OIOXML Codelists
Second iteration analysis

James Walford, for IT og Telestyrelsen

Table of contents
3OIOXML Codelists

3Background

3Aim

3Status

3Introduction

4What is a codelist?

4Role of codelists

5XML Schema implementation of codelists

6Codelist variation

6Codelists and standardisation

7Use and abuse of codelists

8Dynamic codelists

9Severity of update

10Dynamism strategies

13Codelists in OIOXML

13OIOXML Codelist ownership and use

13Current OIOXML codelist regulation

14Boundaries to codelist dynamism in OIOXML

16Contextual validation with Schematron

16Possible solutions to dynamic codelists in OIOXML

18Requirements for an XML format for codelists

19Recommendations

20New Dynamic Codelist Class

21The Genericode format

21Genericode based tools

22Directory, resource and namespace markup format

23Externalisation method

24Optimisation of codelists in XML Schema

25Large codelists

26Highly dynamic codelists

26Externalisation revisited

27Lookup services

28Contents of a standardised lookup messages

29Lookups and hosting

30Standardised automatable external resources

30Informative externalisation

31OIOXML regulatory schema structures

31Codelist design recommendations

32Conclusion

33Further work

OIOXML Codelists

Background

Several organisations have contacted ITST to inquire about the possibility of utilising dynamic codelists in OIOXML. Such codelists are currently unsupported in OIOXML and implicitly forbidden by the Danish Naming and Design Rules (3.0) (NDR) for OIOXML Schema. This analysis was commissioned with the intention of providing scope to the problem and to provide the outline to a workable solution to it. Problems with codelists are of both a general and an OIOXML specific nature, and have become more urgent due to communal reform in Denmark. The current document represents the culmination of the second iteration of this analysis.
Aim

The aim of this document is to provide a foundational discussion regarding codelists in relation to OIOXML. The discussion will cover codelists in general (with focus on XML Schema implementation), current regulation through the NDR, possible problem areas relating to production, consumption and maintenance of OIOXML codelists, possible solutions to such problems and a short proposal for an XML format which could be used as a basis for several tools designed to aid in the production and maintenance of OIOXML codelists. When fully iterated the analysis will propose a concrete set of solutions and an XML format for codelists. Part of the analysis will also form an OIOXML codelists "Best Practices" guide.

Status

This document is a second iteration analysis. A series of interviews with codelist producers, consumers and regulators has been carried out, the results of which have informed this analysis. These interviews will be summarised in a second, non technical, document. This iteration also presents an XML format for codelist mark-up, examples of which will be appended to this document as an appendix.
Introduction

Codelists appear to offer a simple solution to a range of problems inherent with the exchange, storing and representation of data. This apparent simplicity masks, or even contributes to, a deeper complexity which presents codelist users with a further range of possibly unexpected problems. As Anthony B. Coates put it in Why are Simple Codelists so Complex?, an analysis produced for OASIS/UBL, (http://www.oasis-open.org/committees/download.php/9435/coates-xml-2004-codelist-paper.zip) "The problem is that while code lists are a well understood concept, people don't actually agree on exactly what code lists are, and how they should be used".

This analysis will build heavily on Coates work, as he provides a thorough introduction to problems associated with codelists. Coates main area of concern, however, is with localisation of international standards. As such, much of his focus is placed on producing and maintaining various codelists within a specific area of reference - that is, multiple codelists for a single data element. While this is certainly a problem area within the XML industry it is only of peripheral importance for most of this discussion. Many of the examples in this analysis are borrowed directly from Coates, and the XML format for codelist maintenance and production at the end of this document is based on a format he proposes.

What is a codelist?
A codelist, in its simplest sense, is a list of code-value pairings, where a code can be used as key to represent the appropriate value. The values represented by the codes may be explicit or implicit, depending on implementation technology. One simple example of a codelist is days of the week:

Mon, Tue, Wed, Thu, Fri, Sat, Sun.

Role of codelists

Codelists serve many purposes. Their main role is to provide unambiguous representation of a set of values. Often they are used to restrict input into a system where there are many common usage terms for the same value (such as days of the week in various languages). As such they provide a form of controlled vocabulary. It may also be noted that in providing an enumeration of allowable terms the items in the list may not actually be codes, but rather a simple list of values. The distinction between a codelist and a straightforward enumeration, however, is of little importance in this discussion.

A common usage example of a codelist as controlled vocabulary can be found on many websites, where a drop down menu provides a human readable display value which is linked in the site mark-up to an application value (the code in the codelist). Such use prevents the user entering a value that the application cannot recognise, such as misspelling a value (e.g. thorsday).

Codelists may also be used where the codes for values are used as indexes in a database (thus improving index efficiency), or where application business logic or database entry is dependent on which value from a set of values is chosen.

More frequently they are used as a method of unambiguously identifying an attribute of a particular piece of data (such as the currency of an invoice amount, the unit of measurement or the country of an address) and are not a source of branching for an application's business logic. That is to say such values are commonly stored and displayed without determining how the data they are part of is processed.

XML Schema implementation of codelists

In XML Schema codelists are most often, though not always, implemented as an enumeration of allowable code values, e.g. a day of the week as integer schema expressed as an enumeration:
<xs:schema targetNamespace="http://rep.oio.dk/fictional.dk/2005/12/29" elementFormDefault="qualified" >

<xs:element name="DayOfTheWeekCode" type="DayOfTheWeekCodeType"/>

<xs:simpleType name="DayOfTheWeekCodeType">

<xs:restriction base="xs:integer">

<xs:enumeration value="1"/>

<xs:enumeration value="2"/>

<xs:enumeration value="3"/>

<xs:enumeration value="4"/>

<xs:enumeration value="5"/>

<xs:enumeration value="6"/>

<xs:enumeration value="7"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

The values that the codes represent are implicit - they can optionally be stated or clarified by annotating the schema. Thus the XML Schema implementation of codelists provides for validation of the value-space (check language) of the code itself, but not for lookup or validation of the value it represents.

Codelists can also be implemented in XML Schema as pattern restrictions or numeric restrictions. E.g. the same day of the week as integer schema, expressed as an integer restriction:
<xs:schema targetNamespace="http://rep.oio.dk/fictional.dk/2005/12/29" elementFormDefault="qualified" >

<xs:element name="DayOfTheWeekCode" type="DayOfTheWeekCodeType"/>

<xs:simpleType name="DayOfTheWeekCodeType">

<xs:restriction base="xs:integer">

<xs:maxInclusive value="7"/>

<xs:minInclusive value="1"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

XML Schema thus provides a mechanism for controlling a vocabulary, but not for establishing a relationship between codes and their represented values.

Codelist variation

Even the most simple codelist can, however, be produced in multiple variations. The days of the week example above is a case in point. Alternate codelists to represent the same information could include:

Man, Tir, Ons, Tor, Fre, Lor, Son (Danish, using only characters from the English alphabet)

1, 2, 3, 4, 5, 6, 7 (Integers)

MON, TUE, WED, THU, FRI, SAT, SUN (English, upper case)

mon, tue, wed, thu, fri, sat, sun (English, lower case)

It should be noted than none of the above examples is in any way privileged over the others, they are all equally valid.

Though the choice of a code to represent a value may well be based on a common sense approach where it is easy for a person to understand the represented value from the code this is not necessary; a code, after all, is not the value it represents.

Thus days of the week could also legitimately be represented as:

A, B, C, D, E, F, G.

Codelists and standardisation

Codelists can become more complex when viewed from the perspective of standardisation.

Firstly, many codelists are modelled on a system specific set of internal codes, for instance database keys. We have already seen that there are many possible codes that could be used to represent a value (e.g. MON, Mon, 1, Man). Where a codelist is standardised for use across systems and organisations the choice of codes becomes more than merely a question of finding the first available working set. Where one organisation has a regulatory mandate for the data represented by the codes then standardisation is more or less a question of conforming to the codelist they provide. Where there is no such control then some systems will require further mapping from the standardised codelist to their internal representation, while others can use the codes directly.

A second consideration in standardising codelists is that of intended use. The apparent simplicity of codelists can mask many less apparent complexities. Consider a list of country codes. At first glance this might be thought to be fairly simple, if a little dynamic and politically sensitive. However, if we consider the possible differences between country of birth and country of citizenship then things become more complex. Historical data recording country of birth may require the inclusion of the former Soviet Union, while data concerning current citizenship cannot allow for a country which no longer exists. While many systems will have already accounted for such a problem by retrospectively applying newly formed country codes to historical nations the example highlights possible discontinuities within a seemingly simple list. What we see here is a difference between the conceptual level list of all possible values, and the concrete uses of codelists. The more abstract the conceptual list the wider the likely divergence between that and the concrete use case lists. Thus two organisations employing very similar lists may well disagree not just over the representation codes employed, but also over the actual set of values represented.

The example above has particular relevance in Denmark with respect to communal reform. Some types of data may be suited to retrospective alteration of their commune code, while other types of data may well require that the codes of extinct communes are maintained within the various systems utilising them. In practice it may well be best to think of the list of all possible codes as a superset of overlapping codelists, each with a particular usage scenario.

Where codelists are designed from the perspective of standardisation specific use cases cannot be allowed to overly influence the list. The design process must move to a more abstract, conceptual, level in order to meet the requirements of as many use cases as possible. Such a process is likely to provide a broadly applicable codelist, though possibly of a level of genericity that is a hindrance to some concrete use case scenarios. This scenario is common in the design of international standards, which often require localisation at e.g. the national level.

Use and abuse of codelists

Due to their concrete and explicit restriction of values codelists provide a fairly simple and effective means of restricting input values. However, this simplicity is open to abuse. When considering codelists in an XML Schema implementation it is worth noting that the choice of XML Schema as primary validation layer can often result in an attempt to push as much validation into XML Schema as possible. This can lead to poor schema design. This overloading of a single layer is not entirely without merit, advantages include keeping all validation code in one place and reducing transaction overheads by performing single step validation. Additional validation layers come at the cost of extra overhead, added code complexity and an increase in documentation requirements. Nonetheless, XML Schema is simply not suited to all types of validation, and some remain impossible to achieve without adding an additional layer. The problem is not restricted merely to codelists in XML Schema

A simple, though vastly exaggerated, example is provided by Civil Registration Numbers (CPR number). No doubt an enumeration of all extant numbers would provide a single step validation that the input number was correct, yet a CPR number pattern restriction in XML Schema followed by database lookup to check the number is real provides the only plausible method of validating a CPR number. There are several reasons why this is the case. Firstly, the list of extant CPR numbers is as dynamic as the population itself. Such an enumeration would require constant updating to cope with births and deaths. Secondly, the list of extant numbers would be so large that it would require massive system overhead to read into and maintain in memory. Thirdly, such an enumeration, while providing validation of the existence of a CPR number could never be used to match this number to the name of the person supplied, as such contextual validation is not provided directly by XML Schema.

Dynamic codelists

A dynamic codelist is a codelist the does not remain static over time. New codes may be added, or old codes removed. Most codelists can be considered dynamic to some extent, few (such as days of the week) are genuinely static. However, within dynamic codelists we can distinguish various types of dynamism.

Degree of dynamism

Firstly, we can distinguish between codelists that are frequently updated and those that are rarely in need of updating. In the case of the former the problems associated with managing change are amplified by the frequency of change. This may be of such importance that requirements and technologies for managing frequently updated codelists may be different to those of managing rarely updated codelists.

Predictability of dynamism

Secondly, we can distinguish between codelists where updates are predictable and can therefore be planned and scheduled and those where an update might be required at short notice. Again, the management requirements for these codelists may be quite different.

Ownership of dynamism

Thirdly, we can distinguish between codelists where the owner of the list has full control over the list's content, and those where the production version of the list is merely an implementation of a list managed and owned by an external regulatory body (e.g. ISO). In such cases the production list requires synchronisation with the values provided by the external body, who may update their list at any moment.

Severity of update

The implications of an update to a codelist are of varying severity according to several factors.

1) Criticality of data - whether a code plays a role in determining business logic and processing.

Example:

A codelist representing metric (kilograms) and imperial (pounds) units of weight: KG, LB, used in a shipping order:

<shipment>

<item>

<quantity>3</quantity>

<weight unit="LB">3.2</weight>

</item>

<totalweight unit="LB">9.6</totalweight>

</shipment>

In this example the unit of measurement of weight has been chosen as LB (pounds). This value does not imply any branching of processing code, as the relationship between item weight and total weight isn't affected by unit of measurement.

However, an application that determines the cost of shipping goods according to their weight might well be required to be able to convert between kilograms and pounds if both units are accepted. Such a conversion requires a minimal branching of processing logic dependent on the value of the unit attribute.

the application might return the following XML:

<shipment_receipt>

<item>

<quantity>3</quantity>

<weight unit="LB">3.2</weight>

</item>

<totalweight unit="LB">9.6</totalweight>

<costPerKilo currency="EUR">100</costPerKilo>

<totalCost currency="EUR">436.37</totalCost>

</shipment_receipt>

The conversion between kilograms and pounds hasn't been reported in the returned XML, but has been carried out by the application:

1 kg = 2.2 lb

(total weight in pounds / pounds per kilo) * cost per kilo = total cost

(9.6 / 2.2) * 100 = 436.37

The more divergence in processing based on a codelist value, the more severe the update.

2) Number of applications utilising the codelist.

The more applications using the codelist, whether for control of output or validation of input, the more severe the consequences of any update. Each application should be informed of the update, redeveloped (if necessary) to cope with the update and retested.

3) Type of binding between application and codelist (e.g. whether the application pre-processes and caches the codelist schema in some way).

Where a copy of the codelist is cached locally for use in an application, or where the codelist has been used in automatic processing of e.g. a WSDL file the consequences of an update to the list become more severe. Each version of the codelist must be updated, and any pre-processed artefacts must be reprocessed if the application is to remain compatible with the current version of the list.

Dynamism strategies

There are various strategies to deal with dynamic codelists.

Decoupling strategies

Coates, in “Managing Enumerations in W3C XML Schemas” http://www.xml.com/pub/a/2003/02/05/wxs-enum.html suggests a method of decoupling a codelist schema from its parent schema. Firstly, the enumeration is physically removed from the schema where it is used to a separate XML Schema file. This file is then included or imported (depending on whether it shares the namespace for the parent schema) into the parent schema. However, updating the codelist schema while preserving the original version requires a strategy of adding a version number to the XML Schema filename (e.g. MyCodelist_1.2.xsd). Thus updating the codelist requires updating the parent schema. To avoid this Coates suggests a supplementary, non-versioned, go-between schema that acts as a wrapper for the current codelist schema. The include/import structure is thus:

Parent schema

Includes/imports MyCodelist.xsd

Includes MyCodelist_1.2.xsd

Thus on creation of a new version a new file is created, and the wrapper schema is edited to refer to the newer rather than the previous version.

The advantages of this method include maintaining a version history for the codelist, as well as preserving past versions of the schemas for applications that require backwards compatibility. Updates become simpler to roll out and the schema collection easier to maintain. The disadvantages of this strategy include that the source schema file of the codelist is obscured by an extra level of include/import. For obvious reasons the structure of the codelist enumeration schema and its underlying datatype cannot be altered within this strategy, but simply adding and removing items is allowable.
Other versions of decoupling strategies are also possible. To examine them we require a distinction between the underlying datatype of an enumeration (string, pattern restriction, integer etc) and the value space of the enumeration (the set of possible valid values of the codelist).

The first strategy is commonly known as an open or extensible enumeration and was developed by Martin Gudgin for W3 http://www.w3.org/2005/07/xml-schema-patterns.html#Enumerated-Extensible
The technique is to create a union between two datatypes, the first is an enumeration, the second is the datatype on which the enumeration is based.

This method effectively decouples validation from the enumeration itself, as any value conforming to the underlying datatype of the enumeration will be passed as valid. The advantage of this technique is that it leaves the set of allowable values open, while maintaining a list of currently valid values. The enumeration can be used in a secondary validation step. Applications will thus not throw out XML instances where the code value isn't explicitly listed unless they have first explicitly tested this in a secondary step. This design introduces the possibility of an elegant fallback, whereby the XML instance can be diverted to further processing to find whether it is acceptable.

In terms of the schema itself, there will still be a requirement for maintaining and updating the enumeration of the codelist, if merely to provide documentation of currently allowable values, though these values will no longer be application critical as long as they conform to the underlying datatype.

A similar decoupling method removes the enumeration entirely from the primary validating layer. The location of the schema is held instead by an attribute coupled to the node the value is contained in. The code value is validated against a datatype, as above, and secondary validation can be accomplished by retrieving the referenced schema containing the enumeration. Such a technique could be referred to as externalisation of the codelist. This method shares similar pros and cons with the open enumeration method described above, but has the added advantage that the codelist itself can be made directly available as an XML Schema. A second advantage of such a system is the possibility of providing various codelists for the value. For instance, an application that could receive payment in one set of currencies but make payments in a second could offer the possibility of choosing from Currencies_outgoing.xsd and Currencies_ingoing.xsd for secondary validation of a currency value.

Such a distinction, however, raises the question of context dependent validation. Whether a payment ought to be validated against inbound currencies or outbound currencies may have been set in a separate context from the statement of the currency itself. Context dependent validation of this type is not available through XML Schema, but can be performed by other XML technologies such as Schematron.

By virtue of its ability to read XML contextually Schematron offers yet further possibilities for decoupling validation of a codelist value from the primary validation layer. For instance, in the example above, instead of primarily validating against an underlying datatype it would be possible to create a codelist of all inbound and outbound currencies. Using an attribute connected to the currency node Schematron could check that the actual value of the currency conformed to the correct set of values. Such a technique provides a stricter validation in the primary layer as it only allows values that are valid inbound or outbound currencies, rather than any member of the set of values of the underlying datatype. At the same time it allows a secondary validation of the value against the subset of currencies allowed within the specific context.

This use of Schematron is important in the localisation of international standards. Much of the localisation can be performed by Schematron, allowing the XML Schema files to remain as close as possible to the original standard.

Database backed dynamism

Another tactic for dealing with dynamism in codelists is to have the codelist values stored in a database and produced as an XML schema automatically when required. This can be either "on the fly", every time the schema is called, or to a cache of the latest version after each update. Such a method is commonly used to deal with an alternative set of problems - those of concurrency and synchronisation, rather than those of versioning. Roll-out of the update can be instantaneous and synchronous across applications accessing the database, and all codelist values are stored in a central location, guaranteeing an authoritative current version. While this approach doesn't inherently solve any of the versioning or compatibility problems associated with dynamic codelists it is possible to build a database backed design together with other approaches - for instance the decoupling technique described by Coates (the database could simply publish a new list, with updated version number and trigger an automatic update of the wrapper schema).

Database backed dynamism is common in systems where the codelist is either highly dynamic, or where the codelist is of a large amount of entries.
Such a solution could also support a code value lookup, validating an actual instance of a code rather than retrieving an entire codelist. Such a service would be a possible solution where large codelists are involved.
Codelists in OIOXML

OIOXML Codelist ownership and use

Codelists produced and published under the OIOXML paradigm may present additional complexities. Though such a codelist may have been produced by an organisation for use in a single application it might also have been produced through the standardisation process, possibly even classified as a Core Component. In such cases the codelist may be used by many organisations, in a wide variety of applications. Updating a codelist may thus have implications to a wide range of applications, and the process of updating it may have to take into account requirements for standardisation of OIOXML schemas.

The OIOXML paradigm is designed to promote and support a service oriented architecture. In this context an XML schema will be incorporated into the definition of a service interface. In terms of SOAP applications this definition takes the form of a Web Services Description Language (WSDL) file. This file may either reference a set of XML Schemas (usually a local copy of those published on the IinfoStructureBase (ISB)) or copy XML Schema definitions to the WSDL itself. In both cases a preliminary step of pre-processing the schemas to produce a single schema for each included namespace is often necessary, in order to improve tool support for WSDL creation. This is due to the atomised structure of OIOXML schemas in the ISB and poor tool support for multiple imports of schemas from the same namespace. This replication of data means that updating OIOXML codelists may require additional synchronisation between the ISB version, a locally cached version, and a WSDL file.

The complexities introduced by the requirement to synchronise WSDL files with their ISB OIOXML schemas is also mirrored by the recommended practice of using local versions of IOXML schemas within applications. This recommendation is based on 1) improving application processing efficiency, 2) reducing the load on the ISB server and 3) ensuring the application can run when connection to the ISB is not possible.

Current OIOXML codelist regulation

According to NDR3 (Naming and Design Rules 3) of the OIOXML paradigm a codelist must be annotated with metadata such that the allowable codes in the enumeration are bound to the “real world” values they represent. This binding is not automated in the validation layer, but instead provides a “sanity check” for those responsible for managing and using XML Schema codelists. For the purposes of XML Schema validation and data binding only the code itself is of importance.

Codelists may also be implemented as pattern restrictions (e.g. two alphanumeric characters, lower case a-z) or as numeric datatypes (e.g. integer, minimum value 1, maximum value 7).

Enumerations should be lower case, in English or Danish. Exceptions are granted for instances where the enumeration is an implementation of a codelist maintained by an external regulatory body, such as UN/CEFAC, or where common practice has established a default standard for the value space.

Boundaries to codelist dynamism in OIOXML

The following current NDR (Naming and Design Rules) for OIOXML Schemas place deliberate restrictions on editing OIOXML schemas.

[VER-1] Et OIOXML skema SKAL angive dets version ved hjælp af et namespace.

This rule states that "An OIOXML schema MUST give its version with the help of a namespace."

[VER-2] Et OIOXML skema, som er godkendt og optaget i en af OIOXML klasserne, MÅ IKKE ændres.

This rule states that "An OIOXML schema which is authorised and published in one of the OIOXML classes MAY NOT be altered"
[VER-3] Et OIOXML skema KAN benytte et eksisterende namespace ved

bagudkompatible udvidelser.

This rule states that "An OIOXML schema can utilise an existing namespace for backwards compatible expansions"

The explanatory text accompanying this rule clarifies that this applies to new schemas added to an existing namespace without disturbing the existing schemas. It does not allow for a new version of an existing schema to be added to the same namespace.

[NMS-1] Et OIOXML skema SKAL anvende et namespace, som repræsenterer en gyldig

URL i Infostrukturbasen og har følgende opbygning:

“http://rep.oio.dk/<internetdomæne>/xml/schemas/<YYYY>/<MM>/<DD>/”.

This rule states that "An OIOXML schema MUST use a namespace that represents a valid URL in the InfoStructureBase and has the following pattern:

http://rep.oio.dk/<internetdomæne>/xml/schemas/<YYYY>/<MM>/<DD>/"

[FNR-1] Et OIOXML skema SKAL navngive dets fil efter modellen: <namespace-prefix

med store bogstaver>+“_”+<elementnavn>+“.xsd” .

This rule states that "An OIOXML schema MUST file must be named according to the model <namespace-prefix upper case> + underscore + <element name> + ".xsd".
In accordance with these rules, an OIOXML schema, once authorised and published, cannot be changed in any way. Furthermore, future versions of the schema must be published in a new namespace. OIOXML namespaces include publication date, this date is used to version schemas. Thus it is not currently permissible to differentiate between similar schemas by use of a version number in the filename. An updated schema will not replace its older version, but must be placed in a new namespace. The implications of this versioning strategy include that all schemas including or importing the updated schema must also be updated if the update is to be incorporated into their validation. This update rollout is then recursive, as all further schemas (those that indirectly incorporate the original updated schema) must also be updated. At each step of this process new namespaces are created for the updated versions. While such a policy ensures both that versioning history is preserved and that current applications will not fail due to backwards incompatible updates it also causes a namespace proliferation that can drastically increase the complexity of a schema collection.

Rule VER-2, which prevents alteration of a published schema, is physically enforced by the ISB.

As well as these concrete NDR rules there are a number of design and process parameters that are either explicitly or implicitly expressed in the OIOXML paradigm. Amongst these is a requirement to design XML Schema to give the strongest possible data types (GTD-1). In terms of codelists this must be interpreted as an enumeration, rather than as a pattern restriction that might allow some conformant but not extant values to pass.

The "First come first served" principle, which is the culmination of a number of NDR rules and practices, results in the proliferation of related and similar schemas, except in cases where procedures for standardisation through the Core Component group are not explicitly followed. Though schema designers are supposed to scan through the ISB beforehand to find if there is a useful reusable schema already to hand, in practice they are more likely to develop their own schema from scratch. This is a well known scenario, not specifically linked to codelists per se, which is the product both of the search interface on the ISB and a lack of collaboration on all but the most reused schemas design. In short, developers either don't look for pre-existing schemas, or don't find any that exactly match their requirements. The majority of schemas are designed within the context of a specific use case, or standardised within an organisation (i.e. designed to meet multiple use cases for a single organisation). Few, other than those standardised though the Core Components group, are designed to meet the requirements of multiple use cases in multiple organisations.

Another principle of the OIOXML paradigm is that all schemas are hosted on the ISB and may only refer to (import/include) other schemas on the ISB. External schemas, whoever they may be hosted by, are strictly forbidden. The purpose of this rule is, of course, to ensure full control over the data contained in the schemas, to ensure the location of the schemas never changes and to provide assurance that schemas will be accessible on a stable production server with guaranteed up-time.

A last consideration of the paradigm is the requirement for all OIOXML Schemas to be submitted to an authorisation process prior to publication. This process is under review, but is currently a bottle neck to publication of schemas. This requirement is in place regardless of whether a schema is brand new or an updated version of an existing schema - though updates are usually processed on a faster track.

Contextual validation with Schematron

The ISB does not currently support use of Schematron. Though Schematron files may be added to the ISB, as other files documenting a namespace may be, there is currently no method of linking these files to the XML Schemas they relate to, and no method of automatically incorporating them into an application's validation. As such they are only provided as a support tool, which developers can make use of if they so wish.

The primary use of Schematron, in support of XML Schema validation, is to offer a contextual validation of data. While XML Schema validates both the structure of an XML file and the data types of its nodes Schematron allows validation dependent on the relationship between the values of such nodes. For instance, an XML Schema might provide a validation of contact details for a person. This information includes both address and telephone number. While XML Schema can validate both that the country code of the address exists in a codelist and that the country dialling code of the telephone number exists in a separate codelist it is unable to relate the two values. Thus an instance where the address was given as DK (Denmark) and the country dialling code as +44 (United Kingdom) would be passed as valid. Schematron, however, can enable a relationship between these two values to be validated, such that the value of the country of both dialling code and address must match.

This example deliberately uses a case where two codelists have a relationship (Schematron's uses go far beyond codelists) in order to highlight both Schematron's potential uses and the relationship between, in XML Schema, separate and isolated codelists. The example thus shows that a format that was able to describe the relationship between diverse codelists would provide a valuable tool.

Possible solutions to dynamic codelists in OIOXML

These possible solutions need not be considered mutually exclusive, rather, they could be combined in various ways to offer a flexible approach that would cover the broadest possible range of codelist use scenarios.

1) New class allowing updateable codelists, which could be paired with the Coates decoupling method. New codelist files are produced with a version number in the filename, and referenced indirectly by a current codelist wrapper file.

The first possible solution to the problems associated with dynamic codelists in OIOXML can be classified as partial deregulation. If we recognise that codelists have a set of problems specific to them then we might reasonably assume that codelists require a specific set of solutions, not applicable to other types of OIOXML Schemas. Thus we could envisage the creation of an OIOXML Schema codelist class, which would be regulated through a set of rules only applicable to that class. This would involve loosening some of the requirements made on other OIOXML Schemas, as well as introducing new requirements specifically for codelists. Primarily the new class would allow an implementation of the Coates decoupling method, whereby a wrapper schema points to the newest version of the codelist. This wrapper schema would need to be able to be updated without versioning, and within its original namespace. The schemas it referenced would be versioned, with a version number in the file name and possibly a version number in the XML Schema version attribute. These schemas would also be placed in the same namespace as their previous versions.

2) Automated alert when codelist is updated - allowing those using the list to work through any required changes/tests.

A second potential improvement would be a method that would be to automate communication of updates to end users of the schemas. Merely being able to update schemas doesn't solve the problems associated with rolling out such an update. Applications producing or consuming XML validated by the schemas need to be tested in order to remain compatible with the updated codelist. As the codelist may be removed from the top level interface schema by numerous levels of includes/imports the end user may otherwise be fairly oblivious to any update. A subscription service, that provided subscribers with detailed information regarding the content of namespaces they had explicitly subscribed to or implicitly had an interest in (through reusing schemas from that namespace) would allow developers to be kept informed of any changes to that namespace. The backbone of such a system could be formed from a namespace or directory mark-up format (on ISB namespaces are mapped directly to a directory of the same URI, except for schemas adopted from international standards) such as RDDL. This format could have a wide range of uses and applications of general benefit to the ISB, as well as containing the necessary metadata required to track changes to the namespace contents, such as updates and additions.

3) Hosting truly dynamic database backed codelists

It is theoretically possible for the ISB to host database backed dynamic codelists, to be generated on the fly, or generated on update and cached. This solution would require extensive reworking of the ISB, plus creation of separate rules for database dynamic lists. One drawback of this method is that the ISB database would need to be synchronised with the database of the list creators.

4) Allowing a sample codelist plus externally hosted version (possibly database backed) from the submitting organisation.

One suggestion for dealing with dynamic lists is to provide a representative sample of the list by the usual ISB publication mechanisms, but to allow list creators to specify in documentation the location, external to the ISB, of a production list, which would be dynamic. Obvious drawbacks of this compromise solution include a) that the external list would need to be hosted on a server that could ensure up-time and fixed location, b) there is no explicit mechanism for documenting the version history of the codelist, c) applications requiring locally cached or pre-processed copies of the list would require regular updating online.
5) Support for a lookup web service, testing the existence of a specific code against a codelist. For large codelists it may not be relevant to provide an entire codelist every time validation is required, but rather to validate the specific code against the set of values of the list and send a message back to the calling application.
5) Support for Schematron and further decoupling/externalisation mechanisms - achieved with the help of a namespace mark-up format that can link resources together. Some of the decoupling methods described above would best be achieved by offering greater support on the ISB. For example, tools to support utilisation of Schematron in context dependent validation, or as an additional validation in line with the externalisation tactic described above. The namespace/resources mark-up, in a format such as RDDL, would allow linking of relevant resources, for example, linking an XML Schema file to a Schematron file that provided additional validation.

6) Codelist management tools, including a codelist format, XSLT and Schematron.

A set of codelist management tools would aid codelist producers in maintaining a version history of their codelist. These tools could provide mechanisms for allowing mapping between codelist versions, producing codelists from fragments of codelist, production of XSLTs and Schematron files for use in validation and mapping etc.

Requirements for an XML format for codelists

Following from Coates work on an XML format for codelists, this analysis presents a number of requirements for such a format.

1) The format should allow for comparison and mapping of multiple codelists.

To deal with the discrepancy between codelists produced for a specific use case and those of a more general nature the format should be able to present two similar codelists side by side. Coates proposes a tabular structure, where a column represents a codelist and a row the values associated with each codelist for a specific, abstract, key. For example:

Columns:
English Upper Case,
English full name,
Danish Upper Case

MON

Monday

MAN

TUE

Tuesday

TIR

...

...

...

SUN

Sunday

SON

Or for the national codes and dialling codes example above:

Columns:
Country Code,
English full name,
Telephone dialling code

UK

United Kingdom
+44

DK

Denmark

+45

2) The format should provide support for versioning of codelists.

The tabular format provides a method of relating codelist items. Such a format could also be of use in providing version history for a single list, e.g.

Columns:
Country Code v 1.0,
CountryCode v 1.1
English full name

UK

UK

United Kingdom

USSR

empty value

Soviet Union

empty value

UA

Ukraine

2) The format should provide sufficient information to allow various automated processes to be performed, e.g.

· Creating a compound list from two or more lists.

· Creating a subset/fragment of a list by removal of values.

· Creating an extension to a list by adding values.

· Creating XML Schema and Schematron files to validate the list

3) The format should allow reference to external codelists of the same format such that the information contained in them can be collected and processed.

4) The format should be extensible, to allow for mark-up of various common processes in codelist maintenance, thus further enabling automation and providing a traceable and auditable history of a codelist.

5) The format should be simple to understand and use

Recommendations

In order to meet the various requirements for improved codelist management this analysis recommends the following strategy.

1) Creation of a new class for dynamic codelists.

2) Implementation of the Coates decoupling method for this class

3) Adoption of Coates Genericode codelist mark-up format. This will be a requirement for the new class and optional for static codelists.
4) Adoption of an externalisation method for large or frequently updated codelists, with support for an externally hosted lookup web service.
5) Adoption of guidelines for optimisation of codelists.
6) Implementation of resource mark-up, possibly in RDDL, as the basis of automated update/generation procedures

7) Implementation of an update subscription service, allowing updates of schemas to be communicated to end users.

Taken together these recommendations meet the requirements of most codelist users, and cover a broad spectrum of codelist types.

New Dynamic Codelist Class
A new class should be introduced to the OIOXML paradigm, released in the next version of NDR. This class will allow strictly regulated dynamic codelists on the ISB.

The dynamic codelist class will apply to a pair of XML Schemas, modeled on the Coates decoupling method. The first will be a non-versioned wrapper schema, which merely includes the most recent version of the type definition of the enumerated codelist. This type definition will be versioned using a filename model incorporating a datetime, such that the file will be named:
<namespace-prefix upper case> + underscore + <type name> + underscore + <YYYYMMDD> + underscore + <HHMM>".xsd".
E.g. (fictive) ITST_DepartmentCodeType_20051221_1046.xsd

The wrapper schema will be titled using the normal model:

ITST_DepartmentCodeType.xsd
Though the datetime extension to the filename might be considered slightly unwieldy it should provide an adequate level of versioning, together with providing clarity of version history.

The OIOXML paradigm, in focussing on the standardisation of information architecture in XML, remains neutral to the perspective of applications using this information. An application utilising OIOXML schemas may be built entirely independently of the schemas it uses. XML Schemas define information architecture that can be used applications without defining this data as part of an interface. Thus the question of compatibility must be seen both from the perspective of an application creating and sending XML instances, and one receiving them. The standard distinction between removal of a code from a list (described as a backwards incompatible change) and addition of a code to the list (described as a backwards compatible change) is not one which the OIOXML paradigm can support. Thus we present no requirement for minor and major versioning in connection with addition or removal of values to a list, but rather support a date-time versioning strategy.

The wrapper schema will be allowed to be edited, such that the newest version of the type definition may be written when required. The type definition schema will not be editable. New versions must be placed in the same directory as existing, older, versions (the filename model prevents conflicting names) and the wrapper schema. All schemas must part of the same namespace.

For small and medium sized dynamic codelists this decoupling method will also require that the codelist is represented in the Genericode format. For large codelists, such as those that will be represented as pattern or integer restrictions, the Genericode format will be too verbose to work with and this requirement can be dispensed with in favour of another form of documentation.
The Genericode format

The purpose of adoption of the Genericode format is manifold.
Firstly, the format will allow simple and accessible maintenance of the version history of a codelist. As each update of the list will be appended to the Genericode file it will present a tabular view of the codelists history.
The Genericode format will also allow pairing of code value with the value of the data it represents, and extensive possibilities for including metadata. Thus the format will support improved documentation of the codelist.
The Genericode format will allow us to automate various tasks in maintenance and creation of codelists, such as automatic creation of a codelist, addition of values and removal of values from the list.
The Genericode format is also envisaged as the central and authoritative repository of codelist data. As such we recommend a set of services and tools for working with the format such that the combination of tools and the format itself provides the interface to creation and maintenance of OIOXML codelists. All updates to OIOXML codelists will be required to be made through this interface, such that we can ensure preservation of version history and OIOXML rules. Updates to the Genericode list will trigger update alerts via the subscription service, such that all users with an interest in the list will be informed of the latest version of the list and can take appropriate action.
Genericode based tools

Genericode’s flexibility offers us the possibility of creating many tools and services with which to manipulate it.

Firstly, we can present various views of the list through XSLT transformation, allowing us to present updates to the list, statistics over update frequency and code value pairings in a simple form.
Secondly we can provide tools for editing the list server side. An XSLT containing e.g. JavaScript would allow the list owner to add or remove values via an HTML form before submitting the edited list. The edited list could be received by a SOAP web service, which would go on to perform the required updates of XML Schemas and ISB metadata. This web service would allow users to edit the list client side. Thus the SOAP service would modularise the business logic required by an update such that it could be contained in one place regardless of whether the list was edited client or server side.
The list itself can be simply transformed into an XML Schema by use of XSLT. This XSLT could also assess questions regarding the optimisation of the XML Schema, e.g. whether the validation could best be represented as an integer restriction rather than an enumeration (see section titled “Optimisation of codelists in XML Schema”).
The Genericode format would also allow more complex operations on codelists, such as subsetting, creating compound lists, and producing Schematron files to validate contextual information. While these aren’t the most common current requirements for the format there is still significant interest in these types of operations and tasks such that a format that is open enough to support them is a clear advantage.

Directory, resource and namespace mark-up format

The current implementation of the ISB retains metadata regarding resources, directories and namespaces in a database table. This technique both conceals the relationship of various resources behind the business logic of the ISB and prevents flexible creative solutions to linking and describing the relationship between resources. Describing the relationship between resources currently requires considerable restructuring of the ISB database. An extensible XML format that was able to describe these relationships would provide a flexible solution to this problem. Such a format would form the backbone of automated procedures on ISB. These could include: updating resources that are dependant on a resource that has itself been updated, alerting interested parties when a resource has been updated, presenting resource packages of mutually dependant resources and compiling resources prior to inclusion in an application (e.g. compilation of production schemas from their constituent parts, compilation of Schematron files for atomised schemas etc.).
In the context of dynamic codelists, a resource mark-up format would serve to link Genericode files to the XML Schemas they produce as well as to the other Genericode files they might produce or consume.

Such a mark-up would also provide a basis for a subscription service to ISB, informing users of updates to schemas they are interested in as well as other resources.
While it is beyond the scope of the current analysis to specify such a format we recommend that RDDL be at least counted as a candidate for this task. We also recommend further study of the requirements for such a format in order to produce a requirements specification suitable for incorporation into ISB2.

Externalisation method

The externalisation method, of providing weak validation of a code value coupled with the location of a source that defines the allowed values, implicitly allowed by the current NDR. References to XML schemas were considered only in relation to import and include instructions in the schema. In that context all schemas referenced are required to be authorised and published on the ISB. There is no current restriction on referencing an external dereferenceable URI through another attribute or element. This, of course, is due to the fact that the XML Schema namespace carries with it explicit definitions for how various constructions are to be used (i.e. it is an application language), whereas other namespaces don’t necessarily convey this information. An XML schema compliant processor is required to be able to process XML Schema namespaced information in the correct manner, most other XML languages do not have or need such a rigorous definition of data use.
For the purposes of the OIOXML paradigm, however, we require a reliable and controlled method of associating data with a resource that can be used in validation. Where we externalise a codelist, and loosen the original XML Schema validation of the XML instance to checking it’s datatype, we must ensure that the external resource is available and in an agreed format. For this purpose we can construct an itst namespaced collection of attributes, with a clear definition of how they are to be used and interpreted.

For instance, an itst:ExternalSchemaLocation attribute could be defined as requiring a dereferencable URI located on the ISB. This would ensure that externally referenced resources were still within the ISB, and conformed to the design requirements of the OIOXML paradigm, such as the current NDR.
Optimisation of codelists in XML Schema

Due to the wide variety of platforms and XML technologies available there are no metrics available with which to make concrete recommendations for optimisation within the OIOXML paradigm.

However, much of the overhead of an XML validation by XML Schema occurs in reading in and initialising a collection of schemas. We can also note that an item from a codelist, as a simple datatype, or element with attributes, is a relatively small data structure to validate. XML schema enumerations, however, are a highly verbose format to describe this data. This, in conjunction with the OIOXML paradigm methodology of defining each element in its own schema, and the fact that larger schemas are likely to employ several codelists, could lead to a highly inefficient initialisation of a schema collection.

A codelist consisting of positive integers within a specified range, for example, should therefore be represented in XML Schema as an integer restriction, rather than an enumeration. Likewise, any alphanumerical pattern that can be simply represented as such should be implemented in this way, rather than as an enumerated list.

This applies doubly so to large codelists. Due to the absence of any metrics in the area we cannot, with any certainty, place an upper limit on the size of an enumeration that will ensure reasonable performance across the varying platforms and technologies. But given the reasons above we recommend that an enumeration should not exceed 500 items. This limit should be enforced through an NDR rule. Though the limit is largely the product of an intuitive approach to the question the fact remains that we must protect OIOXML from large unwieldy codelists and a restriction is required.

The question of optimisation in XML Schema also highlights a secondary question. If we represent a codelist as e.g. an integer restriction then our ability to annotate each item in the list with the value it represents or other metadata explaining an item’s use is removed. For most lists this can be achieved instead by placing this information in the Genericode file for the list. On automatic creation of a codelist it will be possible to read through this file and determine whether it fits a pattern or integer restriction instead of an enumeration. If this isn’t possible, for instance, where a list is too large to be represented in Genericode, the information regarding represented values and other metadata should be published in some other format.

Some integer based codelists cannot be represented as an integer restriction for the simple reason that one or more members of the range of integers is missing from the list. The maximum and minimum inclusive bounds of the list encompass values that are not included in the list. E.g.:

A list consisting of values from 1 to 11 and 15 to 30 cannot be represented as a restriction of an integer from 1 to 30, as this includes numbers 12 to 14.

An accurate an efficient list, however, could easily represent this data as a union between two integer restrictions. While this may not be of import in smaller codelists, where the extra overhead of an enumeration might be negligible, the technique could be employed to great effect in at least one of the supersized codelists that have been uncovered by the interviews. The ability to accurately validate a value from a codelist of 10,000 items, without requiring a lookup or an impossibly large enumeration, would be a huge advantage.

For this reason we recommend that dynamic codelists may utilise the XML Schema construction union to join together parts of a codelist that can be represented as a pattern or integer restriction. This would require a dispensation from the NDR rule STD-2:

[STD-2] Et OIOXML skema MÅ IKKE benytte konstruktionen union.

This rule expressly prohibits use of the construction union.
Large codelists

The section above already deals with a possible optimisation technique for large codelists, defined as those containing more than 500 items. We have also discussed lookup services for validation of a value from the list. A third aspect of large codelists, however, is related not to validation, but to publication of the list itself, including metadata and information regarding code pairings to descriptive values. Here we have two separate concerns, firstly that of documentation (that this information is publicly available to developers) and secondly that of making this data available to applications that use the list. Part of the reason for the popularity of XML Schema enumerations is their ability to solve both these problems at once, by using a predefined machine readable format and by containing annotation of the code values. If large lists are not to be represented as enumerations then we must find a solution to both these problems.

For all but the largest of lists we can recommend use of the Genericode format specified above. Though these files may become unwieldy and large they are not directly involved in validation of codelists, and are therefore not part of validation overhead. For the purposes of documentation an XSLT providing transformation to HTML can be created, which could contain JavaScripts for searching and ordering the list, and also limiting the number of list entries per screen. This should suffice for all but the very largest lists. These lists should be published in such a manner that they will not e.g. overload a browser with data thus causing it to crash. The simplest technique for this would be to split the Genericode list into smaller files and provide navigation links between them.

For the purposes of publishing the list in a manner suitable to automated retrieval by applications utilising it the Genericode format will also suffice. Though again the file could become very large this is largely only a problem of moving and parsing a large file in a single instance. Retrieving a list is a one off cost, rather than a cost that is borne for each validation of a code. It should also be noted that publication of the list in a Genericode format would not prohibit additional publication of the list as e.g. a comma separated file, should it be necessary to provide a less intensive retrieval format.

Highly dynamic codelists

Without further research it is impossible to accurately discover how dynamic OIOXML codelists might be. Though codelist creation and maintenance can be automated through use of the Genericode format should updates to the list be frequent this format could again prove highly verbose and lead to large unwieldy files. Similarly, highly dynamic codelists lead to an amplification of problems of application compatibility and communication. We therefore recommend that codelists that are likely to be updated more than 6 times per year are treaded as highly dynamic and are supported through the lookup method rather than directly hosted on the ISB. Again, this number is based on intuition and common sense rather than any metric, as no such metric exists.

Externalisation revisited
For dynamic codelists using the externalisation technique there are a variety of methods that could be used to provide concrete code content.

Firstly, a code could be looked up in a database made available as a web service. For the very large codelists of 10,000 items this is probably the only feasible technique to use. A message containing the code in question is sent to the service, and a reply is received stating whether the code exists in the list or not.

Externalisation, however, need not merely be employed in cases where the codelist is very large or very dynamic. Another situation where externalisation of the codelist might be relevant is where context dependent validation is required (i.e. the context of a code determines which codelist should be used to validate it). This situation is fairly common in the localisation of international standards, such as UBL. In cases such as this it isn’t necessary that the validation of the code is carried out by a database backed solution. The externalised list could be, for instance, an XML Schema enumeration. The application requiring the code validation would be required to retrieve the correct XML Schema and validate the code against it.
In some instances an externalised codelist is used in an informative manner, rather than for actual validation. Either a resource listing allowable codes is referenced, in whatever format it might be, or an indication of which agency and which codelist is given. For instance, for weights and measures in the OIOXML Electronic Invoice an attribute of the measurement element, typically called schemeID may contain the value UNCEFAC, stating that the unit of measurement given for the element conforms to the list maintained by UNCEFAC. The list itself is not referenced directly and it is not possible to automate validation of the measurement unit, but developers and users of the format may manually check UNCEFAC for a copy of the list.

We can thus make the following distinctions between types of externalisation:
1) Lookup services, providing a validation of the required code as some form of web service. These are fully automatable.

2) Standardised format external resources, where the resource is formatted in such a way that it may be retrieved and used in validation by the calling application. These can be automated, but such automation will vary between retrieved formats.

3) Informative externalisation, where details of the list (e.g. name and agency that owns it) are given but the concrete list is not available as a resource. These are non-automatable.

Lookup services
From the perspective of a Service Oriented Architecture it is important to remain neutral as to the underlying mechanism of the lookup service. The code behind the service could run on any of the common platforms, and be written in any language. Moreover, a wide variety of techniques for implementing the lookup are also possible. For instance, we can envisage a simple database lookup, where the code is checked in a database table, or a file based lookup, where an XML format is split into multiple sorted files. The latter technique would use the code itself to find the file containing the appropriate section of the codelist, e.g. by alphabetical sorting.
In its simplest from such a lookup could be a REST based service, with value of the code sent in a query string to the location of the codelist lookup, e.g. (fictive):

http://www.thisorganisation.dk/codelists/ThisCodelist.aspx?code=ThisCode
If there are more stringent requirements for the architecture of such a service (e.g. security) it could also be implemented as a SOAP service.
For the purposes of this analysis we remain neutral between the respective benefits and drawbacks of REST and SOAP. However, in the interests of maintaining consistency between lookup services we recommend that all services should be based on a standardised message format. Regardless of which organisation owns a service it should be possible to specify that the sent and returned messages must conform to a standard format, such that the developer need only know the address of the required service to initiate a standardised lookup. For a REST service this would entail standardising the name of the parameter containing the code value, as well as standardising the format returned from the service, which should be XML. For a SOAP service we would require a standardised codelist lookup request message as well as a standardised return message.
Contents of a standardised lookup messages

While the actual format of a standardised lookup message is beyond the current scope of this analysis we can specify several pieces of data that form the basis of such messages. This can be considered a conceptual level proposal, requiring reworking through the less abstract levels to a physical level proposal.

Lookup request message
A basic request message could contain the following items of data:

· Codelist name
· Codelist address

· Codelist version

· Code value

Lookup return message

A basic return message could contain the following items of data:

· Code existence (Boolean)

· A copy of the original request message

Lookups and versioning
Any standardised lookup service specification should support optional versioning of the list. While not all organisation can or will want to support versioned lookups it will be a significant factor for those that do. Versioning, and querying of version details, must be included in the lookup format.
For a lookup request message the only data required to make use of versioning will be the version number of the list. This should thus be an optional parameter. Where no version is specifically requested the service will perform a lookup against the current version of the list.
A lookup return message, however, should be supplemented with the following data:

· Whether the lookup service supports versioning (Boolean)

· Whether the version requested (if requested) is current

· The number of the latest version

· Status of the requested version (if requested)
· Whether the code value exists in the latest version (if an outdated version was requested)

It is also possible to envisage a further range of codelist web services, offering:
· A return value for the specified code

· The complete codelist

· Latest additions to the codelist
· Latest removals from the codelist

· Further data on codelist versioning

Lookups and hosting
There are several models for how such lookups could be hosted:
1) All lookup services hosted on the ISB.
2) All lookup services to be hosted by the relevant organisation, external to ISB.
3) Lookup services hosted by relevant organisations, with an addressing mechanism hosted on ISB (ISB Lookup portal).

One feature of the interviews that were conducted together with this analysis was the inability for some organisations to host dynamic lookup services. Reasons might include:

1) Lack of technical competence to offer services

2) Lack of reliable hosting for the service
3) Non-Ownership of data in the codelist

The advantages of hosting such lookup services on the ISB are clear to these organisations. The ISB has a reliability agreement and people with technical competence to aid in constructing services.
The disadvantages of hosting on the ISB, however, are manifold:

1) Synchronisation with external data sources for each service

2) Increased traffic and bottleneck risk

3) Cost of developing and maintaining services for any organisation with a dynamic codelist

In the light of the overarching SOA that drives OIOXML, we can see that hosting of services should be a matter for the organisation wishing to publish dynamic codelists. The first two problems they face (possible lack of technical competence and possible lack of reliable hosting) are soluble, with the right investment. The third possible problem, that of lack of ownership of data in the codelist, is one that ISB hosting would not solve anyway, as it is of a more generic nature. Should the organisation not own the data it wishes to publish then it is unlikely that ITST owns that data. One possible example is that of codelists owned by ISO. While it seems that validation of a particular code is allowable ISO prohibits publication of the codelist itself. Whether this restriction on use of ISO codelists also covers lookup of a code’s value should be investigated from a legal, rather than technical, perspective.
We can also mention that as far as lack of reliable hosting is a problem, it is a problem for any web service in the SOA paradigm, not just code value lookups. There is no reason for a code lookup to be any more reliable than any other web service, especially those that utilise it.
A possible compromise would be the hosting of an addressing service on ISB, such that simple codelist lookups could be sent to the ISB service, which would be responsible for forwarding the request to the appropriate service, and sending appropriate responses back to the calling application. The advantage of this system would include that a centralised and easily standardisable message format would be simple to implement, and the ISB could deal with such problems as external server downtime by sending appropriately formatted error messages to the calling application. The main drawback of such a system would be the increased resource use on the ISB, coupled with a requirement to create and maintain such a service.
Standardised automatable external resources

Where external codelists are offered without a lookup service the calling application must be able to retrieve and process the resource simply and efficiently. For this we require a standardised format, in order to ensure that developers can expect the data they retrieve and build automation upon to conform to an expected format.
For this we suggest the resource location must point to either:
1) An XML Schema file
2) A Genericode file

The XML Schema solution provides a simple method of performing the actual validation once the resource is retrieved. The Genericode file, as a resource, would require parsing using XPath or similar to find if the value existed, which presents slightly more work for the developer.

The Genericode method, however, would support versioning of the codelist, as an OIOXML dynamic codelist, represented in a Genericode file, would include version history.

Should we decide to support both formats then the format type should be specified in the XML instance, together with the location of the resource.
Informative externalisation

Where the content of a codelist is externalised without providing a copy of the resource in the formats allowed by OIOXML this externalisation may only count as informative. Though developers may code their applications to make use of the non-standard format (if an actual resource is dereferencable) they may not be required to do so. Inclusion of a code value allowable by the primary schema collection, but inadmissible by the externalised list, should not be counted as invalid data. If such a code cannot be processed by the receiving application then the application must communicate this information by means other than raising a validation error.
OIOXML regulatory schema structures
In order to support externalisation of codelists in a regulated and standardised manner it is necessary for OIOXML to provide an information set capable of carrying and regulating the required metadata for this. For this we could suppose an XML Schema attribute group which could be appended to the relevant codelist element.
The full specification of this format is beyond the boundaries of the current analysis, but the following pieces of information are relevant candidates for inclusion:
· Source of external resource. Where this isn’t a service based lookup or a purely informative resource this should be limited to files found on the ISB, by means of an XML Schema pattern restriction.

· Type of external resource: XSD file, web service, Genericode file, Schematron file, informative external file.

· Version of external resource.

Codelist design recommendations

This provides a brief design guide for OIOXML codelists, in accordance with the proposed solution outlined above.

Large codelists may not utilise XML Schema enumerations. Large enumerations create costly overheads for applications utilising the codelist. This is especially the case when an application requires the use of multiple codelists. Instead of an enumeration the codelist can be represented as a restriction of a simple type (such as an integer or pattern restriction) and if necessary as a union of restricted simple types.

If it still isn’t possible to provide accurate validation of the codelist set of values then a lookup service, coupled to an underlying datatype for the value, should be considered.

Consider whether it is critical that an item on a codelist is strictly validated, or whether an imprecise pattern restriction or integer restriction will suffice. It is possible to over-specify validation requirements for XML.
In designing codelists attention should be paid to how often the list is likely to require updating. If the list will be frequently updated (e.g. six times per year) then consider using a database lookup or other externalisation instead. Non compliant values in highly dynamic lists should not be considered invalid, if they conform to earlier versions of the list. A high degree of dynamism is inappropriate for critical data as it places undue stress on re-versioning applications utilising the codelist.
Don't build application critical processes on the basis of the value of a code in a non static list. Where lists are liable to change over time it is not recommended to hardcode a process branch dependent on a value in the list. The addition of new values or removal of old values will lead to the possibility of application failure in these instances.
Utilise internationally standardised lists. Though these are out of the developers control they offer a broad standardisation and thus the possibility of simpler integration with other applications.
The general dogma of the XML community, to produce stringently valid XML, but to accept as much as possible of the XML that is sent to you, forgiving minor flaws, is well worth restating. Where a code value is invalid it is preferable for the receiving application to report this back explicitly, rather than to throw a general validation error. If the instance can be processed anyway, regardless of the error, then it should be processed.

If your codelist is based on one or more existing codelists then consider using a Genericode implementation to specify the relationship, and if necessary utilise Schematron to provide secondary validation.

Conclusion
This analysis has considered various aspects of codelist implementation in the OIOXML paradigm. The most pressing aspect of this implementation is considered to be the requirement to efficiently manage codelist dynamism.
Requirements for efficient management of OIOXML codelists are highly varied, in accordance with both size and dynamism of the list, together with possible requirements for more complex features such as localisation.

A combination of solutions has therefore been proposed, as we concluded that a “one size fits all” approach couldn’t possibly meet the requirements we discovered.

These solutions have been outlined above, they are not mutually exclusive and should be combined to allow a flexible package of tactics. This allows the particular scenario for a list to be considered and the solution that best fit to be chosen accordingly.
The solutions proposed cover the widest possible range of uses of codelist, from small to medium sized dynamic lists, implemented as Genericode, to localised lists requiring externalisation of the codelist, to very large lists requiring a database backed lookup service. Static lists will not require any further changes, but may make use of the Genericode format if they wish.
Further work

This iteration has provided a concrete set of solutions to the problems of codelists in the OIOXML paradigm. Implementation of these proposals requires considerable further work:

· Full specification of requirements for ISB2 to produce and maintain Genericode lists and to support tools for this purpose.

· Full specification of a code lookup service message format.

· Full specification of an information set for mark-up of external resources in XML instances

· Full specification of a resource, namespace and directory mark-up format for the ISB

· Full specification of a set of rules for a new Dynamic Codelist class to be incorporated into NDR 4.

· Production of an OIOXML Dynamic Codelist design and user guide.

PAGE
30

