
USE of XML Referencing in compliant schemas
Issue

Give explicit rules on the implementation of XML referencing techniques in UNCE compliant schemas.

Summary

Requirements for using XML referencing belong to 2 categories:

· structural referencing for the purpose of removing redundancy from a document, where the same aggregate instance is referred to many times within the document.
· dynamic referencing for the purpose of building dynamic relationships between elements within a document, e.g. for error reporting purposes

Although the use of key-keyRef is allowed in the UNCE NDR, there is a lack of guidance on how to use it when assembling a message.

Problem Statement

There are two types of XML referencing requirements.

1. Structural referencing: Relationships between XML aggregate elements in an instance document can be represented either by nesting elements hierarchically or by creating links between separate elements. A key decision factor in choosing which approach to use is determining how many relationships the element instance is part of in the structure of a message. For example, an address or party instance typically has many relationships with other elements in an insurance message; but a car has only a single engine associated with it. When the structure of a message or the underlying business data model require enforcing a relationship between two elements the relationship must be enforced in the schema using adequate referencing constraints.

In addition to the general case of supporting relationships between business objects represented in the underlying business data model, a specific use case of structural referencing is the representation of data type supplementary components as a referenced aggregate as an alternative to element attributes, e.g. for code list metadata.
2. Dynamic referencing: Any element composing a message is potentially the target of a reference for the purpose of building dynamic relationships between elements within the message and may require specifying an optional identifier property to this element. Such identifiers are typically used to build short XPath expressions pointing to the XML element. An important use case is identification of faulty elements for error reporting. The only requirement at schema validation time is that the identifiers are found unique across all the elements of the document fragment in which these XPath expressions apply.

Guidance is needed on how implementing these requirements in message schemas. We need to address distinctly the dynamic and structural referencing cases.

· For structural referencing we need guidance on referencing constructs and possible use of attributes for this purpose.

· For dynamic referencing we need a recommendation on how specifying optional identifiers in the schema.
Part 1 – structural referencing

Assumptions – Problem scoping
1. A CCTS business data model, i.e. rendered as a set of BIEs, represents associations between object classes as aggregations or compositions.

2. When BIEs are related to one another by a composition relationship, the XML linking method is clearly XML nesting, since the instances exist together or don’t.

3. When BIEs are related to one another by a aggregation relationship, although we consider XML nesting as the default linking method for two element instances, we want to open a way for message assembly optimization in the case a single element instance is structurally involved in more than one association within a message.
4. It make sense that the decision to instantiate an association via XML nesting or XML referencing is taken at message assembly time, to take into account the context of the transaction.
5. We also currently scope the proposal to the case where there are no explicit identifier and reference fields for linking the elements in the underlying business data model and where technical identifiers and references need to be used.

In summary, the conditions for using XML referencing in UNCE compliant schemas would be:
· We must have a case where several associations or roles potentially reference the same object instance in the business data model. It can only be so with aggregation relationships.
· Optimally, we should have a case where several associations or roles potentially reference the same object instance in the context of the transaction.

Example
Let us visualize the association between a <Claim> element and the <Person> element that makes the claim, in the context of a <ClaimNotify> message. In the business model, the association would be mediated by the Claimant. Person ASBIE property. The same Person instance is also referred to from the <Policy> element (in the model, by the mediation of the Insured. Person ASBIE property).
An XML construct using nesting would be:
<ClaimNotify>
......

<Claim>
 <ClaimantPerson>
<Name>John Smith</Name>

</ClaimantPerson>
<Claim>
......
<Policy>

<InsuredPerson>

<Name>John Smith</Name>

</InsuredPerson>
</Policy>
<ClaimNotify>
A construct using referencing would be:

<ClaimNotify>
......

<Person Key="P1">
<Name>John Smith</Name>

</Person>
<Claim>
<Claimant PersonReference="P1"/>
<Claim>
......

<Policy>

<Insured PersonReference="P1"/>
</Policy>
…….

<ClaimNotify>
A second example shows how code list attributes can be represented using a reference to an <CodeListDefinition> aggregate (representation of data type supplementary components as a referenced aggregate as an alternative to element attributes):
<ClaimNotify>

<CodeListDefinition Key="Code1">

<ListName>LossCause</ListName>

<ListVersionID>2.1</ListVersionID>

</CodeListDefinition>

<LiabilityLossInformation>

<LossCauseCode CodeListDefinitionReference="Code1">Negligence</LossCauseCode>

</LiabilityLossInformation>
</ClaimNotify>
Message assembly view
Message class UML template: The general message UML template is as follows.
Note: Plain lines represent compositions or aggregations of objects. Dotted lines represent associations with objects reusable in the message instance.

[image: image1.emf]

Message object

Message Header

Business Object 5

Business Object 4

M essage sub - structure object

Business Object 2

Business Object 6

Business Object 1

Reusable data components

Message component

Business Object 3

XML implementation: The general ACORD message XML template will be as follows, in a UML-like format, in accordance to the UML template.
Note: Plain lines represent compositions or aggregations of objects in the XML implementation. Dotted lines represent associations with objects reusable in the message instance. Note that, XML being a serialization method, it is required, for schema generation, to fix the location of the reusable Object 6 on top of the UML model.

[image: image2.emf]

Message object

Message Header

Business Object 5

Business Object 4

Message sub - structure object

Business Object 2

Business Object 6

Business Object 1

Reusable data components

Message component

Business Object 3

Recommendation(s)

Assumptions taken into account in the proposed rules
1. Technical identifiers and references used in key/keyRef constraints will be attributes. This has the advantage that the data content of the XML aggregates derived from the business data model is kept unchanged
2. For maximal reuse and to prevent future schema version compatibility problems, technical identifiers or references should be optional. No ‘key’ constraints should be defined on identifiers, which would make the identifiers mandatory in the context of a message.

3. Given that in the structure of a message there is no predictable referencing hierarchy, the identity constraints (unique and keyRef) should always be defined in the schema at the message element level.
4. The technical identifier and reference attributes are assumed to follow the default rule of being locally defined.

Proposed rules and insertions
In section 5.4 – Reusability scheme

The key principles of the “hybrid approach” are:

· All classes (PurchaseOrderRequest, Seller_Party, Buyer_Party, Ordered_LineItem and ProductOrService_Item in figure 5-4) are declared as a xsd:complexType.

· All attributes of a class are declared as a local xsd:element within a xsd:complexType.

· A Composition association (e.g. PurchaseOrderRequest. Ordered. Ordered_LineItem in figure 5-4) will result in a locally declared xsd:element with a globally declared xsd:complexType. A composition ASBIE is defined as a specialized type of ASBIE that represents a composition relationship between the associating ABIE and the associated ABIE.

· An association that is not defined as composition (e.g. PurchaseOrderRequest.Buyer. Buyer_Party, PurchaseOrderRequest. Seller. SellerParty in figure 5-4) will result in a globally declared xsd:element with a globally declared xsd:complexType. In specific cases the schema will also allow the global element to be referenced via the key/keyRef referencing mechanism.
The rules pertaining to the ‘hybrid approach’ are contained in sections 7.3.4 and 7.3.5 for type and element declaration. (editor: specific rules for XML Referencing will be described there)
New section “message assembly considerations”
XML implementation of Aggregations - nesting or referencing.

Since aggregations relate objects that have independent life cycles, the same instance of a particular object may be pointed to more than once in a message. For example, in an Insurance Claim message the same Person P can play the role of “Insured” in the Policy object and the role of “Beneficiary” in the Claim object. Therefore it is possible to use the key-keyRef XML referencing mechanism to relate Person B to the Policy and Claim instances as an alternate method to nesting information about Person B within Policy and Claim.

Message assembly definition requirements
The following is required for generating a message schema:

· A UML class diagram in the form of an ordered list of ABIEs that are logically aggregated to form the message.
· The class diagram must additionally include in this ordered list the ABIEs that are reused in aggregation relationships with other ABIEs when these relationships are implemented as referenced rather nested object properties.
· The list of referenced ABIEs must be explicit to allow the schema to include the corresponding XML referencing constraints.
Note: It makes sense that the decision to implement an aggregation via XML nesting or XML referencing is taken at message design time, to take into account the context of the message. However, unless we are able to dynamically redefine the Reusable ABIE schema for each message, we need to fix in the Reusable ABIE schema itself the list of aggregations that will be implemented by referencing.
In section 7.3.4 – ABIE type definitions

One technical identifier per aggregate will be used for both generic and structural referencing. It will be defined as an optional attribute but named “@Key” to avoid any confusion with legacy XML Id attributes.

[R 99a] Every aggregate business information entity (ABIE) xsd:complexType definition MUST contain an optional “@Key” local attribute that MAY be used as a complex element identifier in a message instance. “@Key” MUST be a reserved attribute name.
[R 99b] Every @Key” local attribute MUST be of the same type ??? (derived from Identifier. Type)

In section 7.3.5 – Element declarations and references
For each ASBIE who’s ccts:AssociationType is not a composition, there are two mutually exclusive cases, one of which needs to be selected on the base on a “configuration file”:

1. The globally declared element for the associated ABIE is included in the content model of the associating ASBIE as a nested complex property, like for composition.
[R 112] For every ASBIE whose ccts:AssociationType is not a composition, and where the association must be implemented as a nested property, the globally declared element for the associated ABIE must be referenced using xsd:ref.

2. The equivalent referencing element (pointing to the associated ABIE) is included in the content model of the associating ASBIE.
[R 112a] For every ASBIE whose ccts:AssociationType is not a composition, and where the association must be implemented as a referenced property, the equivalent referencing element must be locally declared.

[R 112b] For each referenced ABIE a xsd:complexType MUST be declared to define structure of an equivalent referencing element. The structure will be that of an empty element with a local attribute. The name of the xsd:complexType MUST be composed of the object class term and qualifier term(s) of the referenced ABIE, followed by the suffix ‘RoleType’. The name of the local attribute MUST be composed of the object class term and qualifier term(s) of the referenced ABIE, followed by the suffix ‘Reference’

 [R 112c] Each locally declared ABIE referencing element MUST have a name composed of the ASBIE property term and qualifier term(s) and MUST be of the xsd:complexType that represents to referenced ABIE.
[R 112d] When there is no ASBIE qualifier term, and the associated ABIE could equally have been nested in the parent element, the generic qualifier term “Referred” followed by the name of the associated ABIE must be used as a naming convention to distinguish this element from the ABIE element.
In section 7.1.5a – Declaration of the referencing constraints

[R xxx1] The “@Key” identifier attribute of each ABIE used in the message MUST be subject to a xsd:unique constraint defined in the schema root element. The name of the xsd:unique constraint MUST conventionally be composed of the name of the parent element followed by the suffix ‘Key’ for example:

<xsd:unique name="PersonKey">

<xsd:selector xpath=".//Person"/>

<xsd:field xpath="@Key"/>

</xsd:unique>

This declaration will guarantee uniqueness of the Key attributes across all parent elements of the same name, in the scope of the message and in any namespace.

[R xxx2] For each referenced ABIE used in the message, a xsd:keyRef declaration must be done. Since the schema will specify which parent element can contain the reference attribute, there MUST be only one xsd:keyRef declaration for all the instances where the reference attribute appears:

<xsd:keyref name="PersonReference" refer="PersonKey">

<xsd:selector xpath=".//*"/>

<xsd:field xpath="@PersonReference"/>

</xsd:keyref>
The name of the attribute used as reference and the name of the constraint in which it is declared MUST be identical. This will ensure their uniqueness in the message namespace.
The authors recommendation for UN/CEFACT based on the analysis of the options and the conclusions. If there is a change to UN/CEFACT concepts for standards, it needs to be well supported by the analysis and include specific recommendations on that area as well.

Next Steps

Notes:

· Empty elements should be allowed as per above (referencing elements)

· Consideration of the approach in CCTS: impact in modeling approach – escape from pure serialization.

Paper should discriminate 3 cases:

· dynamic

· structural logical model

· structural code list reference

Part 2 – dynamic referencing

Assumptions

We make the assumption that it is sufficient to reference XML aggregate elements, to avoid overloading the schema and making every element a complex type.

We make the provisional assumption that the scope of uniqueness of the identifier is the message.

Options

We have the choice between using an ID type attribute or an attribute for which a uniqueness constraint has been specified in the schema. The key differentiator of using a uniqueness constraint is the ability to define the exact scope of the identifier uniqueness. However if we assume that this scope is the message, this differentiator vanishes.

Appendix : Message assembly model

1. Technology neutral view (only association links are shown)

[image: image3.emf]

Message Wrapper

Message Header

Business Object 5

Business Object 4

Sub - message wrapper

Business Object 2

Business Object 3

Business Object 1

Business Object x (external)

Reusable Business data compo nents

Message specific

Reusable external data components

2. XML implementation

[image: image4.emf]-

Message Wrapper

Message Header

Business Object 5

Business Object 4

Sub - message wrapper

Business Object 1

Business Object 2

Business Object 3

Business Object x (external)

Reusable Business data com ponents

Message specific

Reusable external data components

PAGE

4

_1244403011.doc

[image: image1]

Message object

Message Header

Business Object 1

Business Object 2

Business Object 6

Message sub-structure object

Business Object 4

Message component

Business Object 5

Reusable data components

Business Object 3

_1244403088.doc

[image: image1]

Message object

Message Header

Business Object 1

Business Object 2

Business Object 6

Message sub-structure object

Business Object 4

Message component

Business Object 5

Reusable data components

Business Object 3

_1235490901.doc

[image: image1]

Message Wrapper

Message Header

Business Object 1

Business Object 2

Business Object 3

Sub-message wrapper

Business Object x

(external)

Business Object 4

Message specific

Business Object 5

Reusable Business data components

Reusable external data components

