Test Page for Interface WebCGMPicture:

The following tests for the WebCGMPicture interface to not cover the set/clear style attribute functions. These should be handled as a separate test case together with the same functions for Application Structures. The following buttons and associated actions should be present:

pictid: button (retrieves Picture ID in message box)

width/height: button (retrieves image width/height)

add/remove event listener: button, subsequently click into the viewer window to prove the existance or non-existance of event listeners. This should be a very simple test concerning events. For a full test of available events see below.

getAppStructureById & highlight: button (highlights one specific APS)

getAppStructuresByName & highlight: button (highlights a number of specific APS)

reloadPicture: button (forces reloading of previously changed (?) image)

Open: test for applyCompanionFile (probably separate test case) & createWebCGMStringList().

Test Page for Interface WebCGMNode - PictureNode:

The WebCGMNode interface should be split up into 5 test pages for the 5 possible node types (we may need different test files). It will then be pretty straightforward to check all the available functions for a certain node type. This can be done with buttons and message boxes grouping related information such as:

nodeName/nodeValue/nodeType

parentNode/ownerPicture

hasChildNodes/childNodes

firstChild/lastChild

previousSibling/nextSibling

hasAttributes/attributes

The Namespace tests could be grouped into a separate test case for all 5 possible node types together since most of these functions would return errors for nodes other than XML_METADATA_NODE in any case.

Test Page for Interface WebCGMEvent:

This is a highly interactive test page. An Add/Remove Event Handler button makes sense though (perform test w/o event handler installed). The interactive tests should cover the following steps while launching message boxes (or executing link & pan operations) with the information as specified in brackets:

target: click on a specific APS (retrieves APS ID)

clientX/Y: click on a specific position in viewer window (retrieves X/Y position)

Repeatedly go through the two steps above with the following additional parameters enabled:

button: in addition to information above, indicates mouse button pressed

ctrlKey: according to button

shiftKey: according to button

altKey: according to button

metaKey (a specific one): according to button

numPressed (simulate double click): according to button

Open: How to test "type" and "preventDefault"

Open: Test of relevant graphics contents for event (test file needed)

