
CAMP Lifecycle Issues

Version: 2011.10.30

1 Abstract
Section 3 of the CAMP 1.0 specificationi describes the lifecycle of an application. There are a number of

issues with this lifecycle and its description. The purpose of this write-up is to explore these issues and

outline some of the key decision points in their resolution.

2 Issues and Questions

2.1 State Representation
Although section 3 provides the names of various lifecycle states, nowhere in the CAMP 1.0 model are

these names surfaced (e.g. as the value of a resource property).

1. Although applications in the “Uploaded” state are not represented by a CAMP resource, applications

in the “Deployed” state are described and managed by an Assembly Template resource and

applications in the “Instantiated” state are described and managed by an Assembly resource

(though the Assembly Template used to instantiate the application continues to exist).

2. The CAMP 1.0 specification implies, but is not definitive, that applications in the “Suspended” state

are described and managed by Assembly resources.

3. If applications in the “Suspended” state are described and managed by Assembly resources, then

the representation of the Assembly resource must provide some information that allows the

Application Administrator to determine which state the application is in (i.e. the name of the state).

4. If applications in the “Suspended” state were described and managed by a hypothetical, new

“SuspendedAssembly” resource, there would be no need to communicate the state name as it

would be implicit in the existence of such a resource.

5. A strategy of representing application state via separate resource types has implications on

extensibility. Rather than having to define a new string, providers that wish to extend the CAMP

lifecycle with additional states would need to define a new resource type (and extend the Platform

type to include an array of links to all the instances of that type, etc.)

2.2 Abstract States
In the description of the lifecycle in section 3 it is noted that:

The states and transitions shown in this diagram are abstract and do not necessarily correspond

in a one-to-one fashion with any specific information or activities maintained or performed by

either the Consumer or the Provider.

3 The meaning of this note is unclear. Taken literally, it implies that all

of section 3 is a non-normative example. A Provider could implement

an arbitrary set of states or implement the CAMP 1.0 defined states

but with arbitrary names and, because there is no “one-to-one

correspondence with specific information” claim to conform to

CAMP. If the state of an application is communicated and controlled

by the state name values (see “Issues and Questions
State Representation” above), there are obvious interoperability issues with this concept.

1. The normative states do not necessarily have to be those in the CAMP 1.0 specification. The TC is

free to remove states, add states, change names, etc.

2. Providers could be allowed to omit states not implemented by their platform.

3. As currently specified by the third bullet-point note (lines 469-470), providers should be able to

extend the model with additional states.

4. Providers may not combine (2) and (3), above, to create new states with the same semantics as

states defined by CAMP but with different names.

3.1 Automatic State Transitions
The state diagram in Figure 8 shows the pathway to instantiating an application as two, separate steps:

the “register->Deployed” step (triggered by a POST to the Platform resource), and the “instantiate-

>Instantiated” step (triggered by a POST to the Assembly Template). However, most existing PaaS

systems instantiate applications on deployment. One could model such a system in CAMPs lifecycle if we

allowed providers to automatically invoke the “instantiate” transition on deployment. If we consider

that this scenario may not be the only one in which a provider’s state transitions may not match those of

CAMP, we arrive at the following question:

1. If we did allow provider’s to automatically execute state transitions, we need to define a way for the

provider to communicate what happened to the consumer. In the scenario above, for example, the

provider could indicate that the “instantiate” transition was automatically triggered by including link

to the resulting Assembly (rather than an Assembly Template) in the Location header. However,

unless the provider also includes a representation of the Assembly resource in the response

message body, it will be difficult for the consumer to figure out what whether they are being given a

reference to an Assembly (meaning that the “instantiate” transition was automatically triggered) or

an Assembly Template (meaning that it was not). This also has implications with respect to the

discussion on media types.

3.2 Extended State Transitions
The state diagram in Figure 8 has no transition from the “Instantiated” state to the “deleted” end state

but many providers support this transition in their existing implementations. One way to address this

would be to allow providers to extend CAMPs lifecycle with additional transitions.

1. This question does not apply to the case where a provider has extended the CAMP lifecycle with

additional states. In such a situation it is obvious that the provider will have to also have to define

extension transitions into and out of the extended states.

2. Any extensions to the existing state transitions must define a triggering mechanism that does not

conflict or overload the mechanisms for existing state transitions. For example, the “delete

instance” transition is triggered by performing an HTTP DELETE on the Assembly resource. If a

provider wants to add a transition from the “Instantiated” state to the final state, they will have to

define some other mechanism for triggering this transition.

3.3 Multiple Assembly Instances
Section 6.10 of the CAMP specification defines how to create an Assembly from an Assembly Template.

What the specification does not go into is “what happens when you attempt to create multiple

Assembly instances from the same Assembly Template?”

If the answer to the above question is “yes”, that brings up another question:

1. Replicas share state (whether in memory or via a database), unique applications have separate

state.

2. From the point of view of an application user, replicas are indistinguishable but unique applications

are distinguishable (whether via a different URL or different appearance, etc.).

3.4 Optional States
CAMP 1.0 defines the “Suspended” as optional but says nothing about how the provider can advertise

that it does or doesn’t support this state nor what the provider’s response should be to a request to

transition to a state that the provider does not support.

i
 http://cloudspecs.org/CAMP/CAMP_v1-0.pdf

http://cloudspecs.org/CAMP/CAMP_v1-0.pdf

