Atom: it could simply delegate the commencement and termination to the Service (request a server-side transaction). Therefore, it is not onerous to assume a high likelihood of an application response, and thus a piggy-backed CONTEXT_REPLY.

2. There is nothing to say (as pointed out in the Implementer’s View above) that the Client must stall against an application response or a CONTEXT_REPLY. So long as the CONTEXT_REPLYs for all CONTEXTs are received by some means at some point prior to issuing PREPARE (or REQUEST_CONFIRM) then the Terminator can be sure that the transaction tree is sound, and that no Inferior has been orphaned.

Inferior

Superior

Composer

VCT

Inferiors

INFERIOR_STATUSES

�PAGE \# "'Page: '#'�'" �Page: 1��� Just to clarify: if a user wants to confirm different subsets of atoms they must therefore have multiple cohesions? The kind of functionality we require is certainly for prepare, confirm and undo to be vectorized but prepare at least to be callable multiple times. The cohesion composer does not necessarily know the set of atoms it wants to prepare (and subsequently confirm) in a single visit to the cohesion coordinator. Subsequent prepares may need to be sent. In addition, the return “value” from prepare and confirm should be a vector of responses.

�PAGE \# "'Page: '#'�'" �Page: 2���It is important for the cohesion composer to have some structure on the participant identity in order that it can somehow relate them to the web services it contacted. For example, in a traditional transaction system I may have 4 XA resources enlisted with a transaction, each for a separate database. If somehow I am able to commit or roll them back independently, I’d need to know how they relate to whatever application invocation caused them to be enlisted. In a loosely coupled environment like the Web, where services may not enlist participants, or may enlist multiple participants during the lifetime of a BT, this becomes even more important. Simply having an index isn’t sufficient. Leaving it up to the implementer isn’t a good idea if we want interoperability. One possibility (though not the only one) would be for each participant identity to contain the URI of the service that enlisted it.

�PAGE \# "'Page: '#'�'" �Page: 2���As stated previously, does this imply that prepare, confirm and cancel can only be called once? This is too restrictive for a cohesion composer with arbitrary business logic. When I write my business logic that is BTP aware I want to be able to prepare a subset of the participants at arbitrary points during the lifetime of the transaction, and based upon those results (hence the vectorized returns) do other work, followed by other prepare invocations on the cohesion coordinator. I agree with the ability to say “prepare all” and “confirm all” or “cancel all”; what I’m suggesting would work with what is proposed. Also, I may want to send cancel many times simply as a service to those participants. Agreed, I need not, since they will eventually implicitly get a cancel, but by that time they may well have decided to “heuristically” confirm.

�PAGE \# "'Page: '#'�'" �Page: 2���I don’t believe that this is sufficient.

�PAGE \# "'Page: '#'�'" �Page: 2���This is the vectorized return we’re after. So, all we would require is the ability to call prepare, cancel, confirm (?) multiple times with different parameters. Obviously we’d have to address the possibility of an attempt to prepare the same participant more than once.

�PAGE \# "'Page: '#'�'" �Page: 3���This seems to imply that cancel (prepare) can be called multiple times? If so, great.

�PAGE \# "'Page: '#'�'" �Page: 3���So if I want to cancel participants (so that they definitely do cancel rather than relying on their timeouts) I must do so before confirming the remainder? I don’t have a problem with this, as long as it is possible.

�PAGE \# "'Page: '#'�'" �Page: 4���OK, but can I send a cancel<indices> prior to this?

�PAGE \# "'Page: '#'�'" �Page: 4���With a note that by this point some atom participants may not be able to CANCEL?

�PAGE \# "'Page: '#'�'" �Page: 4���And scripting.

�PAGE \# "'Page: '#'�'" �Page: 5���I think it is much more important than “just” for audit trails. See above.

�PAGE \# "'Page: '#'�'" �Page: 6���And presumably this can be boxcarred.

�PAGE \# "'Page: '#'�'" �Page: 6���If the participant (or whatever attempted to enrol it) does not receive the ENROLLED response it sends a CANCEL to the atom. Since the service (or participant) has the atom id, why does the current text seem to imply that only the client can do the CANCEL?

�PAGE \# "'Page: '#'�'" �Page: 7���Agreed. I would think that a) would be used more often than not. However, I have no objection to b).

