[image: image2.png]OASIS m Advancing E-Business Standards Since 1993

CAM rule definition dictionaries and Registry Access
CAM Content Reference Section Improvements
(TECHNOLOGY OVERVIEW DOCUMENT)
October 14th, 2004

DRAFT

DRAFT

DRAFT

Table of contents:

3Introduction

3Context Reference Section

4Inline Definitions

4Registry Held Definitions

6Associating Structure to Content References

7Altering Processing Order

8Schema for noun metadata structure

eDITORS:

mARTIN rOBERTS,
dAVID RR wEBBER.

CAM REGISTRY ACCESS
CAM Content Reference Section Improvements

Introduction
The purpose of this document is to provide a review the current content reference section processing in the CAM template specification and to clarify and update the details to accommodate the latest work by other OASIS teams such as the Registry TC. Also included are recommendations that resolve inconsistencies and omissions from the existing specification details.
One of the key functional components in the CAM Specification is the linkage to dictionary definitions and the use of registries to allow standard definitions of transaction component items to be referenced and applied. By providing this CAM allows retrieval of a set of ‘default’ library definitions for a document part and setting up of the base rules governing the validation of documents based on matching those rules to the target structure(s) contained in the CAM template. This potentially also provides a way of automatic rule matching and creation of validation templates (techniques for this are covered in the ‘Associating Structure to Content section below).
To implement this CAM has four levels of rules that can be used in a CAM template. They are applied in the following order of precedence:
1. Dictionary Rules – these are rules that are defined in an external dictionary file or registry and are applied to the Assembly Structure of a CAM template first. (This technical document is intended to clarify behaviour rules and details for this)

2. Default CAM Template rules – these are defined in the CAM template itself.

3. Context Specific Rules – These are conditional rules that usually require either the passing in of parameter values to the CAM processor or an XML document instance that provides those data values.
4. Data Validation Rules – This are applied only when an XML instance document is present and are applied either after the other rules have been applied or when the checkCondition() function is called within the Default or Context specific rules.
Context Reference Section
The CAM specification defines the Context Reference section functionality; however its current definition has a number of unresolved details. The main one being that it does not define what will be retrieved by default from a registry when a reference entry is requested.

The expectation of the current section is that you would define one or more references to central registry services and their addresses and then retrieve a set of item definitions based on UID lookup keys. Each content reference item is either associated with a registry entry to be looked up, or the definition is provided directly inline into the CAM template.

Inline Definitions

The current inline definitions are nearly similar to the Business Rules Section of the CAM template; however the differences are sufficient to cause questions. Part of this recommendation is that the structure used for these definitions should be as consistent with the normal rules section as possible to simplify parsing.

In order to make it compatible with the existing Business Rules section there is a need to use the same predicates and the where possible the same format of laying out the predicates. As part of the enhancements recommended during the coding of jCAM a new format for the predicates has been developed. This allows for more than one predicate to be applied to an associated item. The actual format for the inline definitions is aligned with the layout of items retrieved from a registry lookup and therefore this makes retrieved definitions simple to insert programmatically into a template.
Registry Held Definitions

A clarification of the CAM specification is needed to define a format for item definitions to be retrieved from a dictionary definition set. The XML structure format and samples of this are provided at the end of this document.
This format is labelled as “nounMetadata” as traditionally people tend to think of their content items as nouns that make up an overall transaction. This nounMetadata format not only includes information that is used by the CAM processor for validation, it also includes textual definitions and links to other associated items. These additional capabilities are intend to support extended use of Registry and modelling tools to manage collections of nouns together. It is proposed that the CAM Content Reference Section should be redefined to allow for a set of nounMetadata sections to be either included using the existing <as:include/> mechanism or defined in-line directly into the CAM template. The <as:include/> mechanism itself is being extended here to allow registry accessing of nounMetadata instances stored in the registry as well as the existing simple URL location lookup that it does already.
Within the CAM template the current <Addressing> section allows an alias to be defined that maps to the specific URL address and access mechanism of the registry itself. This will be retained as it allows extended additional mechanisms to reference the registry content, and support for multiple different registry services.
The extended <as:include/> instruction will therefore use the registry referencing by alias as shown here:

<as:include registry=”UKT-TTM”>telecom-trouble-mgt.xml</as:include>
The effect of this include instruction will be to retrieve the item definition directly from the registry or file system access pointed to by the alias address and insert that XML directly into the CAM template at that point.
The content returned would be conformant to the nounMetadata schema [Ref 1]. The basic structure for the schema is as follows:

[image: image1.emf]

The key to this schema is that it can be included into the CAM schema and therefore it can be reused in place of the current <item> section of the <ContentReference> section. This not only gives a set of consistent definitions that can be reused for registry storage but also can be used for defining inline ‘global’ rules for CAM templates as well.

The schema element called <definition> allows for #any content model to be included. This will allow XSD as well as CAM constraints to be used. An example of a portion of a nounMetadata document with CAM definitions would be as follows:

<?xml version="1.0"?>

<nounMetadata

 xmlns:as="http://www.oasis-open.org/committees/cam">

 <nounItem locale="UK" type="BIE">

 <defaultUID>ukt005928</defaultUID>

 <elementName>Action</elementName>

 <metadataDetail locale="UK">

 <itemDetails locale="UK">

 <elementName>Action</elementName>

 <label>Trouble Ticket Action</label>

 <namespace
uri="urn:com.btwholesale/tML/Assurance.DiagnosticTests/Additionalinformation"/>

 <description>Represents the action requested against the user's account.</description>

 <constraintDefinitions>

 <definition syntax="CAM">

 <as:rules>

 <as:default>

 <as:context>

 <as:constraint>

 <as:action>makeMandatory()</as:action>

 <as:action>setLength(1-256)</as:action>

 </as:constraint>

 </as:context>

 </as:default>

 </as:rules>

 </definition>

 </constraintDefinitions>

 <annotation>

 <documentation type="description">A longer description</documentation>

 </annotation>

 </itemDetails>

 </metadataDetail>

 </nounItem>

 <nounItem>

 ...

 </nounItem>

</nounMetadata>

This example shows the use of the CAM definitions within the <definition> section. This syntax conforms to the same structure that is used within the as:BusinessUseContext section. This will allow any CAM processor to seamlessly handle these sections.
Associating Structure to Content References

In order for the Content referencing to work there is a need to be able to match nodes within the Assembly structures with the noun defined in the Content reference. This can be done in two ways.

The default mechanism is to match the name of the structure item against the element name in the Content Reference. Notice that this is actually done using the XPath qualified name to resolve conflicts more accurately. This works backwards from the leaf name, adding successively more components of the branch name until a match occurs, or fails. Note that attribute names are denoted by the standard XPath ‘@’ prefix qualifier. If more than one name is found or no name is found a further test should be applied. A further check should be made against the itemDetails sections to match against elementName and namespace URI. It this matches successfully the Assembly structure node can be assigned the defaultUID for the matched noun.

The second way is to explicitly reference the UID key value from within either the Assembly structure or from a predicate within the Business Use Rules section. The predicate to use is the setUID(uidValue). Any setUID() predicates used in the Business Use Rules section will not be applied until after processing the prior sections as determined by the precedence rules (see Introduction section above). This means that the rules from the Content Reference could overwrite any previously applied rules if this predicate is not placed early in the Business Use Rules. Defining it late may be useful as the previous rules may contextually remove a particular section of the structure and therefore reduce the amount of processing overhead required from the Content Reference section (this would be a performance enhancement technique for optimizing template processing).
Altering Processing Order

As it may be sensible to apply some of the Business Use Rules first before applying the Content reference rules and there is a method introduced here to allow this to happen. An extra attribute of the Content Reference section has been created to indicate how the processor should handle the rules. The attribute is called processOrder and can take the following values: before, called, after.

· before is the default and indicates that the processor should process the Content Reference section before the Business Use Rules.

· called means that the predicate applyContentReference() will be explicitly called to apply the Content Reference rules.

· after means that the Content Reference rules will be applied after the default rules of the Business Use Rules has been applied.
Any CAM processor does not have to support this behaviour at the level one capability level, but should do so for level two or at level three feature compliance (the default of before is expected as the default).
Schema for noun metadata structure
The following is the complete XSD schema definition:
<?xml version="1.0" encoding="UTF-8"?>

<!-- Format for storing metadata about a noun in a dictionary -->

<!-- version: 0.16

 status: draft

 revised: January 18, 2004

 revised: October 12, 2004 - simplified structure

-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" version="0.16">

 <xs:element name="nounMetadata">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="nounItem" type="nounItemType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="annotationType">

 <xs:sequence>

 <xs:element name="documentation" maxOccurs="unbounded">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="description"/>

 <xs:enumeration value="note"/>

 <xs:enumeration value="license"/>

 <xs:enumeration value="usage"/>

 <xs:enumeration value="other"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="identifiersType">

 <xs:sequence>

 <xs:element name="identifier" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="annotation" type="annotationType"/>

 </xs:sequence>

 <xs:attribute name="taxonomy" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="UID"/>

 <xs:enumeration value="UUID"/>

 <xs:enumeration value="CoI"/>

 <xs:enumeration value="Local"/>

 <xs:enumeration value="Other"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="taxonomyOther" type="xs:anyURI" use="optional"/>

 <xs:attribute name="registry" type="xs:anyURI"/>

 <xs:attribute name="value" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="CCTSlinkageType">

 <xs:sequence>

 <xs:element name="annotation" type="annotationType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="componentName" type="xs:string"/>

 <xs:element name="identifiers" type="identifiersType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="itemDetailsType">

 <xs:sequence>

 <xs:element name="elementName" type="xs:string" minOccurs="0"/>

 <xs:element name="label" type="xs:string"/>

 <xs:element name="namespace" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="preferredPrefix" type="xs:NMTOKEN" use="optional"/>

 <xs:attribute name="uri" type="xs:anyURI" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="description" type="xs:string"/>

 <xs:element name="constraintDefinitions" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="definition" maxOccurs="unbounded">

 <xs:complexType mixed="true">

 <xs:choice>

 <xs:any namespace="##any" processContents="lax"/>

 </xs:choice>

 <xs:attribute name="syntax" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="CAM"/>

 <xs:enumeration value="XSD"/>

 <xs:enumeration value="RELAXNG"/>

 <xs:enumeration value="SCHEMATRON"/>

 <xs:enumeration value="DTD"/>

 <xs:enumeration value="Other"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="syntaxOther" type="xs:string" use="optional"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="annotation" type="annotationType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="locale" type="xs:string" use="required"/>

 </xs:complexType>

 <xs:complexType name="associationsType">

 <xs:sequence>

 <xs:element name="association" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="reference" type="xs:string" use="required"/>

 <xs:attribute name="taxonomy" type="xs:string"/>

 <xs:attribute name="relationship" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="similar"/>

 <xs:enumeration value="equivalent"/>

 <xs:enumeration value="alias"/>

 <xs:enumeration value="Other"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="relationshipOther" type="xs:string" use="optional"/>

 <xs:attribute name="registry" type="xs:anyURI"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="metadataDetailType">

 <xs:sequence>

 <xs:element name="itemDetails" type="itemDetailsType"/>

 <xs:element name="associations" type="associationsType" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="locale" type="xs:string" use="required"/>

 <xs:attribute name="id" type="xs:string"/>

 <xs:attribute name="externalRef" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="nounItemType">

 <xs:sequence>

 <xs:element name="defaultUID" type="xs:string"/>

 <xs:element name="elementName">

 <xs:simpleType>

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 </xs:element>

 <xs:element name="identifiers" type="identifiersType" minOccurs="0"/>

 <xs:element name="CCTSlinkage" type="CCTSlinkageType" minOccurs="0"/>

 <xs:element name="metadataDetail" type="metadataDetailType"/>

 </xs:sequence>

 <xs:attribute name="type" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="Noun"/>

 <xs:enumeration value="Aggregate"/>

 <xs:enumeration value="BIE"/>

 <xs:enumeration value="ABIE"/>

 <xs:enumeration value="BBIE"/>

 <xs:enumeration value="Other"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="typeOther" type="xs:anyURI" use="optional"/>

 <xs:attribute name="locale" type="xs:string" use="required"/>

 </xs:complexType>

</xs:schema>
This schema augments the main CAM template schema.

2
Copyright© 2004, OASIS. All Rights Reserved - pAGE 9

