
DITA Help Technologies Guide (DEVELOPMENT
REVIEW 3jan2011)

Contents

Introduction...4
Editorial Preface...4

DITA and User Assistance..5

Definition of DITA Help..5

Contributors..6

Document History..6

Help Delivery Technologies..7
Adobe AIR-based Help..7

Browser-based Help...8

MadCap DotNet Help...10

Eclipse Help...10

IDPF ePub Deliverable...11

Java Help..12

Microsoft HTML Help...13

Microsoft Viewer 1.0 Help...14

Microsoft WinHelp...14

Omni Systems OmniHelp...15

Oracle Help..15

PDF Deliverable...15

PTC Arbortext DMP Help..16

Quadralay WebWorks Help..17

UNIX Man Pages...17

Wiki..18

Help Development Tools...19
DITA Open Toolkit...19

DITA-OT: PDF...19

DITA-OT: Browser-based Help..19

DITA-OT: Eclipse Help..34

DITA-OT: DITA for Publishers Plug-in...46

DITA-OT: Microsoft HTML Help...47

DITA-OT: Leximation AIR Help Plug-in...50

Adobe FrameMaker..54

Adobe RoboHelp..54

Converting DITA Content to WebHelp using RoboHelp...54

DITA Exchange..54

JustSystems XMetaL..54

MadCap Blaze..55

MadCap Flare...55

Omni Systems DITA2Go...55

SyncRO Soft Ltd Oxygen 12.x Editor..55

Verivue | TOC

PTC Arbortext Digital Media Publisher...62

Quadralay ePublisher...67

SDL XPP..67

WinANT Echidna...67

WinANT Options Supporting HTML-Based Output...68

WinANT Options Supporting Microsoft HTML Help ..70

XMLMind DITA Converter...73

Help Development Techniques...74
Developing Custom DITA-based Help Systems..74

Developing DITA-based Help for Existing Help Environments..74

DHTML Effects in HTML Generated from DITA...75

Dynamic Rendering of DITA into XHTML...77

JavaScript-Based Context Sensitive Help..78

Resources...82

Verivue | TOC

Introduction

When DITA was first described to the world in the article Introduction to the Darwin Information Typing Architecture
by Don Day, Michael Priestley, and Dave A. Schell, specific reference was made to Help in the opening definition: “and
for using that content in delivery modes such as online help.” DITA was designed with Help systems in mind.

Indeed, from the release of OASIS DITA 1.0, the DITA Open Toolkit has supported various forms of Help output.
However, Help is a somewhat amorphous term; it means different things to different people. Early adopters of DITA
found that while Help documents in common formats like Microsoft HTML Help, HTML and Eclipse Help could be
created, some of the accustomed features were absent. Popups couldn't be easily implemented, window layouts couldn't
be easily defined, and a tri-pane HTML output seemed impossible. Most importantly, context-sensitivity for most Help
formats didn't seem to be supported.

The OASIS DITA Help Subcommittee was formed to address some of the perceived shortcomings of DITA for authoring
Help content. The Subcommittee will recommend changes to the DITA standard to further improve functionality in time
for DITA 1.3. In the interim, this DITA Help Technologies Guide provides explanations of the current best practice for
using DITA for Help authoring, and makes practical recommendations that can be applied today.

Tony Self

HyperWrite Pty. Ltd.

Chairperson, OASIS DITA Help Subcommittee

Editorial Preface

This first version of the DITA Help Technologies Guide is a work in progress designed to support users, consultants,
and vendors working with Help systems and OASIS DITA. Here are a few notes about the Guide to provide context:

• Endorsement: OASIS, the DITA Technical Committee, and the DITA TC Help Subcommittee endorse no open-source
or commercial technologies supporting DITA. Please view the technologies in this Guide as equally appropriate
possible solutions for the particular set of Help-related requirements that you face and not as a particular set of
endorsed or recommended technologies or implementations.

• Technologies reviewed: The selection of tools and technologies in this first version of the Guide emerged mostly
from a series of demos of DITA-related Help technologies done by and for members of the DITA Help Subcommittee.
The Subcommittee continues to invite users, consultants, and tools vendors to participate in reviewing this current
version of the Guide and in submitting topics for upcoming versions of the Guide. It is our goal to be inclusive (all
submissions are welcome) and even-handed (no technologies are 'preferred' over others). If any reader perceives
content that does not reflect the goals of inclusivity and even-handedness, contact the Subcommittee.

• Update schedule: We hope to update this Guide quarterly. If you, a colleague, your team, or your company has
developed DITA-related implementations or technologies that you want to submit to the DITA Help Subcommittee
to include in upcoming versions of the Guide, please contact a member of the Subcommittee (see below).

• Editorial reviews: The DITA Help Subcommittee works with individual authors in the development and final
integration of submitted topics. Final editorial and production controls rests with the Subcommittee.

• Technical reviews: Whenever possible, Subcommittee members request that the implementations and tools profiled
in the Guide be available for them to test informally. These informal technical reviews are designed primarily to
provide contributing authors with feedback. The Subcommittee makes no guarantees that these implementations or
tools work as profiled or that the Subcommittee would support these implementations or tools.

• Feedback: Please send feedback on the Guide to the following DITA Help Subcommittee members:

• Tony Self, Chairperson (Tony.Self@hyeprwrite.com)
• Stan Doherty, Secretary (Stan@modularwriting.com)

4 | Verivue | Introduction

March 2009

Stan Doherty

Editor, DITA Help Technologies Guide

Secretary, DITA TC Help Subcommitee

Member, DITA TC

DITA and User Assistance

DITA can be used in the process of creating user assistance, and especially of Help systems, but is not currently (and
may never be) used as a delivery format for user assistance itself.

DITA is a storage and authoring format, not a delivery format; it is a presentation-neutral format. The separation of
content and form is fundamental to DITA's design; content is written in DITA and must be transformed to a reading
format before it can be delivered to the reader.

In principle, content written in DITA can be transformed to any reading format. In practice, it's not that simple. Before
DITA can be transformed, a transformation process has to be devised. Many DITA authoring and publishing tools come
with standard transformers for most common delivery formats, such as PDF, RTF and HTML. The DITA Open Toolkit,
an open source collection of utilities and documentation to help writers work with DITA, includes basic transformers
for PDF, RTF, HTML, DocBook, Eclipse Help, and Microsoft HTML Help.

User assistance content is not defined by its format. For example, a document in Microsoft HTML Help format isn't
necessarily a Help system; user assistance is defined by the nature of the content. Conversely, user assistance content
doesn't have to be delivered in a traditional Help format.

DITA promotes a single-source approach to documentation, so user assistance may commonly be one of a number of
deliverables produced from a repository of information topics. The process of producing simple Help systems from
DITA content using the standard DITA Open Toolkit transforms is straight-forward. It is a little more complicated to
deliver such DITA-generated content for context-sensitive Help, but still readily achievable. Likewise, in principle, it
is a trivial matter to incorporate DITA content into embedded user assistance and user interface elements using standard
XML tools and techniques. There is not yet a standard approach to user assistance, so there is also no standard way of
using DITA in this way. Different organizations tend to develop their own individual, custom approaches, using in-house
technical expertise to do so.

Moving beyond simple Help systems, however, is currently difficult, but not impossible. The DITA Technical Committee
is developing some enhancements to the DITA standard to allow these processes to be simplified. However, the apparent
simplicity or complexity of using DITA for Help authoring will be in future determined by the capabilities of DITA
editing and publishing tools. When it comes down to it, DITA is just a standard and good tools are needed to work with
good standards.

Definition of DITA Help

DITA Help, as defined by the OASIS DITA Help SC (DHSC), is:

A set of recommendations for the design and implementation of commonly recognized user assistance components using
the DITA architecture. These components include, but are not limited to, navigation components, context-sensitive
linking, embedded Help, browse sequences, associative links and window definitions. These recommendations can be
used as a foundation for the development of authoring models and tools to support solutions in a variety of formats and
for a variety of platforms.

Verivue | Introduction | 5

Contributors

The following people contributed articles to Version 1.0 of this DITA Help Technologies Guide.

OASIS Affiliation(s)Corporate AffiliationContributor

Member, OASIS DITA Technical Committee Help
Subcommittee

IBM CorporationJeff Antley

Secretary, OASIS DITA Technical Committee Help
Subcommittee

IndividualStan Doherty

Member, OASIS DITA Technical Committee Help
Subcommittee

PTC Corporation / ArbortextChris Goolsby

Member, OASIS DITA Technical Committee Help
Subcommittee

IndividualScott Prentice

Member, OASIS DITA Technical Committee Help
Subcommittee

Sybase Inc.Dave Resch

Chairperson, OASIS DITA Technical Committee Help
Subcommittee

HyperWrite Pty. Ltd.Tony Self

Member, OASIS DITA Adoption Committee

Member, OASIS DITA Technical Committee Help
Subcommittee

IndividualJoe Welinske

Document History

DITA Help Technologies Guide Version 1.0 (March 2009)

Approval StatusReview StatusReview Date(s)Reviewer

YesCompleteOngoingOASIS DITA Technical Committee Help
Subcommittee

No decisionIn progress02/23/09OASIS DITA Technical Committee

No decisionIn progress02/23/09OASIS DITA Adoption Committee

N/AIn progressOngoingDITA Help practitioners

6 | Verivue | Introduction

Help Delivery Technologies

The Help formats discussed in this section can be created from applications or tools that create or process DITA-based
content. The DITA Open Toolkit (DITA-OT) is considered one such tool and is listed along with other commercially
available authoring and publishing tools.

Table 1: Help Technology Comparison

Development ToolsPlatformsHelp Technology

DITA-OT, Adobe RoboHelp, MadCap FlareWindows, Mac, Linux, MobileAdobe AIR-based Help

DITA-OT, Adobe RoboHelp, JustSystems XMetaL,
MadCap Flare, Omni Systems DITA2Go, Oxygen

Windows, Mac, Linux, Unix,
Mobile

Browser-based Help

XML Editor, PTC DMP, Quadralay ePublisher,
XMLMind DITA Converter

MadCap FlareWindowsMadCap DotNet Help

DITA-OT, Omni Systems DITA2Go, Quadralay
ePublisher, XMLMind DITA Converter

Windows, Mac, Linux, UnixEclipse Help

DITA-OT, Adobe RoboHelp, Quadralay ePublisher,
XMLMind DITA Converter

Windows, Mac, Linux, Unix,
Mobile

IDPF ePub Deliverable

DITA-OT, Omni Systems DITA2Go, Quadralay
ePublisher, XMLMind DITA Converter

Windows, Mac, Linux, UnixJava Help

DITA-OT, Adobe RoboHelp, MadCap Flare, Omni
Systems DITA2Go, PTC DMP, Quadralay
ePublisher, XMLMind DITA Converter

WindowsMicrosoft HTML Help

<<none yet?>>WindowsMicrosoft Viewer 1.0 Help

Quadralay ePublisher, Omni Systems DITA2GoWindowsMicrosoft WinHelp

Omni Systems DITA2GoWindows, Mac, Linux, UnixOmni Systems OmniHelp

Quadralay ePublisher, Omni Systems DITA2GoWindows, Mac, Linux, UnixOracle Help

DITA-OT (plus FO processor), Adobe FrameMaker,
DITA Exchange, MadCap Blaze/Flare, PTC

Windows, Mac, Linux, Unix,
Mobile

PDF Deliverable

Arbortext Publishing Engine, Quadralay ePublisher,
SDL XPP, XMLMind DITA Converter

PTC DMPWindows, Mac, Linux, UnixPTC Arbortext DMP Help

Quadralay ePublisherWindows, Mac, Linux, UnixQuadralay WebWorks Help

DITA-OT <<??>>Linux, UnixUNIX Man Pages

Quadralay ePublisherWindows, Mac, Linux, UnixWiki

Adobe AIR-based Help

Adobe AIR-based Help (or "AIR Help") is any user assistance application that was developed from the Adobe AIR
(Adobe Integrated Runtime) development platform. Help authoring tools and a DITA-OT plug-in offer pre-packaged
AIR Help options which provide numerous features and customization options. You can also develop highly customized
user assistance applications from scratch using the open source AIR and Flex development languages.

Verivue | Help Delivery Technologies | 7

Adobe AIR allows the creation of cross-platform desktop applications using web technologies like HTML, JavaScript,
Flex, and Flash. The same AIR application can be installed on Windows, Mac, and Linux systems once the AIR runtime
has been installed (this is similar in concept to a Java application requiring the prior installation of the Java runtime).
AIR Help is just an AIR application that is intended to be used for user assistance.

Most AIR Help systems make use of the embedded HTML browser control that is provided by the AIR runtime. Because
of this, the HTML and JavaScript coding used by your Help system needs to be designed for only one browser. The
embedded browser is based on WebKit, the open source browser project that is also used for the Safari browser.
Developing HTML and JavaScript for a single browser can save considerable time in both development and testing.

One feature of AIR is the ability to automatically check for updates. If an AIR Help system is so enabled, the user is
notified of an available update and it can be easily downloaded and installed. This makes it very easy to provide updated
documentation and Help content as needed.

AIR applications have the ability to read and write to the local file system as well as to remote files on the Internet. AIR
Help systems can also read and parse XML files as well as HTML. This means that your Help system can dynamically
incorporate data from the web as well as communicating with the locally installed software application. It is even possible
to develop an AIR application that can read and display content directly from DITA XML files if so desired.

Because an AIR application can read and write to the local file system, each "air" file must be digitally signed by the
creator. For development purposes you can use a "self-signed" certificate, but before you ship an AIR Help file to your
end users, you should purchase a certificate from a provider.

Tools and methods for creating
AIR Help from DITA:

Leximation provides a plug-in for the DITA-OT which generates an AIR Help
deliverable. This plug-in is intended to be used as a framework from which to create
your own custom AIR Help system, or it can be used as delivered.

DITA Open Toolkit: DITA-OT:
Leximation AIR Help Plug-in

RoboHelp allows the importing of a DITA map and topics which can be exported
as AIR Help. You can also import FrameMaker files (DITA-sourced or binary) into

Adobe RoboHelp

RoboHelp, which can then be used as the source for an AIR Help deliverable. Once
the project and template files are set up, this import and build process can be
automated from the command line.

Flare allows the importing of a DITA map and topics which can be exported as AIR
Help. Flare also imports many other formats which can be combined with the DITA

MadCap Flare

files to create and AIR Help deliverable. Once the project and template files are set
up, this import and build process can be automated from the command line.

Browser-based Help

Browser-based Help is essentially a collection of HTML-based content that is rendered in the end user's web browser.
This type of Help delivery is generally considered to be cross-platform since it can be used on any platform or operating
system that provides a web browser application. There are no specific criteria that define the features that should exist
in browser-based Help; in order to assess this type of Help delivery option, you must review the features provided by
each tool.

Browser-based Help is often called "web help" because the source of the Help system may exist remotely (on the web)
or locally on the file system (or both). It is probably the most flexible type of Help delivery option, but may be the most
time consuming from both a development and testing perspective, since you will need to design for multiple web browsers
and operating systems.

We identify two types of browser-based Help, "generic" and "enhanced." Generic browser-based Help has no specific
installation requirements, meaning that it should function equally well on all platforms in all browsers, with no additional
tool support required for deployment. Enhanced browser-based Help also runs in a web browser, but provides additional

8 | Verivue | Help Delivery Technologies

features that require a specific browser or platform, or the installation of additional technologies to support those features.
In some cases the same tool will create both types of browser-based Help and will be listed twice.

Tools and methods for creating
"generic" Browser-based Help
from DITA:

The DITA-OT provides standard transformations to generate browser-based Help.
At this time the default "XHTML" target provides a "Contents" file and topics

DITA Open Toolkit: DITA-OT:
Browser-based Help

which are designed to be wrapped up in a frameset, however this frameset must be
created manually or by other means. There are additional OT plugins that will
provide additional support and features.

Features: Contents, Index

RoboHelp allows the importing of a DITA map and topics which can be exported
as web help. You can also import FrameMaker files into RoboHelp, which can then

Adobe RoboHelp

be used as the source for this deliverable. The "generic" output options from
RoboHelp are called "WebHelp" and "FlashHelp."

Features: Contents, Index, Search, Browse

XMetaL provides a default transformation option which generates a web help
output.

JustSystems XMetaL

Features: Contents, Index, Search

Flare allows the importing of a DITA map and topics which can be exported as a
format called "WebHelp."

MadCap Flare

Features: Contents, Index, Search, Browse

DITA2Go exports a browser-based Help format called "OmniHelp" as one of its
default options.

Omni Systems DITA2Go

Features: Contents, Index, Search, Browse

Oxygen provides a default transformation option which generates a web help output.#unique_31

Features: Contents, Search

ePublisher exports from DITA, Word, and FrameMaker documents to a
browser-independent format called "WebWorks Help."

Quadralay ePublisher

Features: Contents, Index, Search, Browse

XMLmind DITA Converter provides a default transformation option which generates
a web help output.

XMLMind DITA Converter

Features: Contents, Browse

Tools and methods for
creating "enhanced"
Browser-based Help from
DITA:

RoboHelp allows the importing of a DITA map and topics which can be exported as
webhelp. You can also import FrameMaker files into RoboHelp, which can then be

Adobe RoboHelp

used as the source for this deliverable. The "enhanced" output options from RoboHelp
are called "WebHelp Pro" and "FlashHelp Pro" which are server-based versions of their
generic web help options.

Requirements: Apache web server, RoboHelp Server

Features: Contents, Index, Search, Browse, Usage tracking, Project merging, Increased
speed

Verivue | Help Delivery Technologies | 9

Tools and methods for
creating "enhanced"
Browser-based Help from
DITA:

Eclipse Help is a browser-based Help format that requires the installation of Java and
is installed on a web server.

Eclipse Help

Requirements: Web server, Java

Features: Contents, Index, Search, Browse, <<MORE?>>

Flare allows the importing of a DITA map and topics which can be exported as a format
called "WebHelp Plus."

MadCap Flare

Requirements: IIS web server, Windows Indexing Service

Features: Contents, Index, Search, Browse, Faster search, Search of binary files (PDF,
DOC, etc)

PTC DMP provides a default transformation option which generates a custom WebHelp
output.

PTC Arbortext Digital Media
Publisher

Requirements: Java-based server delivery or application integration.

Features: Contents, Index, Search, Filtering, Bookmarks, Comments, Multiple languages
in single Help system

ePublisher exports from DITA, Word, and FrameMaker documents to Java Help and
Eclipse Help in addition to multiple Wiki formats as possible browser-based Help
options.

Quadralay ePublisher

Requirements: Web server, Java

Features: Contents, Index, Search, Browse, <<MORE?>>

MadCap DotNet Help

<<basic info about the dotnet technology>>

<<more info about the dotnet technology>>

<<DITA-specific issues>>

Tools and methods for creating DotNet Help from
DITA:

Currently the only DITA-based tool that exports DotNet Help is
Flare.

MadCap Flare

<<more?>>

<<references for more info>>

Eclipse Help

<<basic info about the eclipse help technology>>

<<more info about the eclipse help technology>>

10 | Verivue | Help Delivery Technologies

<<DITA-specific issues>>

Tools and methods for creating Eclipse Help
from DITA:

The DITA-OT provides standard transformations to generate eclipse
Help.

DITA Open Toolkit

<<more?>>

<<references for more info>>

Exports Eclipse Help as one of its default options.Omni Systems DITA2Go

<<more?>>

<<references for more info>>

Quadralay ePublisher ...Quadralay ePublisher

<<more?>>

info...XMLMind DITA Converter

<<more?>>

<<references for more info>>

Others ...Others??

<<more?>>

<<references for more info>>

IDPF ePub Deliverable

An ePub (or more correctly "EPUB") is actually a collection of files wrapped up in a single file archive container (like
a CHM). These files define the content, navigation and formatting of the deliverable. An ePub is viewed on a dedicated
eBook device or with an eBook reader application. ePub is just one of a number of eBook formats, but it is the most
widely accepted by reader applications and devices. Although ePub is not a native format for the Amazon Kindle, an
open (non-DRM) ePub can be converted into the MOBI format which can be read on a Kindle.

The ePub specification is maintained by IDPF (International Digital Publishing Forum). ePub 2.0 Became an offical
standard in September 2007, superseding the older Open eBook standard from 1999 ("OEB"). ePub 2.0.1 was approved
in May 2010 and is the current stable release. The ePub 3.0 first public draft was released in Feb 2011.

The ePub specification is a combination of the following specs:

Defines the standard for representing the content of electronic publications.Open Publication Structure (OPS)

Defines the structure and semantics as well as the mechanism by which the
various components of an OPS publication are related.

Open Packaging Format (OPF)

Defines the mechanism by which all components of an electronic publication
are packaged into a single deliverable.

Open Container Format (OCF)

The ePub specification provides for a navigation component (a TOC), but no index. An index can be created as pages
at the end of the book, but it's not an integral part of the specification. Content within the document can contain most
of the objects that you see in HTML, tables, lists, images, as well as CSS-defined inline formatting. It is important to
note that although the ePub specification for content is based on XHTML 1.1, there are many exceptions, so you cannot
assume that whatever displays in a web browser will work in an eBook reader. In fact, you will find that no two eBook
readers will render the same content in the same way, so in general it's best to keep the formatting and structure as simple
as possible.

Verivue | Help Delivery Technologies | 11

The underlying technologies in an ePub collection are XML, HTML, and CSS. The content may include DRM (digital
rights management) or be open (DRM restricts the use on specific readers). When viewed in a reader, the content is
reflowed to fit the constraints of the rendering device or application. This is similar to the way HTML displays in a web
browser and unlike a PDF which retains its formatting as intended by the author. This format works well on a variety
of screen sizes, but certain types of objects (tables in particular) may have trouble on very small screens (phones). Most
ePub readers work with a screen-based "paged" concept, trying to emulate a book. This means that the content is reflowed
and paged based on the available screen real estate and the current zoom scaling. When you change the font size in an
ePub reader (effectively changing the zoom scaling), you'll typically see the page numbers update to accommodate the
new layout. Because of this you can't refer to page numbers in an ePub since they will be different for each device and
user settings.

Tools and methods for creating
ePub deliverables from DITA:

DITA for Publishers generates both ePub and Kindle eBook formats from DITA
content through the DITA-OT. This plugin also provides a number of

DITA Open Toolkit: DITA-OT:
DITA for Publishers Plug-in

specializations for common publishing components, as well transformation
frameworks for converting styled Word documents to DITA and for generating
InCopy and InDesign documents from DITA content.

RoboHelp allows the importing of a DITA map and topics which can be exported
as ePub. You can also import FrameMaker files (DITA-sourced or binary) into

Adobe RoboHelp

RoboHelp, which can then be used as the source for an ePub deliverable. Once
the project and template files are set up, this import and build process can be
automated from the command line.

ePublisher generates ePub as one of its standard output formats from DITA source
as well as from FrameMaker or Word.

Quadralay ePublisher

XMLmind DITA Converter (ditac) generates ePub as one of its standard output
formats from DITA source files.

XMLMind DITA Converter

Java Help

<<basic info about java help>>

<<more info about java help>>

<<DITA-specific issues>>

Tools and methods for creating Java Help
from DITA:

The DITA-OT provides standard transformations to generate java
Help.

DITA Open Toolkit

<<more?>>

<<references for more info>>

Exports JavaHelp as one of its default options.Omni Systems DITA2Go

<<more?>>

<<references for more info>>

Quadralay ePublisher ...Quadralay ePublisher

<<more?>>

info...XMLMind DITA Converter

12 | Verivue | Help Delivery Technologies

Tools and methods for creating Java Help
from DITA:

<<more?>>

<<references for more info>>

Others ...Others??

<<more?>>

<<references for more info>>

Microsoft HTML Help

(from wikipedia) Microsoft Compressed HTML Help (.CHM) - Based on compiled HTML and other data such as images
and JavaScript. HTML Help 1.0 was released in 1997. In 2006, it was available from Microsoft as HTML Help 1.4.

<<more info about html help>>

<<DITA-specific issues>>

Tools and methods for creating
HTML Help from DITA:

The DITA-OT provides standard transformations to generate HTML Help.DITA Open Toolkit

<<more?>>

<<references for more info>>

RoboHelp 8 allows the importing of a DITA map and topics which can be
exported as HTML Help. You can also import FrameMaker files into
RoboHelp, which can then be used as the source for this deliverable.

Adobe RoboHelp

<<more?>>

<<references for more info>>

Flare 5 and 6 allows the importing of a DITA map and topics which can be
exported as HTML Help.

MadCap Flare

<<more?>>

<<references for more info>>

Exports HTML Help as one of its default options.Omni Systems DITA2Go

<<more?>>

<<references for more info>>

PTC DMP ...PTC DMP

<<more?>>

<<references for more info>>

ePublisher ...Quadralay ePublisher

<<more?>>

<<references for more info>>

info...XMLMind DITA Converter

Verivue | Help Delivery Technologies | 13

Tools and methods for creating
HTML Help from DITA:

<<more?>>

<<references for more info>>

Others ...Others??

<<more?>>

<<references for more info>>

Microsoft Viewer 1.0 Help

<<basic info about the ms viewer technology>>

<<more info about the ms viewer technology>>

<<DITA-specific issues>>

Tools and methods for creating MS Viewer Help from
DITA:

NOT YET .. RIGHT?DITA Open Toolkit

<<more>>

<<references for more info>>

Others...Others?

<<more>>

<<references for more info>>

Microsoft WinHelp

(from wikipedia) Microsoft WinHelp (.HLP) - Based on the Rich Text Format, this was the industry standard for Windows
3.1 and Windows 95/NT. The popular Windows Help program (WinHlp32.exe) was included with all Windows operating
systems from Windows 3.0 until the Windows XP operating system. However, the help engine is not included with
Windows Vista and is only available as a download.

<<more info about the winhelp technology>>

<<DITA-specific issues>>

Tools and methods for creating WinHelp from
DITA:

DOES THE OT EXPORT WINHELP?? DON'T THINK SO.DITA Open Toolkit

<<more?>>

<<references for more info>>

Exports WinHelp as one of its default options.Omni Systems DITA2Go

<<more?>>

<<references for more info>>

14 | Verivue | Help Delivery Technologies

Tools and methods for creating WinHelp from
DITA:

Quadralay ePublisher ...Quadralay ePublisher

<<more?>>

Omni Systems OmniHelp

<<basic info about the omnihelp technology>>

<<more info about the omnihelp technology>>

<<DITA-specific issues>>

Tools and methods for creating OmniHelp from
DITA:

Currently the only DITA-based tool that exports OmniHelp is
DITA2Go...

Omni Systems DITA2Go

<<more>>

<<references for more info>>

Oracle Help

(from wikipedia) Two formats developed by the Oracle Corporation: Oracle Help for Java (OHJ) and Oracle Help for
Web (OHW).

<<more info about oracle help>>

<<DITA-specific issues>>

Tools and methods for creating Oracle Help from
DITA:

Currently the only DITA-based tool that exports Oracle Help
is DITA2Go...

Omni Systems DITA2Go

<<more>>

<<references for more info>>

Quadralay ePublisher ...Quadralay ePublisher

<<more?>>

PDF Deliverable

The most common use for PDF is to deliver an online or electronic version of a printed book. Because this format does
not reflow or modify the content based on the window size or user's settings, the content creator can be ensured that
what the user sees is exactly what was intended. It is due to this feature of PDF that makes it less likely to be used for
online Help, which is typically not an online representation of a printed book.

Verivue | Help Delivery Technologies | 15

In order to effectively use PDF as an online Help delivery format, the Help developer would probably set the "page size"
to something small enough that the end user would be able to use it while interacting with the application being
documented. PDF documents can contain hyperlinks, which are very important for effective online Help, and it provides
a built-in search mechanism. A PDF that's used for interactive online viewing should also probably not make use of text
columns, while a PDF that's intended for print may make effective use of columns.

Tools and methods for
creating PDFs from DITA:

The default PDF target in the DITA-OT uses XSL-FO and an installed FO rendering
engine to generate PDFs from DITA. There are numerous FO processors available for
this type of use.

DITA Open Toolkit

• Apache FOP
• Renderex XEP
• Antenna House Formatter
• Lunasil Xinc
• Altsoft Xml2PDF

XSL-FO has the benefit of having a very low entry cost since the format itself and at
least one FO processor (Apache FOP) are open source and freely available. Another
significant benefit of XSL-FO is that it is designed to work with all written languages.
On the other hand, XSL-FO development can be very expensive and time consuming
and it does have some formatting and layout limitations. Many of these limitations are
overcome with processor-defined extensions, but because these extensions are specific
to each processor, your FO stylesheets may not be portable.

References to more information on FO processors:

• http://gilbane.com/gilbane_report.pl/94/XSLFO_Ready_for_Prime_Time.html
• http://www.sagehill.net/docbookxsl/FOprocessors.html
• http://en.wikipedia.org/wiki/XSL_Formatting_Objects

FrameMaker natively exports PDFs and can open DITA files created by other authoring
tools.

Adobe FrameMaker

Converts DITA into OpenXML, then opens that in Word for formatting and publishing.DITA Exchange

Both products import DITA, FrameMaker, Word and other formats. They use a
proprietary rendering engine to export to PDF. Provides a GUI for layout and formatting
definition.

MadCap Blaze and MadCap
Flare

High-end PDF formatting and publishing engine.PTC Arbortext Digital Media
Publisher

Quadralay ePublisher can be used to generate PDFs from DITA. ePublisher provides
a graphical user interface for defining the layout and formatting of the PDF and uses
an available FO processor (Apache FOP by default) as the rendering engine.

Quadralay ePublisher

High-end PDF formatting and publishing engine.SDL XPP

Uses the XMLmind XSL-FO Converter to create RTF, WordML, DOCX, or ODT files
from DITA and XSL-FO to allow the export to PDF.

XMLMind DITA Converter

PTC Arbortext DMP Help

<<basic info about the dmp help technology>>

16 | Verivue | Help Delivery Technologies

http://gilbane.com/gilbane_report.pl/94/XSLFO_Ready_for_Prime_Time.html
http://www.sagehill.net/docbookxsl/FOprocessors.html
http://en.wikipedia.org/wiki/XSL_Formatting_Objects

<<more info about the dmp help technology>>

<<DITA-specific issues>>

Tools and methods for creating DMP Help from
DITA:

PTC DMP ...PTC DMP

<<more>>

<<references for more info>>

Others ...Others??

<<more>>

<<references for more info>>

Quadralay WebWorks Help

<<basic info about webworks help>>

<<more info about webworks help>>

<<DITA-specific issues>>

Tools and methods for creating WebWorks Help from DITA:

ePublisher ...Quadralay ePublisher

<<more?>>

<<references for more info>>

UNIX Man Pages

<<basic info about the man page technology>>

<<more info about the man page technology>>

<<DITA-specific issues>>

Tools and methods for creating Man Pages from
DITA:

PEOPLE ARE DOING THIS .. HOW?DITA Open Toolkit

<<more>>

<<references for more info>>

Others...Others?

<<more>>

<<references for more info>>

Verivue | Help Delivery Technologies | 17

Wiki

<<basic info about wiki>>

<<more info about wiki>>

<<DITA-specific issues>>

Tools and methods for creating Wiki from
DITA:

The DITA-OT ... Wikis ??.DITA Open Toolkit

<<more?>>

<<references for more info>>

exports Confluence, MediaWiki, MoinMoinQuadralay ePublisher

<<more?>>

<<references for more info>>

Others ...Others??

<<more?>>

<<references for more info>>

18 | Verivue | Help Delivery Technologies

Help Development Tools

If your company develops content in multiple authoring tools and uses a HAT (Help Authoring Tool) to integrate those
sources into one or more Help deliverables, you can still author in DITA and work with existing HATs.

Figure 1: DITA Source to Existing HATs

The following topics in this section of the DITA Help Technologies Guide explain how to use integrate DITA source
files or DITA output files with existing HATs.

• #unique_41

DITA Open Toolkit

<<info here>>

DITA-OT: PDF

<<info here>>

DITA-OT: Browser-based Help

HTMLSearch Plug-in

The HTMLSearch plug-in for the DITA Open Toolkit builds a keyword-based search index and a default frame-based
user interface for any collection of DITA topics referenced by a DITA map file.

Overview

Nadege Quaine (nquaine@hotmail.com), the contributor of the tocjsbis plug-in, has also contributed this plug-in. As of
this writing, the most current version of the plug-in is dated April 8, 2008 and is distributed as htmlsearch1.04.zip.

The HTMLSearch plug-in first runs the XHTML transform that comes with the DITA-OT and then runs an indexing
application against those XHTML output files. HTMLSearch deposits the keyword index and the supporting JavaScript
worker libraries in a subdirectory named search.

Verivue | Help Development Tools | 19

Figure 2: HTMLSearch JavaScript Output

Each of these JavaScript index files correlates discovered keywords to one or more numerals representing particular
XHTML output topics.

Figure 3: HTMLSearch JavaScript Search Array

The keyword "ant," for example, appears in three XHTML topics. These target topics are referenced numerically (1, 2,
5) and indexed separately in the file search\htmlFileList.js.

20 | Verivue | Help Development Tools

Figure 4: HTMLSearch Keyword-to-Targte-File Array

When you open the default HTMLSearch web page (frameset.html) in the output directory, it opens three frames
containing a keyword input box, some default information about the plug-in, and a splash screen.

Figure 5: HTMLSearch UI

Results from a keyword search are displayed in the right-hand pane.

Verivue | Help Development Tools | 21

Figure 6: HTMLSearch UI

22 | Verivue | Help Development Tools

Figure 7: HTMLSearch UI

Clicking a hyperlink in the results list displays the target topic containing the keyword in the same right-hand pane.

The plug-in works fine in all versions of the DITA-OT because it is really interacting with XHTML output from the
DITA-OT, not Open Toolkit resources per se. Beyond minor variations in the way the HTML displays in different
browsers, HTMLSearch output works reliably in all modern browsers.

Setup and configuration

The HTMLSearch plug-in is a free download from the Yahoo DITA-OT site.

http://tech.groups.yahoo.com/group/dita-users/files/Demos/

After you have unzipped this archive to a local directory, you can browse the README.txt file to get a feel for what
HTMLSearch offers and how you can install it in your DITA-OT demo directory.

Verivue | Help Development Tools | 23

http://tech.groups.yahoo.com/group/dita-users/files/Demos/

Figure 8: HTMLSearch Plug-in Installation

Installing the plug-in presents no surprises.

1. Copy the un-archived htmlsearch subdirectory into the demo subdirectory of your DITA Open Toolkit directory.
2. Open a shell command window from your DITA-OT directory.
3. Enter the following command to integrate the new plug-in or plug-ins with your current DITA-OT environment.

ant
-f integrator.xml

4. From the DITA-OT root directory, enter the following command to build the sample DITA topics.

ant -f demo/htmlsearch/buildsample.xml
xhtml2search

5. Load the newly generated demo\htmlsearch\out\frameset.html file in your browser.

That is about all that is involved with installing and configuring the plug-in.

Authoring

There are no DITA source-level authoring considerations for this plug-in; it works on XHTML output topics generated
by the DITA-OT XHTML transform.

Integration

Integrating output from the HTMLSearch plug-in with tocjsbis output or with your local favorite HTML implementation
is possible, but challenging. If you have some experience modifying (or hacking) HTML frames and JavaScript code,
have at it. Otherwise, you might consider continuing to use HTMLSearch output as a stand-alone complement to your
other output transformations.

Consider the following tips when planning your customization effort.

24 | Verivue | Help Development Tools

• Quotation marks in DITA map navtitles: If the navtitles in your DITA map file(s) contain quotation marks, remove
them before running the HTMLSearch plug-in. HTMLSearch passes these quotation marks through to its indexed
output, effectively breaking JavaScript syntax in the search\htmlFileInfoList.js file.

• Directory levels for XHTML output: The HTMLSearch plug-in writes the hyperlinked results of a keyword search
to a frame named contentwin. The initial static HTML loaded into that frame lives in the output subdirectory
named sub. The filepaths in the hyperlinks written to that frame, therefore, are relative to an HTML file in sub. If
you are using default XHTML output from the tocjs or tocjsbis, you may need to edit the JavaScript code that builds
that relative path. Test removing the three characters "../" in line 131 of search\nwSearchFnt.js if you
need to adjust HTMLSearch hyperlink paths to match target directory paths from tocjsbis or other DITA-OT XHTML
output transformations.

linkString = ""+tempTitle+"";

• Target frame name for keyword search input box: The HTMLSearch plug-in loads its input box into a frame named
"searchwin" in its default interface. To integrate that input box into a different set of named HTML frames, you will
need to change the name of the input box frame from "searchwin" to the new target frame name in lines 32, 39, 47,
242, and 248 in search\nwSearchFnt.js. For example, change "searchwin" to "your_frame_name" in the
following line in search\nwSearchFnt.js:

expressionInput=parent.frames['searchwin'].document.ditaSearch_Form.textToSearch.value

• Target frame name for keyword search results: The HTMLSearch plug-in writes its list of keyword search results
(hits) to a frame named "contentwin" in its default interface. To have those results displayed in a different frame in
your implementation, you will need to change the name of the input box frame from "contentwin" to the new target
frame name in lines 146 and 414 in search\nwSearchFnt.js. For example, change "contentwin" to
"your_frame_name" in the following line:

with (parent.frames['contentwin'].document) {

• Target frame name for target topics: The HTMLSearch plug-in displays target topics in the same "contentwin" frame
as the search results. If you would like to have both the list of search results and displayed target topics displayed
simultaneously in separate frames, you will need to change that way that HTMLSearch builds hyperlinks. Specifically,
you'll need to add an HTML "target=framename" attribute to line 131 in search\nwSearchFnt.js. For example,
insert the string target='topicwin' (or your_frame_name) into line 131. Here's the original ...

linkString = ""+tempTitle+"";

and the update ...

linkString = "<a href=\"../"+tempPath+"\"
target='topicwin'>"+tempTitle+"";

After this change, HTMLSearch builds hyperlinks in the keyword search results frame that specify a different target
window for displaying target XHTML topics.

These are the most visible variables that you'll need to consider when customizing HTMLSearch output for your own
help implementation.

Output

Although the customization process can sound scary, it does produce some very nice results. Here is a prototype Help
implementation for my current company. The goal here is to integrate the output from HTMLSearch with output from
tocjsbis in a garden-variety three-tab, multi-frame HTML shell. Initially, the search UI is linked to a Search tab.

Verivue | Help Development Tools | 25

Figure 9: Integrated HTMLSearch

When the customer clicks the Search tab, a re-implementation of the HTMLSearch UI is displayed.

Figure 10: Integrated HTMLSearch

Search results appear in a lower frame in the left-hand navigation frame.

26 | Verivue | Help Development Tools

Figure 11: Integrated HTMLSearch

When the customer clicks one of the hyperlinks in the results list, that topic is displayed in the right-hand frame.

Verivue | Help Development Tools | 27

Figure 12: Integrated HTMLSearch

Summary

Customizing HTMLSearch to integrate it with tocjsbis or other XHTML output transformations from the Open Toolkit
goes a long way toward making DITA-generated Help more usable and familiar to contemporary audiences.

TOCJS and TOCJSBIS Plug-ins

The tocjs DITA-OT plug-in and its more recent enhancement named tocjsbis generate a JavaScript-based table of contents
page for any DITA topics that you reference in your .ditamap file.

Overview

These plug-ins are very popular in the DITA community; we even use them on the DITA Technical Committee for our
DITA 1.2 specifications.

28 | Verivue | Help Development Tools

Figure 13: OASIS DITA Technical Specification in tocjs

• tocjs: The tocjs plug-in was developed by Shawn McKenzie, currently working at Sophos in beautiful Vancouver,
BC (Canada). The tocjs plug-in executes after the standard DITA-OT XHTML transform, so each tocjs TOC entry
knows the name of its target XHTML topic.

• tocjsbis: The tocjsbis plug-in was written by Nadege Quaine and adds the important feature of topic synchronization,
i.e. the highlighted topic entry in the TOC updates in sync with the topic being displayed in the contents frame. The
plug-in achieves synchronization by adding a unique ID to each XHTML output topic (<meta
content="id-tocjsbis_about" name="DC.Identifier" />) and by synchromizing the TOC entry
against that topic ID. If you have generated HTML output from RoboHelp or WebWorks Publisher, this technique
should be familiar.

If you are generating HTML output of any sort from your DITA sources, you should test one or both of these plug-ins.
I use tocjsbis in my context-sensitive Help builds where I work. To the extent that the tree control in tocjs and tocjsbis
are based on the Yahoo tree control library, you can customize the way that the final TOC tree displays and behaves in
your Help system. They can be tricky, but customizations work.

Setup and configuration

The tocjs and tocjsbis plug-ins are free downloads from the Yahoo DITA-OT site.

http://tech.groups.yahoo.com/group/dita-users/files/Demos/

Verivue | Help Development Tools | 29

http://tech.groups.yahoo.com/group/dita-users/files/Demos/

Figure 14: tocjs Download

After you have unzipped these archives to a local directory, you can browse the documentation to get a feel for what
tocjs offers and how you can install it in your DITA-OT directory.

Figure 15: tocjs Installation

The pre-built documentation for tocjs lives in the /docs subdirectory.

30 | Verivue | Help Development Tools

Figure 16: tocjs Documentation

Installing tocjs or tocjsbis is very straightforward.

1. Copy the un-achived tocjs or tocjsbis subdirectory into the demo subdirectory of your DITA Open Toolkit directory.

2. Open a shell command window from your DITA-OT directory.
3. Enter the following command to integrate the new plug-in or plug-ins with your current DITA-OT environment.

ant
-f integrator.xml

4. Change directory into the demo/tocjs or demo/tocjsbis subdirectory and enter the following command to
build the sample DITA topics.

ant
-f demo/tocjs/buildsample.xml sample2tocjs

Verivue | Help Development Tools | 31

5. Load the newly generated demo\tocjs\out\sample\frameset.html file in your browser.

If you are considering customizations to tocjs or tocjsbis, consult the documentation for the Yahoo UI tree control at
the following URL.

http://developer.yahoo.com/yui/treeview/

Figure 17:Yahoo UI Library

That is about all that is involved with installing and configuring tocjs and tocjsbis.

Authoring

These plug-ins piggy-back whatever investment you have already made in authoring your DITA topics and map files.
Beyond setting up a new ant script for tocjs or tocjsbis, there is nothing additional required.

Integration

The tocjs and tocjs plug-ins present few integration problems or opportunities, especially as regards managing context
sensitivity between Help output and the calling software application. Many DITA Help writers customize the
frameset.html file that ships with the tocjs plug-in to personalize or brand the final product. Here's what Shawn
McKenzie does with tocjs on his Sophos corporate website.

32 | Verivue | Help Development Tools

http://developer.yahoo.com/yui/treeview/

Figure 18: Sample tocjs Documentation

Wrapping other navigational devices around the tocjs output is not difficult. I add the conventional tabs for tri-pane
Help systems.

Figure 19: Integrated tocjsbis

In terms of translation, note that all the text strings associated with entries in the TOC tree are stored in one file named
toctree.js. These files can be localized, for sure, but they are not very friendly. To make life easier on our sisters
and brothers in L10N, you can post-edit this toctree.js file to swap JavaScript resource strings for literal strings.

Output

Here again is a link to a live demo of tocjs running at Sophos.

http://ca-repo1.sophos.com/docs/ws1000/

Verivue | Help Development Tools | 33

http://ca-repo1.sophos.com/docs/ws1000/

Summary

If you are comfortable customizing XHTML output to build an HTML-based help system, you should consider tocjs
and tocjsbis. They are sufficiently lightweight to work in Help systems or web-based portals.

DITA-OT: Eclipse Help

According to the Eclipse Web site, the Eclipse integrated development environment (IDE) is an "open source platform
comprised of extensible frameworks, tools and runtimes for building, deploying and managing software across the
lifecycle." Eclipse can be installed on Windows, Macintosh OS X, or Linux (32–bit or 64–bit).

The Eclipse Help system is itself extensible, allowing additional documentation to be delivered using Eclipse's plug-in
framework. It can be used in three different modes: workbench, standalone, and infocenter.

• Workbench mode is for documentation for tools integrated into the Eclipse IDE.
• Standalone mode serves a similar purpose, but is used for software that is not Eclipse-based.
• Infocenter mode allows the Eclipse Help system to deliver topics through the World Wide Web. Local instances of

the Eclipse Help system can also retrieve and integrate content from a remote server running Help in infocenter
mode.

The Eclipse Help system contains search and indexing features, allows the triggering of workbench actions or Eclipse
code from within Help topics, supports dynamic content and link filtering (when using XHTML), and supports
globalization. You can even use Eclipse to manage the development, building, and testing of your DITA-sourced
documentation plug-ins.

Overview

The Eclipse Help displays HTML- or XHTML-formatted topics, and organizes the topics according to the XML-formatted
Table of Contents (TOC) files that are provided in each plug-in that contains documentation.

For more information on developing Help for Eclipse, refer to the documentation for the current Eclipse release, available
on http://www.eclipse.org.

Setup and configuration

DITA Open Toolkit

The DITA Open Toolkit contains the transformations necessary to produce all of the files required for Eclipse Help
plug-ins. No special setup or configuration is necessary. Refer to installation and configuration instructions within the
DITA Open Toolkit to set it up.

Eclipse

Download Eclipse from http://www.eclipse.org. Installation involves unpackaging an archive file to any location on
your machine. A Java Runtime Environment (JRE) is required. Eclipse manages your development resources in
workspaces, that also can be any location on your machine. You are prompted to select or create a workspace location
to use each time you start Eclipse.

Eclipse documentation plug-ins

Documentation for the Eclipse Help system can be included in any plug-in, as long as the plug-in extends Eclipse's
org.eclipse.help.toc extension point. It is up to the individual organization whether to include documentation
inside code plug-ins or in their own plug-ins. There are several advantages to the latter, such as unambiguous plug-in
ownership, or if the contents of the documentation plug-in will be globalized.

Plug-ins are named according to the Sun Java package naming guideline (for example, org.eclipse.help). Plug-ins
that contain only documentation typically have .doc at (or near) the end of the plug-in name.

Within a plug-in, two XML files are required in the root (a manifest and a table-of-contents (TOC) file). Any number
of content files may be included, in any location within the plug-in. The TOC file can be generated from a DITAMAP
file, and HTML files will be generated from DITA files.

34 | Verivue | Help Development Tools

http://www.eclipse.org
http://www.eclipse.org

Plug-ins can be delivered to the Eclipse run-time environment as folders or as Java archive (JAR) files. Documentation
within folders may exist in archives (for example, doc.zip). Archives cannot be nested (that is, a doc.zip cannot
be included in a plug-in delivered as a JAR file).

Authoring

Author DITA topics as you would normally. You can include any number of topic files, folders, DITA maps, or other
file-based resources that can be delivered within browser environment (for example, images or multimedia).

When creating links to other topics (XREFs or LINKs), note links to topics in other plug-ins should be coded as follows:

PLUGINS_ROOT/PLUGIN_ID/path/to/target.html

Where PLUGINS_ROOT/ indicates that the target file is in another plug-in and PLUGIN_ID is the ID of the plug-in
as declared in the manifest file. Refer to the Eclipse documentation regarding Help server and file locations in Help
content: http://www.eclipse.org/documentation/.

Integration

To integrate your content into Eclipse, manually create a plugin.xml file that points to one or more TOC files in the
plug-in, and a manifest.mf file (in a META-INF folder).

Plugin.xml file

This example plugin.xml file is similar to the one provided with the Garage sample in the DITA-OT. This example
shows the minimum amount of information required to declare a TOC file to the org.eclipse.help.toc extension
point.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin>
 <extension point="org.eclipse.help.toc">
 <toc file="hierarchy.xml"/>
 </extension>
</plugin>

Manifest.mf

In current versions of Eclipse, some of the manifest information, such as the plug-in ID, is separated into the
manifest.mf file. Manifest.mf is stored in the plug-in in a folder named META-INF For the Garage sample,
here is a possible manifest:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Garage Plug-in
Bundle-SymbolicName: org.dita.garage.doc
Bundle-Version: 1.0.0

Note that what was the plug-in ID in the plugin.xml file is referred to as the Bundle-SymbolicName in the
manifest.mf file.

TOC file

TOC files are generated from DITA map files. You may include any number of TOC files in a plug-in, as long as they
are declared in the plugin.xml file.

From the Garage sample, here is hierarchy.xml:

<?xml version="1.0" encoding="UTF-8"?>
<?NLS TYPE="org.eclipse.help.toc"?>
<toc label="Garage (hierarchy)" topic="concepts/garagetasks.html">
<topic label="Garage Tasks" href="concepts/garagetasks.html">
<topic label="Organizing the workbench and tools" href="tasks/organizing.html"/>

<topic label="Taking out the garbage" href="tasks/takinggarbage.html"/>
<topic label="Spray painting" href="tasks/spraypainting.html"/>

Verivue | Help Development Tools | 35

http://www.eclipse.org/documentation/

<topic label="Washing the car" href="tasks/washingthecar.html"/>
</topic>
<topic label="Garage Concepts" href="concepts/garageconcepts.html">
<topic label="Lawnmower" href="concepts/lawnmower.html"/>
<topic label="Paint" href="concepts/paint.html"/>
<topic label="Shelving" href="concepts/shelving.html"/>
<topic label="Tool box" href="concepts/toolbox.html"/>
<topic label="Tools" href="concepts/tools.html"/>
<topic label="Water hose" href="concepts/waterhose.html"/>
<topic label="Wheelbarrow" href="concepts/wheelbarrow.html"/>
<topic label="Workbench" href="concepts/workbench.html"/>
<topic label="Windshield washer fluid" href="concepts/wwfluid.html"/>
</topic>
</toc>

Building DITA content in Eclipse

It is possible to use Eclipse as your IDE for developing, building, and testing your Eclipse plug-in projects. Refer to the
DITA Open Toolkit User Guide topic entitled "Running DITA builds in Eclipse."

Output

Detailed instructions exist in the DITA-OT Help for producing Eclipse Help. Refer to DITA Open Toolkit User Guide
topic entitled "Processing to Eclipse Help targets."

The image shows the content after it has been transformed and the plug-in has been added to a basic Eclipse run-time
environment.

36 | Verivue | Help Development Tools

Figure 20: Eclipse Run-time Environment

If you intend to take advantage of active Help or the dynamic content capabilities within the Eclipse Help system, such
as link filtering, be prepared to create your own post-processing transforms to incorporate the required markup.

Verivue | Help Development Tools | 37

Summary

Whether creating documentation for an Eclipse-based application or for a standalone Eclipse Help implementation,
consider DITA for your source content. Since Eclipse Help is one of the key output targets for the DITA Open Toolkit,
setup, configuration, and processing are all straightforward and well-documented. For additional instructions on such
advanced Eclipse Help capabilities as active Help, dynamic content, or remote Help, refer to the current Eclipse
documentation, located at http://www.eclipse.org/documentation/.

Jeff Antley

IBM Corporation

OASIS DITA Help Subcommittee

CSHelp Plug-in

The cshelp plug-in generates contexts files in the format that Eclipse-based applications use for Context-Sensitive Help.
The standard DITA-OT transforms can be used to produce XHTML output. This chapter focuses on producing Eclipse
contexts files.

Overview

If you develop code plug-ins that extend the Eclipse user interface or develop documentation for development teams
that do, you either already are or should be incorporating Context-Sensitive Help into the user interface.

The Eclipse user interface allows you to display Context-Sensitive Help as an infopop or in the Dynamic Help view.
The latter option includes information and functionality in addition to the contents of the Context-Sensitive Help topic.

38 | Verivue | Help Development Tools

http://www.eclipse.org/documentation/

Figure 21: Eclipse User Interface and Help

For more information on contexts files and developing Context-Sensitive Help for Eclipse, refer to the documentation
for the current Eclipse release, available on http://www.eclipse.org.

The cshelp plug-in was developed by a team of writers representing the various software brands in IBM, led by the
author. It is currently in use by products in several brands that develop applications for the Eclipse environment.

Setup and configuration

The cshelp plug-in is available from the DITA-OT site on sourceforge.net:

http://sourceforge.net/project/showfiles.php?group_id=132728

Verivue | Help Development Tools | 39

http://www.eclipse.org
http://sourceforge.net/project/showfiles.php?group_id=132728

Figure 22: cshelp Plug-in Download

Download and unzip the plug-in into your DITA-OT installation (typically, the <DITA-OT>/demo directory).

Figure 23: cshelp Installation

To complete the installation, open a command prompt and run the Ant integrator build file from your DITA-OT directory
(ant -f integrator.xml).

Authoring

The structure of a cshelp DITA file mirrors that of an Eclipse contexts file. A contexts file is an XML file that contains
one or more context elements inside a containing <contexts> element. Each context element contains a unique ID,
the text of the Context-Sensitive Help topic, and optionally, links to Help topics in the Help system.

<?xml version="1.0" encoding="UTF-8"?>
<?NLS TYPE="org.eclipse.help.contexts"?>
<contexts>
 <context id="new_wizard_selection_wizard_page_context">
 <description>

Choose the type of resource you would like to create.
</description>
 <topic label="Resources" href="concepts/concepts-12.htm"/>
 </context>
 …
</contexts>

Similarly, a cshelp DITA file contains one or more cshelp elements inside a containing <cshelp> element (which is
otherwise unused). Each nested cshelp element contains a unique ID, text, and related links.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE cshelp PUBLIC "-//OASIS//DTD DITA CSHelp//EN"
 "..\demo\cshelp\dtd\cshelp.dtd">
<cshelp id="csh_outer_container" xml:lang="en-us">
 <title>sample1_context</title>
 <shortdesc></shortdesc>
 <csbody></csbody>
 <cshelp id="new_wizard_selection_wizard_page_context">
 <title></title>
 <shortdesc>Choose the type of resource you would like
to create.</shortdesc>
 <csbody>
 </csbody>
 <related-links>

40 | Verivue | Help Development Tools

 <link format="htm" href="concepts/concepts-12.htm" scope="peer">
 <linktext>Resources</linktext>
 </link>
 </related-links>
 </cshelp>
 ...
</cshelp>

It is important to note that the only highlighting markup that can be used inside Eclipse Context-Sensitive Help is the
bold () tag, and the only formatting options are the carriage return and the space key. All of these are permissible
only inside the description element. When sourcing Context-Sensitive Help in DITA, all of the highlighting and formatting
markup options that are available in the shortdesc and body elements of the topic type may be used. The transform that
produces a contexts file from the DITA source produces output that conforms to the restrictions of the contexts file. In
most cases, the output approximates what would be seen in HTML output, but some DITA elements are simply ignored:

• Table and simpletable
• Image (only the text in the <alt> attribute or tag will display)
• Object
• Figure (only the text in the <desc> tag will display)
• Footnote
• Indexterm, indextermref
• Xref

Use as many DITA files per Eclipse plug-in that you want, and create a simple DITA map file inside the plug-in that
points to each of them. Include any copyright information in the DITA map; this information will appear in comment
tags in each generated contexts file. Note, however, that relationship tables (reltables) cannot be used to create related
links when producing Eclipse contexts files.

Integration

Refer to the Eclipse documentation for instructions on incorporating context IDs in code plug-ins. This information is
typically in Platform Plug-in Developer Guide > Programmer's Guide > User assistance support > Help > Context-Sensitive
Help > Declaring a context ID.

http://www.eclipse.org/documentation/

Output

When processing the DITA map file, there are two parameters that need to be set:

• Use the switch that identifies a separate XSL file, and point to the dit2context.xsl file in the cshelp/xsl
directory. For example, if you are using Ant:

<property name="args.xsl"
value="${dita.dir}${file.separator}demo${file.separator}
cshelp${file.separator}xsl${file.separator}dit2context.xsl"/>

• Use the switch that indicates the output extension of the generated file will be XML. For example, if you are using
Ant:

<property name="args.outext" value="xml"/>

The contents of the generated XML file should resemble the example contexts file in the Authoring section.

Summary

Context-Sensitive Help is an integral part of the user assistance for software applications. If you already use DITA to
source your Eclipse documentation plug-ins, sourcing the Context-Sensitive Help in DITA allows you to maintain a
consistent authoring and build environment and consistently formatted output.

Jeff Antley

Verivue | Help Development Tools | 41

http://www.eclipse.org/documentation/

IBM Corporation

OASIS DITA Help Subcommittee

Eclipse_CSH Plug-in for Dynamic Context-Sensitive Help

Eclipse plug-ins generated by the DITA-OT, with the eclipse_csh plug-in, provide dynamic context-sensitive Help for
Eclipse-based applications that define abstract Help contexts and use the ContextProviderDelegate (supplied by
org.eclipse.datatools.help).

Abstract Help contexts allow UI developers to isolate the Eclipse Help system's concrete Help context ID strings and
Help search expressions from the UI implementation (Java code). That gives user assistance (UA) content developers
more control over Help contexts and context-specific content, so they can provide more useful, and more precisely
targeted, dynamic context-sensitive help.

Overview

The Eclipse Help system uses two key pieces of data to find context-specific UA content for dynamic context-sensitive
Help:

• A Help context ID string, which associates a UI context with a particular chunk of context-specific content
• A context-specific Help search expression, which the Help system uses to find additional, related content in its online

documentation "library"

For many developers, one of the main problems with Eclipse dynamic context-sensitive Help is the necessity to embed
Help context ID strings and context-specific Help search expressions in the UI code. That can reduce code portability,
and it forces recompiling whenever a Help context ID string or a Help search expression needs to be changed. It makes
UI implementation more cumbersome, particularly in an agile development (or RAD) environment. Unless all UI contexts
are explicitly specified, and frozen in advance, developers are tempted to delay implementing context-sensitive Help to
avoid otherwise unnecessary recompiling and rebuilding.

By using the org.eclipse.datatools.help.ContextProviderDelegate (the DTP help-helper, provided by the Eclipse Data
Tools Platform project), and defining abstract Help contexts in their code, UI developers are free to implement dynamic
context-sensitive Help at any point in the UI development cycle.

By using the DITA-OT, with the eclipse_csh plug-in, UA content developers (writers) and information architects can
define the associations of Help context IDs with UA content, using special context-sensitive Help markup in a standard
DITA map that produces an Eclipse online documentation plug-in. Content developers are free to revise the UI-UA
context associations and context-specific Help search expressions at any time, without impacting UI code.

Setup and configuration

The eclipse_csh plug-in is available from the DITA-OT project on sourceforge.net: [URL pending final release to open
source]

Download the eclipse_csh zip file (eclipse_csh_1.0.0.zip), and extract all files and folders into the plugins/
directory, in a previously installed DITA-OT.

Run the DITA-OT integrator.xml Ant buildfile to complete the plug-in installation.

Authoring

Any DITA map document that defines an Eclipse online documentation (doc) plug-in can be modified to also define a
corresponding context-sensitive Help plug-in, by inserting the appropriate context-related markup.

Note: The DITA map markup described in this section does not require any DITA specializations; it relies entirely
on standard DITA map elements and attributes.

42 | Verivue | Help Development Tools

Identifying the UI plug-ins associated with Help contexts

DITA maps for context-sensitive Help plug-ins must contain a <topicmeta> element as the first child of the <map>
element, and for each UI plug-in whose Help context IDs are identified in the map, that <topicmeta> element must
contain one <othermeta> element that identifies the UI plug-in.

The <othermeta> element's name and content attribute values will be used to identify UI plug-ins in the
org.eclipse.help.contexts extension, which is declared in the plug-in manifest (plugin.xml file) of the context-sensitive
Help plug-in. For example:

<map id="org.eclipse.datatools.ui.doc">
 <topicmeta>
 ...
 <othermeta name="ui-plugin"
 content="org.eclipse.datatools.connectivity.ui"/>
 <othermeta name="ui-plugin"
 content="org.eclipse.datatools.connectivity.ui.dse"/>
 </topicmeta>
 ...
</map>

The name attribute value "ui-plugin" is a fixed, literal string. The content attribute value is the Eclipse plug-in ID of a
UI plug-in.

Defining related topics associated with Help contexts

DITA maps for context-sensitive Help plug-ins contain <resourceid> elements, each of which identifies a concrete
Help context ID associated with a DITA topic.

The <resourceid> element is a child of a <topicmeta> element. For example:

 <topicmeta>
 <resourceid id="help_context_ID_string"/>
 </topicmeta>

For each DITA topic associated with a Help context ID, the <topicref> element that points to that topic contains a
<topicmeta> element (with a <resourceid> child element). This defines the association of a Help context ID
with that topic. For example:

 <topicref navtitle="label attribute in contexts.xml topic element"
 href="path/to/topic.xml">
 <topicmeta>
 <resourceid id="help_context_ID_string"/>
 </topicmeta>
 </topicref>

Any DITA topic can be mapped to multiple Help context IDs by inserting as many <resourceid> child elements as
necessary in the <topicmeta> element. For example:

 <topicref navtitle="label attribute in contexts.xml topic element"
 href="path/to/topic.xml">
 <topicmeta>
 <resourceid id="help_context_ID_1"/>
 <resourceid id="help_context_ID_2"/>
 <resourceid id="help_context_ID_3"/>
 </topicmeta>
 </topicref>

Other considerations for DITA maps that define context-sensitive Help plug-ins:

• Markup for context-to-topic mapping is needed only for the DITA topics that will be context-sensitive Help targets
(i.e., Related Topics shown in the Help view).

Verivue | Help Development Tools | 43

• When a single DITA topic appears more than once in a map, only the first instance of a <topicref> that points
to that topic needs the context-sensitive Help markup.

• Nested maps that contribute DITA topics related to Help contexts must include the same context-sensitive Help
markup.

Context-specific Help content

Each <topicmeta> element that wraps a <resourceid> element may optionally contain one <searchtitle>
element or one <shortdesc> element, or both (one of each), to provide context-specific Help content.

• The <searchtitle> element is used to supply the value of the title attribute on the <context> element in the
Eclipse context XML file.

• The <shortdesc> element is used to supply the content of the <description> element in the Eclipse context
XML file.

For example:

 <topicref navtitle="label attribute in contexts.xml topic element"
 href="path/to/topic.xml">
 <topicmeta>
 <searchtitle>Optional text to override the help About \
 title.</searchtitle>
 <shortdesc>Text for context description.</shortdesc>
 <resourceid id="help_context_ID_string"/>
 </topicmeta>
 </topicref>

Note: The <searchtitle>, <shortdesc>, and <resourceid> elements must appear in the <topicmeta>
element in the order shown above.

A DITA map that contains the example shown above produces the following content in an Eclipse context XML file:

 <contexts>
 ...
 <context id="help_context_ID_string"
 title="Optional text to override the help About title.">
 <description>Text for context description.</description>
 <topic label="label attribute in contexts.xml topic element"
 href="PLUGINS_ROOT/doc_plugin_ID/path/to/topic.xml"/>
 </context>
 ...
 </contexts>

where doc_plugin_ID is the value of the id attribute on the <map> element.

Integration

To provide dynamic context-sensitive Help, an Eclipse-based application must define the associations between its UI
controls and Help contexts dynamically, by implementing methods of org.eclipse.help.IContextProvider. One of those
methods (getContext) must return a concrete Help context ID string, which matches an IContext object contributed by
an extension of org.eclipse.help.contexts, and defined in an Eclipse context XML file. Another method
(getSearchExpression) must return a context-specific Help search expression, if the application requires more targeted
search results than the default help search expression provides.

The DTP help-helper plug-in (org.eclipse.datatools.Help) provides a "help key" extension point
(org.eclipse.datatools.help.helpKeyProperties), and supplies a context provider delegate implementation
(org.eclipse.datatools.help.ContextProviderDelegate).

• The helpKeyProperties extension point allows any plug-in to contribute ResourceBundle properties files that define
the mapping of abstract Help keys to concrete Help context IDs and Help search expressions.

44 | Verivue | Help Development Tools

• The ContextProviderDelegate, along with abstract Help keys, enables Help context abstraction for any UI control
that implements methods of IContextProvider.

The eclipse_csh plug-in for DITA-OT provides the processing to generate context-sensitive Help plug-ins, which serve
as companions to Eclipse online documentation plug-ins generated by DITA-OT (using its standard dita2eclipsehelp
transtype). Indeed, the dita2eclipse_csh transtype target depends on the dita2eclipsehelp target to first generate an Eclipse
online documentation plug-in.

Eclipse plug-ins produced by eclipse_csh handle the mapping of Help contexts to context-specific Help content, and
provide support for the DTP help-helper infrastructure by contributing:

• Eclipse context XML files, which supply the context-specific Help content for each Help context, and point to other
Help topic contributions directly related to the Help context

• Java properties files, which define key-value pairs that map abstract Help contexts (helpKey constants) to concrete
Help context IDs and context-specific Help search expressions

Eclipse plug-ins produced by eclipse_csh do not contribute (or contain) any topic-based UA content. Their context XML
files refer to topics contributed by their companion documentation plug-ins.

Team collaboration

Successful delivery of Eclipse dynamic context-sensitive Help requires close coordination of UI components and UA
components. It imposes responsibilities on both Development teams and Documentation teams, and it requires ongoing
collaboration.

Development teams are primarily responsible to:

• Implement the Eclipse classes and methods necessary to enable dynamic context-sensitive Help for all appropriate
UI controls.

• Implement interface classes that declare helpKey constants for each UI plug-in.
• Provide lists of the helpKey constants to Documentation teams in a timely manner.
• Test the context-sensitive Help UI implementation, with context-sensitive Help UA plug-ins and online documentation

plug-ins provided by Documentation teams.

Development teams should provide lists of helpKey constants in the form of Java source files for the helpKey constants
interface classes. Java source files provided as helpKey lists must include appropriate Help context comments to provide
information about each associated UI control.

Documentation teams are primarily responsible to:

• Develop context-specific Help content and context-specific Help search expressions for appropriate UI Help contexts.
• Define the concrete Help context ID strings that associate abstract Help contexts with context-specific Help content.
• Create the Java properties files that define the mapping of abstract Help contexts to concrete Help context IDs.
• Create the context-sensitive Help UA plug-ins that contribute Eclipse context XML files and the Java properties

files.
• Test the context-sensitive Help UA plug-ins and online documentation plug-ins, with UI components provided by

Development teams.

Documentation teams should rely on the Java source files (for the helpKey constants interface classes) as the original
and definitive sources of all helpKey constant strings.

Note: Creating the Java properties files can be somewhat automated (e.g., by processing the Java source files with
a simple PERL script).

Workflow

The following summarizes the Documentation team workflow to create Eclipse context-sensitive Help plug-ins:

1. Get the helpKey list (provided as a Java source file) from the UI Development team for each UI plug-in.
2. Analyze the helpKey list and associated UI controls to define the Help contexts.

Verivue | Help Development Tools | 45

The Documentation team must determine whether:

• The helpKey constants alone are sufficient to identify actual Help contexts, and thus, a helpKey constant could
be mapped directly to a concrete Help context ID, with the same string value as the helpKey constant.

• Distinct Help context ID strings must be defined to combine groups of helpKey constants into common Help
contexts.

Tip: It may be preferable to combine Help contexts in the helpKey properties file, instead of defining the
mapping for multiple Help contexts to a single topic in a DITA map. This is a judgment call for the Documentation
team responsible for maintaining DITA maps.

3. Analyze the Help contexts and existing (or planned) Help topics to define context-specific Help search expressions.
4. Create helpKey properties files, based on the content of each Java source file.

• Define the mapping of helpKey constants to concrete Help context IDs and context-specific Help search
expressions, based on results of the Help context analysis and Help topic (content) analysis.

• Save the helpKey properties files in source control, as appropriate.

Tip: The helpKey properties files are flat ASCII text files, so authors (or IAs) responsible for defining the Help
context IDs and context-specific Help search expressions should use a suitable ASCII text editor to create and
edit those files.

5. Modify existing DITA maps (if used to produce Eclipse online documentation plug-ins) to add the markup for
context-sensitive help.

6. Build Eclipse plug-ins, using the DITA-OT with the eclipse_csh plug-in, and test the Eclipse plug-ins with UI
components provided by Development teams.

Summary

Help context abstraction is a technique to simplify the handling of Help context IDs and Help search expressions in the
UI code, by abstracting them to "help keys."

Help context abstraction provides the following benefits:

• Development teams are free to associate new Help contexts with UI controls, without necessitating that corresponding
Help context IDs or Help search expressions exist.

• Documentation teams are free to define UA Help contexts, modify Help context IDs, and control the mapping from
abstract Help contexts to concrete Help context IDs, without necessitating any change in the UI code.

• Documentation teams are free to define and modify context-specific Help search expressions, and the mapping from
abstract Help contexts to Help search expressions, without necessitating any change in the UI code.

This separation of responsibilities enables the project team to provide higher quality, and more precisely targeted,
dynamic context-sensitive help.

For more information about the DTP help-helper, see:
http://www.eclipse.org/datatools/doc/20080310_DTP_Help-Helper.pdf.

Dave Resch

Sybase Inc.

OASIS DITA Help Subcommittee

DITA-OT: DITA for Publishers Plug-in

<<need info here>>

46 | Verivue | Help Development Tools

http://www.eclipse.org/datatools/doc/20080310_DTP_Help-Helper.pdf

DITA-OT: Microsoft HTML Help

One of the standard output formats of the DITA Open Toolkit publishing tools is compiled Microsoft HTML Help, or
CHM files. This output format is selected through the transformation type of htmlhelp.

The topics within Microsoft HTML Help documents are standard HTML files, and as such can be formatted through
cascading style sheets (CSS). The DITA Open Toolkit publishing features allow the name of a CSS file to be passed
when the DITA source is processed. The nominated CSS file will be attached to each topic in the output, thus controlling
the look-and-feel of the output.

Additionally, HTML code to be inserted into the head section of the output topics, and at the top and bottom of the body
section, can also be nominated when the DITA source is processed. This feature allows branding and standard text and
navigation blocks to be added to output topics, and also opens up the opportunity for JavaScript code to be added to
output topics to provide additional scripting functionality.

Context-Sensitive Help Using the Enhanced HTML (htmlhelp2) Plug-In
htmlhelp2

Overview

The process of generating Microsoft HTML Help (CHM) output from DITA content using the DITA Open Toolkit does
not provide for storage of Context-Sensitive Help identifiers in the topics or in the DITA map. Context identifiers have
to be created and managed outside the DITA authoring environment. The htmlhelp2 plug-in created by Deborah
Pickett extends the DITA OT functionality to allow context-identifiers to be generated from values stored in the resourceid
attribute of the DITA map's topicref.

Setup and configuration

To install the plug-in, download the plug-in ZIP file from Yahoo! DITA Users Group, extract the files into the \plugins
directory in the DITA-OT directory, and run the integrator task. The htmlhelp2 transtype will then be available as
an Ant build output.

The htmlhelp2 functionality is built into the ditaplus plug-in, also created by Deborah Pickett.

Authoring

The plug-in uses the resourceid element within the topicmeta element in the topicref in the DITA map as
the basis for building the map and alias files required for HTML Help Context-Sensitive Help. The resourceid
element doesn't contain data, and has two attributes: id and appname. The id attribute can hold only one value,
whereas the context-hooks in HTML Help require a string and a numeric identifier. It is expected you will enter a numeric
value into the id attribute of the resourceid, and the plug-in will derive from that number a string value.

For example, an id of 3254 will be transformed to a map file entry of:

#define identity_3524 3524

In other words, the resourceid's id attribute is used as the context number, and used to create the context string by
prefixing the number with the string identity_ .

In addition to entering a context number in the id attribute, you must also enter an appname attribute of
WindowsHelpId in the resourceid element in the topicref in the DITA map. The WindowsHelpId value
identifies the particular resourceid as being used for Context-Sensitive Help, thus differentiating it from resourceid
elements used for other purposes.

You can have more than one resourceid element if you need several different help IDs to be pointed to the one
topic.

Verivue | Help Development Tools | 47

http://tech.groups.yahoo.com/group/dita-users/files/Demos/

How It Works

In Microsoft HTML Help, map (.h or .map) files correlate context strings to context numbers, and alias (.ali) files
correlate context numbers to topic file names.

The htmlhelp2 transformation extracts from all topics in the DITA map any resourceid elements where the
appname attribute is WindowsHelpId. The map and alias files generated by htmlhelp2 are named
[map_file_name].map and [map_file_name].ali respectively.

The plug-in has another useful feature. When it generates the HTML Help project (.hhp) file, it adds window definitions
named default, global_$Standard and $global_Dialog.

The latter window definition will displays as a single pane in the right third of the window.

Example

The following markup:

<map>
<title>Cat flossing </title>
<topicref href="abc.xml">
 <topicmeta>
 <resourceid appname='WindowsHelpId' id='3524'/>
 </topicmeta>
</topicref>
...
</map>

will produce the following map and alias file lines:

• map:

#define identity_3524 3524

• alias:

identity_3524 abc.html

Summary

The htmlhelp2 plug-in provides a simple method for generating HTML Help context map and alias files from values
entered in the resourceid element in the DITA map's topicref.

Tony Self

HyperWrite Pty. Ltd.

Chairperson, OASIS DITA Help Subcommittee

Context-Sensitive HTML Help Using the The DITA Open Toolkit

We would be remiss not to call attention to the original HTML Help transform that has been bundled with the DITA
Open Toolkit for several years.

Overview

Output from the DITA Open Toolkit HTML Help plug-in serves as input to the Microsoft HTML Help Compiler. If
you choose to build your DITA sources on the same Windows system on which you have installed a copy of the Microsoft
HTML Help Software Development Kit, you will be able to generate a ready-to-deploy MS HTML Help .chm library
from your DITA-OT ant script. Otherwise, you an copy output from the DITA Open Toolkit HTML Help transform on
your DITA-OT build system to some other Windows system on which the HTML Help SDK has been installed.

48 | Verivue | Help Development Tools

Setup and configuration

Once you have installed and configured the DITA Open Toolkit, you have the HTML Help transform installed by default
and ready to use. See the DITA Open Toolkit User's Guide for detailed information about working with transforms and
about specifying the HTML Help transform specifically as a processing target (dita2htmlhelp).

To download the latest Microsoft HTML Help 1.4 SDK, go to the following MSDN web site. It is a free download.

http://msdn.microsoft.com/en-us/library/ms669985.aspx

Note: If you run the test build script that is bundled with the Open Toolkit, sample_all.xml, you can verify
that the HTML Help transform is installed and configured correctly by looking in the
ant/out/samples/htmlhelp subdirectory.

Authoring

To generate ready-to-deploy .chm libraries from most any DITA source collection, you do not really have to customize
or rework your DITA source files.

MS HTML Help outputDITA source

Contents tab entriesDITA map entries

Index tab entriesindex entries

full-text search indexrunning text

Integration

Truth be known, there are also limitations to both this DITA-OT transform and to the MS HTML Help run-time
environment. Factor these into your planning.

• Context-sensitive mapping: The DITA-OT HTML Help transform is not designed to process context-sensitive
mappings between DITA source topics and the context IDs associated with those target topics. To feed the MS
HTML Help compiler with the appropriate context-sensitive ID maps and/or alias files, consider developing a custom
shell for the Open Toolkit or building your HTML Help output with WinANT. See #unique_53 for more information
about the latter.

• HTML support in MS HTML Help: The Microsoft HTML Help application displays HTML topics in a captive HTML
viewer. This viewer supports most, but not all, of the HTML output that you can generate from the DITA-OT XHTML
transform. If, for example, you are working with SVG images or some interactive JavaScript libraries, test them with
output from the HTML Help transform before deploying them.

Output

The .chm library produced by the combination of the DITA-OT HTML Help transform and the MS HTML Help
compiler is very functional.

Here's what output from the DITA-OT test collection looks like.

Verivue | Help Development Tools | 49

http://msdn.microsoft.com/en-us/library/ms669985.aspx

Figure 24: Garage Tasks Contents Tab in HTML Help

Figure 25: Garage Tasks Search Tab in HTML Help

Note: The DITA-OT test collection source files contain no index entries, so no index entries are generated in MS
HTML Help.

Summary

If you have requirements to deploy a general-purpose Help collection to Windows customers without context-sensitive
integration, consider using the DITA-OT HTML Help transform. It is functional, reliable and fast. Once all your content
in is .chm format, you can convert it to other distribution formats with second-tier conversion tools such as chm2web.
If you have requirements to integrate .chm output with Windows applications as Context-sensitive Help, you'll need
to invest some time managing maps and alias files outside the DITA environment and then integrating them with .chm
output using WinAnt or other custom processing environments.

DITA-OT: Leximation AIR Help Plug-in

The Leximation AIR Help DITA-OT plug-in is not yet publicly available; to request a Beta version of this plug-in, please
visit www.leximation.com/airhelp.

50 | Verivue | Help Development Tools

http://chm2web.aklabs.com/download.php
http://www.leximation.com/airhelp

Overview

“AIR Help” is a term that refers to any user assistance application that has been developed using Adobe’s AIR (Adobe
Integrated Runtime) technology and does not specifically define appearance or functionality. Applications developed
using AIR can be installed on the Mac, Windows, and Linux operating systems, and are highly customizable, making
it an ideal technology from which to develop an online Help deliverable.

Currently there are two commercially available products for generating AIR Help, Adobe’s “RoboHelp 8” and MadCap
Software’s “Flare 4.” Adobe also offers a utility called “RoboHelp Packager for AIR” which allows you to generate an
AIR Help file from a RoboHelp WebHelp project (for use with older versions of RoboHelp). RoboHelp 8 allows you
to import DITA files which can then be exported to an AIR Help package.

The other option for creating AIR Help is custom development. You can take any browser-based set of HTML files and
“wrap” them up in an AIR application. The most basic AIR application is one that contains an embedded web browser
(based on WebKit) which essentially lets you present your HTML-based Help in your custom browser.

The Leximation AIR Help DITA-OT plug-in provides a direct path from DITA to AIR Help. This implementation of
AIR Help provides the following features:

• Tabbed navigation panels for Contents, Index, and Search
• Full text search that allows for both local and remote search indexes
• Forward, Back, Home buttons as well as Next/Previous Browse buttons that follow the structure of topics in the

Contents tab
• The ability to make context sensitive calls from an external application
• Position and size of window is preserved between sessions
• Sync with TOC functionality

Additionally, you may customize the AIR Help interface to add features or to modify the appearance as needed.

Setup and configuration

A new feature in the DITA-OT 1.5 allows for external hooks into the indexing pipeline making it possible to generate
the alternate format index required by this plug-in (in earlier versions a recompile of dost.jar was required).

In order to compile and package up an AIR file, you must have the Flex and AIR SDKs installed (both are freely available
from Adobe). If you have Flex Builder 3 installed, both of these SDKs are included in the installation.

To install this plug-in:

1. Extract the ZIP archive into the DITA-OT/demo directory to create an lmi-airhelp directory which contains
all of the necessary files.

2. If you have Flex Builder 3 installed, continue to the next step, otherwise download and install the following:

• Adobe Flex 3 SDK (http://www.adobe.com/products/flex/flexdownloads/)

• Adobe AIR 1.5 SDK (http://www.adobe.com/products/air/tools/sdk/)

3. Locate the lmi-airhelp/integrator.xml file. Modify the property values so they are correct for your system.
In particular, the FLEX.SDK_HOME and AIR.SDK_HOME properties, but possibly others. Search for “AIRHELP
PROPERTIES.”

4. Add the lmi-airhelp.jar file to the CLASSPATH. If you're using the startcmd.bat file to set up the environment,
add %DITA_DIR%demo\lmi-airhelp\lmi-airhelp.jar; to the CLASSPATH declaration:

set CLASSPATH=%DITA_DIR%demo\lmi-airhelp\lmi-airhelp.jar; ...

5. Integrate the plugin with the OT. Run the integration command:

ant -f integrator.xml

After installation, you can test the install by copying the sample_airhelp.xml file into the DITA-OT/ant/
directory. Run the startcmd.bat file and enter the following:

ant -f ant/sample_airhelp.xml

Verivue | Help Development Tools | 51

http://www.adobe.com/products/flex/flexdownloads/
http://www.adobe.com/products/air/tools/sdk/

Assuming the build is successful, you should end up with a DITA-OT/ant/out/airhelp/ directory. In that directory
you'll see an airhelp-test.bat file. Run the batch file to launch the new AIR Help file. Test the index and search
to make sure that all’s well.

In order to build an AIR file that can be sent to others, run the airhelp-packager.bat file. The packager batch
file assumes that you have set up the digital certificate information properly in the integrator.xml file. For
information on creating a self-signed certificate, see
http://help.adobe.com/en_US/AIR/1.5/devappshtml/WS5b3ccc516d4fbf351e63e3d118666ade46-7f74.html

The plug-in creates the following files:

• TOC file (<mapname>.ahtoc)
• Keyword index file (<mapname>.ahix). Displays on the Index tab and is built from available indexterm elements.
• “Local” full text search index (_searchIndex.xml). Displays on the Search tab and is created by parsing the

generated HTML files.
• The AIR Help project file (airhelp.ahp)
• The AIR application file (airhelp-app.xml)
• Compiled SWF (airhelp.swf)
• Batch files for testing and packaging of the AIR file (airhelp-test.bat and airhelp-packager.bat)

The following data is used from the map or bookmap file when building the AIR file:

• /map/topicmeta/copyright or /bookmap/bookmeta/bookrights
• /map/topicmeta/prodinfo/prodname
• /map/topicmeta/prodinfo/vrmlist/vrm (the last one)
• /map/topicmeta/prodinfo/prognum
• /map/topicmeta/othermeta/@name=’remote-search-index-url’ (@content specifies the location for the remote search

index which is loaded on startup)

After a successful build, just run the airhelp-test.bat batch file to view and test the new AIR Help file. When
you’re ready to build the final AIR file, just run the airhelp-packager.bat batch file.

Authoring

No specific authoring requirements are needed.

Integration

Because an AIR Help file is actually a desktop application, you launch the Help system by making a system call to run
the executable. If no command-line parameters are provided, the AIR Help file will open with the default topic displayed.

In order to launch the Help system on a specific topic, use the following command-line syntax:

<path/app_executable> <target_topic>

For example, the following call will display the “Image” topic in the DITA Reference AIR Help file:

"c:\program files\ditaref\ditaref.exe" image.html

To launch the Help system with the search panel selected and pre-populated with a query, use the following syntax:

<path/app_executable> "search:using conrefs"

To launch the Help system with an external URL (website) displayed, use the following syntax:

<path/app_executable> http://google.com

Additional command-line parameters can be added as needed.

Because only one instance of each AIR Help application can exist at one time, if you make a system call to the application
when one is already running, the result of the new call replaces the running instance.

52 | Verivue | Help Development Tools

http://help.adobe.com/en_US/AIR/1.5/devappshtml/WS5b3ccc516d4fbf351e63e3d118666ade46-7f74.html

Output

This plug-in uses the HTML generated by the dita2html target, and only controls the interface features of the “container”
application.

Figure 26: Example AIR Help application window

Summary

Because AIR Help is very new and still under development, it may be best for some to wait for further development to
be completed. However, because of its cross-platform support and reduced testing effort, you may find that it is worth
closer investigation as a potential Help delivery format.

Scott Prentice

Verivue | Help Development Tools | 53

Individual

OASIS DITA Help Subcommittee

Adobe FrameMaker

<<info here>>

<<PDF PUBLISHING>>

Adobe RoboHelp

<<info here>>

Converting DITA Content to WebHelp using RoboHelp

The DITA Open Toolkit provides only rudimentary support for tri-pane, HTML-based documents. Help Authoring
Tools such as RoboHelp have long set the benchmark for feature-rich, HTML-based documents. Adobe describes the
RoboHelp tri-pane HTML output as WebHelp.

1. Generate HTML Help output from your DITA content using the DITA Open Toolkit.

2. Start RoboHelp.

3. From the File menu, choose New Project.
The New Project window displays.

4. Select the Import tab, select Microsoft HTML Help Project (*.hhp), and click OK.
The Select HTML Help Project dialog box displays.

5. Browse to the directory into which the DITA Open Toolkit generated your DITA document's output, select the
project (.hhp) file, and click Open.
The HTML Help project files will be imported into a new RoboHelp project.

6. Generate the WebHelp output.

RoboHelp will generate the WebHelp output into the /!SSL!/WebHelp subdirectory of the project path. The default
file name to launch the WebHelp document takes its name from the project file name.

Tony Self

HyperWrite Pty. Ltd.

Chairperson, OASIS DITA Help Subcommittee

DITA Exchange

<<info here>>

JustSystems XMetaL

<<info here>>

54 | Verivue | Help Development Tools

<< NICE WEBHELP OUTPUT >>

MadCap Blaze

<<info here>>

<< PDF PUBLISHING OPTION >>

MadCap Flare

<<info here>>

Omni Systems DITA2Go

<<info here>>

SyncRO Soft Ltd Oxygen 12.x Editor

SyncRO Soft Ltd bundles a copy of the DITA Open Toolkit with its Oxygen XML Editor 12.x, allowing you to transform
content in your DITA projects into any of the following Help output formats.

DescriptionOutput Format

SyncRO provides basically the same transformation options into EclipseHelp as the DITA Open
Toolkit 1.4 and above.

EclipseHelp

The generic XHTML output supports the same transformation switches and options as those in
the DITA Open Toolkit 1.4 and above.

Generic XHTML

The JavaHelp output from Oxygen is equivalent to that in the DITA Open Toolkit 1.4 and above.JavaHelp

The compiled XHTML output from this MS HTMLHelp transformation (*.chm) is equivalent to what
the DITA Open Toolkit 1.4 and above provides. It does not integrate the additional functionality
available in the CSHelp plug-in.

Microsoft HTMLHelp

The WebHelp output from Oxygen actually generates a classical tripane Help package that builds
upon basic XHTML output. This output format is not available currently in the DITA Open Toolkit.

WebHelp

To generate one or more of these Help output types from within the Oxygen 12.x XML Editor, do the following.

1. In Oxygen, open the top-level DITA map document that you want to transform into one or more Help output formats.

For example, if you were to open a DITA map named mapgen_topics.ditamap, Oxygen would display it in
the DITA Maps Manager pane.

Verivue | Help Development Tools | 55

2. From main menu in Oxygen, choose DITA Maps -- Configure Transformation Scenario.

Oxygen displays a dialog box similar to the following.

56 | Verivue | Help Development Tools

3. Click the New button to create a map-specific transformation profile for the DITA map document currently in the
editor.

Oxygen displays a dialog box similar to the following.

4. Choose a Help transformation type, for example WebHelp, and click OK.

Oxygen displays a dialog box similar to the following.

Verivue | Help Development Tools | 57

5. Specify a name for this transformation profile, for example Sample Topics to WebHelp, and (optionally)
set other flags in the tabbed settings panes.

OptionsTab

Specifies DITA Open Toolkit ant parameters for this transformation type.Parameters

58 | Verivue | Help Development Tools

OptionsTab

Specifies filtering options compatible with the DITA Open Toolkit (DITAVAL) or specific to the
Oxygen Editor.

Filters

Specifies transformation-specific options and alternate locations for ant and JAVA binary files.Advanced

Verivue | Help Development Tools | 59

OptionsTab

Specifies output display, naming, and processing options.Output

6. Click OK when you have completed editing the profile.

Oxygen adds this new profile to the list of available transformation profiles.

60 | Verivue | Help Development Tools

7. Choose the new profile name and click Transform now to transform the specified DITA map into the target Help
output type.

Note: Once you have created a transformation profile, you do not need to have the specified DITA map open
in your editor. Oxygen automatically opens the target DITA map and transforms it per the profile.

Oxygen begins the transformation and displays build processing information in a separate pane.

For HTML-based transformations, Oxygen typically launches a browser and displays the transformed output in it.

Verivue | Help Development Tools | 61

For more information about configuring Oxygen to generate other types of output, see the Oxygen Help system.

PTC Arbortext Digital Media Publisher

Arbortext Digital Media Publisher (DMP) has been available as a standalone product for some time, but in the upcoming
release DMP provides a DITA-based integration with Arbortext Editor that enables you to create a Help system or other
online information system directly from a DITA map.

Overview

DMP enables you to take a set of documents and compose them to various types of output. The documents can be of
several different types including DITA and other types of XML documents, HTML, PDF, Microsoft Word, Microsoft
PowerPoint, Microsoft Excel, Javadoc, or just text documents. Once you have compiled your set of content, you can
use DMP to compose that content to the following types of output:

• Help systems

• Standalone knowledge bases or information systems

• Web applications

DMP is a browser-based application and uses either an embedded browser (based on Internet Explorer) or the native
browser installed on a system to serve up the content. DMP is a cross-platform application and runs on Windows, Linux,
and some types of UNIX. DMP also supports multiple languages in the same image.

PTC offers more information on DMP at the PTC web site.

62 | Verivue | Help Development Tools

http://www.ptc.com/products/arbortext/digital-media-publisher/

Setup and configuration

DMP can be purchased from PTC, either as a standalone product or bundled with Arbortext Publishing Engine. DMP
comes with its own installation program. To create a DMP image directly from a DITA map also requires Arbortext
Editor.

You can configure a DMP image in the following ways:

• DMP as a standalone product

DMP has some Java property files that you use to set up the application properties and a content configuration XML
file that you use to identify both the content sets to go in the application and the structure of the table of contents.
You can also apply metadata to the table of contents to filter the content displayed in the image based on any criteria
you define. Once you have completed setting up your configuration files and content sets, you can run a DMP build
to create the DMP image.

• DMP in conjunction with Arbortext Editor

You can use Arbortext Editor to edit a specialized DITA map called a “DMP Map” to construct the table of contents
and reference the associated content. In this case, you can create a DMP image directly from the map. A DMP Map
supports all of the configuration options available in the standalone DMP configuration.

Following is an example of a DMP Map:

Verivue | Help Development Tools | 63

Figure 27: Sample DMP Map

Authoring

Authors will need to learn about the specialized elements and attributes in a DMP Map to use the map. However, for
authoring regular DITA topics and maps, nothing special is required.

Integration

DMP provides both a Java API and an XML RPC API. The same features are available in both of these APIs. The API
provides several capabilities, including displaying an individual topic based on an ID and searching through HTML
metadata for strings or IDs to find the appropriate topic to display. Application developers can use the DMP API to
integrate a DMP image with their software for use as online Help.

All PTC documentation groups will be using DMP images for their products' online Help.

64 | Verivue | Help Development Tools

Output

A DMP image is highly customizable. All of the images/icons, colors, text, and features of a DMP image can be modified
or removed during configuration. The default image contains the following features:

• Table of Contents tab — Provides a table of contents for the content in the image.

• Search tab — Contains search results, arranged either by relevance or position in the table of contents.

• Index Terms tab — Contains a universal index for the content in the image.

• Bookmark tab — Contains personal bookmarks and comments for individual topics.

• Configuration tab — Enables the Help Center image to be customized in various ways (for example, switching to a
different language or filtering the content based on various metadata criteria).

• Search field — Enables you to enter search terms with full Boolean, wildcard, and other standard search support.

• Advanced search — Enables you to filter search results based on various criteria.

• Toolbar — Provides access to various DMP features.

• View frame — Displays the current topic.

Following is a DMP image delivered in the embedded browser for use as online Help or a standalone knowledge base:

Figure 28: DMP Browser-based Help

Verivue | Help Development Tools | 65

Following is the same image delivered as a web application:

Figure 29: DMP Help as a Web Application

The main difference between the two images is that the bookmark and commenting feature in the standalone image is
replaced by the web browser's favorites or bookmarks capability. For either case, displaying documents other than
HTML leverages browser plug-ins. For example, PDF documents are displayed in the View frame in the Adobe Reader
plug-in.

Summary

Arbortext Digital Media Publisher enables you to go directly from a DITA map to a composed image. It is a highly
flexible product that can be customized as needed. The DMP API enables integration with other products for use as
online Help or a knowledge base.

Chris Goolsby

PTC Corporation / Arbortext

OASIS DITA Help Subcommittee

66 | Verivue | Help Development Tools

Quadralay ePublisher

<<info here>>

<<from Ben Alums>>

Help formats:

• Eclipse Help
• Microsoft HTML Help 1.x
• Oracle Help
• Sun JavaHelp 1.1.3
• Sun JavaHelp 2.0
• WebWorks Help 5.0
• WinHelp

print:

• PDF
• PDF - XSL-FO

eBook formats:

• eBook - ePUB 2.0
• Microsoft Reader
• Palm Reader

Wiki formats:

• Wiki - Confluence
• Wiki - MediaWiki
• Wiki - MoinMoin

web formats:

• Dynamic HTML
• Simple HTML
• XML+XSL

SDL XPP

<<info here>>

WinANT Echidna

When you have DITA documents you want to publish, you can use WinANT Echidna to automate the processing of the
output.

WinANT Echidna is a Windows application used in conjunction with ANT and the DITA Open Toolkit to process DITA
output.

Verivue | Help Development Tools | 67

WinANT Echidna is an open-source application you can download from the Internet. It is used for the sole purpose of
processing DITA documents. WinANT Echidna simplifies the publishing process by acting as a Windows interface to
ANT.

WinANT Echidna is an open-source application which is freely available to all internet users.

1. In your web browser, navigate to http://sourceforge.net/projects/winant-echidna.

2. Click Download Now.

A file download dialog box opens.
3. Click Save.

The

Save As

dialog box opens.
4. Select the directory on your computer where you want to save the file, and click Save.

The location where you save the installation program can be different to where you want to install the WinANT
Echidna software. You can specify where to install the software when the installation program runs.

WinANT Options Supporting HTML-Based Output

The DITA Open Toolkit provides a method for specifying a CSS style sheet, blocks of HTML code to add to the top
and bottom of each generated HTML file, and a block of code to add to the <head> section of each generated HTML
file. However, the method is cumbersome to use from a command line or terminal window invocation of the Apache
Ant build processor. The HyperWrite WinANT software tool, which acts as a Windows interface to Ant, makes this
method extremely simple.

Overview

WinANT is a Windows program, build with Microsoft Visual Studio .NET 2008 using VB.NET. It serves as an interface
to the Ant build utility, for the sole purpose of processing DITA documents.

WinANT allows a user to select build characteristics using normal Windows interface devices such as drop-down lists,
radio buttons, tabs and browse buttons. When all the required settings are in place, the program creates the Ant build
file, creates a ditaval file (if required), creates a batch file, and then executes the batch file to trigger the Ant build. When
Ant has finished the processing, WinANT displays the generated output file. The settings can be saved (as a build file)
and later recalled.

68 | Verivue | Help Development Tools

http://sourceforge.net/projects/winant-echidna/

Figure 30: WinANT 1.6 - Main tab

Setup and configuration

WinANT can be downloaded without charge on a “take it as it comes” basis from http://www.helpml.com/winant_setup.exe.
It installs using a standard Windows installer, and requires .Net Framework 2.0.

The Ant arguments that can be set within WinANT include:

• The folder where the output will be created.
• The type of output.
• A CSS stylesheet to be applied to each output HTML page.
• A file containing HTML code to be added to the <head> section of each output HTML page.
• A file containing HTML code to be added to the top of the <body> section of each output HTML page.
• A file containing HTML code to be added to the bottom of the <body> section of each output HTML page.
• A list of files to be copied to the output folder (or compiled into HTML Help output).
• Some limited conditional processing rules.
• Images to be used for flagging conditional text.
• The DITA topic file extension used.
• The output HTML file extension to be used.
• Whether content marked as draft will be included in the output.

Authoring

The use of WinANT in the publishing stage does not alter the authoring method.

Verivue | Help Development Tools | 69

http://www.helpml.com/winant_setup.exe

Publishing

When you are ready to produce HTML-based output from your DITA source, you can process your DITA map file
through WinANT.

WinANT supports the following base DITA Open Toolkit and additional plug-ins:

• HTML
• (Microsoft) HTML Help
• HTML Help 2 (plug-in)
• PDF
• PDF2
• Eclipse Help
• DocBook
• Word
• HTML - tocjs (plug-in)
• XHTML with Search (plug-in)
• HTML - tocjsbis (plug-in)
• HTML with tocjs
• HTML with search

You will need to prepare the CSS stylesheet to use for presentation of the output, as well as any code blocks for the top
(Custom Header), bottom (Custom Footer), and <head> section (Custom Head Block).

Note: Make sure your HTML code blocks are well-formed XML. If not, the block will not be included in the
output HTML.

If you are producing HTML Help output, you can also nominate an include file, which is a simple list of additional files
to be compiled into the resultant CHM, in plain text format. If your CSS file references graphics, these graphics files
should be listed in the include file.

Selecting the CSS and code files

The CSS and HTML code block files are selected on the Main tab of WinANT. These fields are:

• Custom Stylesheet
• Custom Head Block
• Custom Header
• Custom Footer
• HTML Help Include File

only active if the Output Type field on the Main tab is set to HTML Help or HTML Help 2.

Summary

WinANT provides a simpler way of controlling the HTML-based output from DITA content than the standard DITA
Open Toolkit command line. Its ability to store settings for future use also help make it a practical tool for DITA
publishing.

Tony Self

HyperWrite Pty. Ltd.

Chairperson, OASIS DITA Help Subcommittee

WinANT Options Supporting Microsoft HTML Help

The DITA Open Toolkit provides a method for nominating context-sensitive Help header (or map) and alias files to be
compiled into the CHM file when a Microsoft HTML Help output is being generated. The method is difficult to use

70 | Verivue | Help Development Tools

from a command line or terminal window invocation of the Apache Ant build processor. The HyperWrite WinANT
software tool, which acts as a Windows interface to Ant, makes this otherwise difficult method extremely simple.

Overview

WinANT is a Windows program, build with Microsoft Visual Studio .NET 2008 using VB.NET. It serves as an interface
to the Ant build utility, for the sole purpose of processing DITA documents.

WinANT allows a user to select build characteristics using normal Windows interface devices such as drop-down lists,
radio buttons, tabs and browse buttons. When all the required settings are in place, the program creates the Ant build
file, creates a ditaval file (if required), creates a batch file, and then executes the batch file to trigger the Ant build. When
Ant has finished the processing, WinANT displays the generated output file. The settings can be saved (as a build file)
and later recalled.

Figure 31: WinANT 1.6 - Main tab

Setup and configuration

WinANT can be downloaded without charge on a “take it as it comes” basis from http://www.helpml.com/winant_setup.exe.
It installs using a standard Windows installer, and requires .Net Framework 2.0.

To enable the incorporation of map and alias files in HTML Help output, you have to manually edit the standard
build_dita2htmlhelp.xml DITA OT, by inserting after the line:

<param name="OUTEXT" expression="${out.ext}" if="out.ext" />

Verivue | Help Development Tools | 71

http://www.helpml.com/winant_setup.exe

the two lines:

<param name="HELPMAP" expression="${dita.map.filename.root}.map" />
<param name="HELPALIAS" expression="${dita.map.filename.root}.ali" />

Authoring

Nominating the map and alias files in the HTML Help project file effectively externalizes the context hooks; the context
ids and strings are not incorporated into the DITA source files at all. The map and alias files therefore need to be separately
authored outside DITA.

Selecting the map and alias files

The map and alias files are selected in the Context-Sensitive Help panel of the Help Systems tab. These fields are only
active if the Output Type field on the Main tab is set to HTML Help or HTML Help 2.

Figure 32: WinANT 1.6 - Help Systems tab

Summary

Provided you have the capacity to create the HTML Help map and alias files outside your DITA authoring environment,
this technique is a simple way to produce context-sensitive HTML Help. It only requires very minor (and simple) changes
to the standard DITA Open Toolkit files.

It is possible that this technique can be combined and integrated with other methods of generating map and alias files
from DITA source.

Tony Self

72 | Verivue | Help Development Tools

HyperWrite Pty. Ltd.

Chairperson, OASIS DITA Help Subcommittee

XMLMind DITA Converter

<<info here>>

Verivue | Help Development Tools | 73

Help Development Techniques

Developing Custom DITA-based Help Systems

If your company has developed a custom Help viewer or custom run-time environment, it is unlikely that the default
output from an existing DITA plug-in will be what you need. This section of the DITA Help Technologies Guide explains
how to use DITA plug-ins and other tools to generate the base ingredients for a custom help implementation. You will
need to invest some amount of post-processing effort, therefore, to integrate output from multiple DITA plug-ins and/or
to customize output for exactly what you need.

Figure 33: DITA Source to Customized Help Environments

We can't really help you with these post-processing or customization tasks, but we can help you generate the ingredient
content and point out some common issues that might affect your customizations.

• #unique_63
• #unique_64
• #unique_65
• #unique_66
• #unique_67
• #unique_68
• #unique_53

Developing DITA-based Help for Existing Help Environments

If your company delivers information to a commonly used Help viewer or run-time Help environment, you have options
for authoring content in DITA and for transforming that content into ready-to-run Help deliverables.

74 | Verivue | Help Development Techniques

Figure 34: DITA Source to Existing Help Environments

The following topics in this section of the DITA Help Technologies Guide explain how to use one or more of these
plug-ins or transforms to generate Help from DITA sources.

• #unique_69
• #unique_70
• #unique_71
• #unique_72
• #unique_73
• #unique_74

DHTML Effects in HTML Generated from DITA

It is common for Help systems to use layering techniques to limit the amount of information presented to the reader.
The reader chooses to view the information by clicking on a link. Most layering techniques, including expanding text,
drop-down text and popup text, are implemented using Dynamic HTML.

Overview
The DITA Open Toolkit HTML transforms do not provide for layering effects. However, some changes to the XSL-T
files, and the use of outputclass metadata in the DITA topic content, along with some judicious use of JavaScript and
CSS, can deliver these layering effects.

Authoring Example

In the following example illustrating this technique, a note element is encoded to output as drop-down text, where the
note label is used to toggle the display of the note text. The note element is simply marked up with a distinct outputclass
attribute value (in this case, hw_expansion).

<note outputclass="hw_expansion" type="note">Text of the note</note>

Without any modification, the DITA OT will transform the note element to a paragraph element with a CSS class of the
outputclass value.

Verivue | Help Development Techniques | 75

XSL-T Changes Example

In the example illustrating this technique, note how the following lines change the way that the XSL-T file processes
the note element:

<xsl:template match="*[contains(@class, 'topic/note ')]">
<xsl:if test="@outputclass='hw_expansion'" >
 <p>
 Note:
 </p>
</xsl:if>
<div >
<xsl:if test="@outputclass='hw_expansion'" >
 <xsl:attribute name="class">
 <xsl:value-of select="@outputclass" />
 </xsl:attribute>
</xsl:if>
</div>
</xsl:template>

JavaScript and CSS Addition Examples

For the layering DHTML effect to work, a JavaScript routine must be written to control the toggling of the display of
the dropdown text. Likewise, CSS classes used in the layering (in this example, pseudolink_up and hw_expansion) must
be defined in the CSS file for the output.

A simple JavaScript toggling routine is as follows:

function hwToggle(me) {
 var nextS=getNextSibling(me.parentNode);
 if(nextS.style.display!='block') {
 nextS.style.display='block';
 me.className='pseudolink_down'
 }
 else {
 nextS.style.display='none';
 me.className='pseudolink_up'
 }
}

function getNextSibling(startBrother){
 endBrother=startBrother.nextSibling;
 try {
 endBrother.nextSibling;
 }
 catch(er) {
 return null;
 }
 while(endBrother.nodeType!=1){
 if(!endBrother.nextSibling){
 return null;
 }
 endBrother = endBrother.nextSibling;
 }
 return endBrother;
}

A simple set of CSS settings are:

a.pseudolink_up
{
 color: blue;
 cursor: hand;
 border-bottom: blue 1px dashed;
 background-position: left center;

76 | Verivue | Help Development Techniques

 background-image: url(images/purple_right_sm.jpg);
 background-repeat: no-repeat;
 padding-left: 15px;
}
a.pseudolink_down
{
 color: green;
 cursor: hand;
 border-bottom: blue 1px dashed;
 background-position: left center;
 background-image: url(images/purple_down_sm.jpg);
 background-repeat: no-repeat;
 padding-left: 15px;
}

div.hw_expansion
{
 display:none;
}

When the build file is created, references should be made to include the CSS file (containing the CSS rules) and the
JavaScript file (containing the toggle routine).

Working Example

The layering technique described here is used in a production environment on a Web site which dynamically renders
DITA content as XHTML. See http://www.hyperwrite.com/Articles/showarticle.aspx?id=71.

Summary

Although some technical knowledge is required to implement DHTML effects in output, the techniques are not onerously
complex. With a small investment in effort, a big payoff in functionality can be achieved.

Tony Self

HyperWrite Pty. Ltd.

Chairperson, OASIS DITA Help Subcommittee

Dynamic Rendering of DITA into XHTML

In many cases, Help content is best delivered as HTML. For content authored in DITA, the process is typically to
transform the content into HTML (or, more likely, XHTML), and then transfer the output files to a web browser. In
some cases, it may be desirable to host the DITA source files on the web server, and use server-side processing to
dynamically transform the content to HTML when a browser requests the information.

Overview

When DITA content is transformed to a delivery format through the DITA Open Toolkit or another publishing process,
the result is a collection of deliverable files that also need to be managed. The deliverable files (typically XHTML) must
be copied to a web server for delivery. When the source content changes, the output has to be regenerated, and then
copied once more to the web server.

Most web servers support some sort of server-side processing technology; examples are ASP.Net, PHP and JSP. Many
of these technologies are XML-aware, and are capable of handling dynamic XSL-T transformations.

It is possible to set up a system whereby Help content, written and stored in DITA format, is stored on a server, and then
dynamically transformed into HTML for delivery.

Verivue | Help Development Techniques | 77

http://www.hyperwrite.com/Articles/showarticle.aspx?id=71

Setup and configuration

To set up a dynamic transformation system, the services of a developer or someone familiar with a server-side processing
and XSL-T is required. The developer will need to devise a menu system (perhaps derived from a ditamap file), and a
topic rendering system.

Authoring

Once the system is in place, DITA topics can be either authored directly onto the web server (perhaps through FTP,
WebDAV, or a network share).

Limitations

While it is relatively easy to set up a simple menu system and a simple topic rendering system, it is not easy to handle
more advanced DITA features such as conrefs, reltables and composite topics. For example, conref elements need to be
resolved prior to the XSL-T transformation. In the DITA Open Toolkit, the generation of output comprises a number
of stages to first resolve references to build an interim document, and then process the interim document into the output.

However, if the DITA content is simple enough, this limitation is not an impediment.

Example

The HyperWrite web site (http://www.hyperwrite.com/Articles/default.aspx) uses these techniques through ASP.Net to
generate the breadcrumb trails, navigation system, menu pages, and articles topics from a ditamap file and numerous
DITA concept topics. Some content topics are also hosted in DocBook format.

Summary

The primary advantage of the dynamic transformation approach is to minimize file management. The main disadvantage
is that the technique is practically limited to simple content structures. Some other dedicated web delivery methods,
such as Eclipse Help, Mark Logic Content Server, or other CMS solutions, provide greater support for complex content
structures.

Tony Self

HyperWrite Pty. Ltd.

Chairperson, OASIS DITA Help Subcommittee

JavaScript-Based Context Sensitive Help

Overview

If you are deploying a browser-based Help system in conjunction with a software application, you can configure your
main HTML Help file to display a specific target Help file when so requested by a calling software application.

Note: The following JavaScript functions do not depend technically on anything inside your DITA source files or
anything generated by the DITA Open Toolkit. They are generic functions that support generic HTML.

Single-pane Browser Help Systems

In some situations, you may not need to deploy a fancy, multiframe HTML Help solution to support a software application.
In these situations, you can add a few lines of JavaScript to the beginning of your main Help file to process incoming
hyperlink calls that target a particular HTML Help file.

For example, if my software application needed to display a particular Help screen (targetHelpTopic.html), I
could build a hyperlink that would call the main Help file (1file.html) and ask it to display my target Help topic.

78 | Verivue | Help Development Techniques

http://www.hyperwrite.com/Articles/default.aspx

Here's the HTML hyperlink call.

link

Here's the JavaScript to put at in your main Help file.

<HTML>
<!-- One-pane Browser Help System (1file.html) -->
<body>
<script language="javascript">
targetTopic = window.location.search.substring(1);
window.location.href=targetTopic
</script>
</body>
</HTML>

When the main Help file (1file.html) receives the HTML hyperlink call link, it identifies any text that follows the question
mark (?) as one or more arguments being passed to it. In this example, the script identifies targetHelpTopic.html
as that argument and makes that HTML file name the current topic to be displayed in the browser.

Note: This setup works well for captive or embedded Help systems with restrictive or highly predictable calling
procedures. If a user or an application calls the main Help file without specifying a target topic, the main Help file
will generate an Error 404 "File not found".

Multiframe Browser Help Systems

Many browser-based Help systems use multiple frames to provide the customer with topic navigation, search, indexing,
and other basic amenities. To get a multiframe Help system to respond to the same context-sensitive hyperlink call is a
bit more complicated because of some restrictions in how HTML frames and JavaScript interact.

Here are the elements of our little example.

Figure 35: JavaScript Elements

DescriptionElements

Any software application that can generate HTTP calls to a browser will work.
For the sake of simplicity, I use an HTML document that contains one hypertext
link.

Software application

<html>

Call the help system file and pass it an argument

Verivue | Help Development Techniques | 79

DescriptionElements

(the name of the target help topic).
</html>

The software application passes two arguments to the Help browser:Hyperlink

• Main HTML Help file name (dhsc_help.html)

• Target Help file name to be displayed (target.html) in the main Help
window.

Preserving the question mark (?) between the name of the main Help file
name and the target Help topic file name is critical.Your browser uses this
question mark to delimit the name of the target Help topic (target.html)
from the name of the main Help file (dhsc_help.html).

The main Help file here contains little more than a call to a JavaScript library
file that performs all the real work.

Main Help file

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<!-- Sample: dhsc_help.html -->
 <title>DHSC CS Help Demo</title>
 <!--Insert cshelp.js library -->
 <script language="Javascript"
src="cshelp.js">/script>
 <meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
</head><script language="javascript">
insertFrameset() </script></html>

The cshelp.js library contains only one JavaScript function named
insertFrameset.

cshelp.js

function insertFrameset ()
{defaultTopic = "default.html";targetTopic =
window.location.search.substring(1);
if (targetTopic=="")
 {
 target_contentsframe=defaultTopic
 }
else
 {
 target_contentsframe=targetTopic
 }
document.write('<FRAMESET cols="20%, 80%">');
document.write('<FRAME src="nav.html"
name="navframe">');
document.write('<FRAME
src="'+target_contentsframe+'"
name="contentframe">');
document.write('</FRAMESET>');
}

The variable targetTopic points to the name of the target topic
(target.html) embedded in the hyperlink call. If the JavaScript function

80 | Verivue | Help Development Techniques

DescriptionElements

receives no argument from the hyperlink that calls it, it uses the name of the
HTML topic declared as defaultTopic. The final lines of the script build the
frameset calls that specify frame dimensions and contents (HTML files).

Figure 36: Sample Context Sensitive Help

Summary

These JavaScript functions support small-to-medium Help systems in any language because they place the entire burden
of constructing and managing context-sensitive hypertext links on the calling application. With larger Help systems or
with distributed Help systems, this overloading becomes risky or impossible.

Verivue | Help Development Techniques | 81

Resources

OASIS Resources and Sites

Consult the following resources to learn more about the activities of OASIS DITA Technical Committees in general
and the OASIS DITA Help Subcommittee in particular.

• OASIS DITA Technical Committee: This working committee is responsible for the technical development and
specification of the OASIS DITA architecture and language.

TC home page: http://www.oasis-open.org/apps/org/workgroup/dita/

TC Wiki site: http://wiki.oasis-open.org/dita/FrontPage

• OASIS DITA Adoption Committee: The working committee is responsible for promoting the adoption of the
OASIS DITA standard by educating the global marketplace on the value of DITA for document creation and
management.

Adoption home page: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita-adoption

• OASIS DITA Help Subcommittee: This subcommittee of the DITA Technical Committee is responsible for
developing a top-level design for authoring of Help systems and user assistance content using DITA and for making
recommendations for the integrating of DITA-authored Help systems and software applications using
context-sensitivity.

Help home page: http://www.oasis-open.org/apps/org/workgroup/dita-help/

Roster: http://www.oasis-open.org/apps/org/workgroup/dita-help/members/roster.php

Working documents: http://www.oasis-open.org/apps/org/workgroup/dita-help/documents.php

Online Demonstrations

Consult the following resources to learn more about

• Expandable Content in XHTML: Tony Self has an article on how to customize the output from DITA and the
DITA-OT to support a piece of user assistance -- the "Note" tag that provides expandable content when clicked. See
the following web page for a working example:

http://www.hyperwrite.com/Articles/showarticle.aspx?id=71

• Adobe AIR Help: Scott Prentice has an online demonstration of "AIR Help," a cross-platform Help format that has
been made possible by Adobe's introduction of the AIRTM (Adobe Integrated Runtime) development technology.
You should be able to take your "web help" files, and wrap them up in an AIR application that can be installed as a
Help system. The same AIR application can be installed on Windows, Mac, and Linux systems.

http://leximation.com/airhelp/

Downloads

Consult the following resources to learn more about

• HTMLSearch Plug-in: This DITA Open Toolkit plug-in is available at the Yahoo DITA site. The plug-in is also
integrated with Tony Self's WinANT application.

Yahoo DITA plug-ins site (you'll need a yahoo account): http://tech.groups.yahoo.com/group/dita-users/files/Demos/

• WinANT: Tony Self has developed a Windows-based application that serves as an interface to the Ant build utility,
for the sole purpose of processing DITA documents. WinANT allows a user to select build characteristics using
normal Windows interface devices such as dropdown lists, radio buttons, tabs and browse buttons. When all the
required settings are in place, the program creates the Ant build file, creates a ditaval file (if required), creates a batch

82 | Verivue | Resources

http://www.oasis-open.org/apps/org/workgroup/dita/
http://wiki.oasis-open.org/dita/FrontPage
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita-adoption
http://www.oasis-open.org/apps/org/workgroup/dita-help/
http://www.oasis-open.org/apps/org/workgroup/dita-help/members/roster.php
http://www.oasis-open.org/apps/org/workgroup/dita-help/documents.php
http://www.hyperwrite.com/Articles/showarticle.aspx?id=71
http://leximation.com/airhelp/
http://tech.groups.yahoo.com/group/dita-users/files/Demos/

file, and then executes the batch file to trigger the Ant build. When Ant has finished the processing, WinANT displays
the generated output file. The settings can be saved (as a build file) and later recalled.

http://www.helpml.com/winant_setup.exe

• FAR HTML: FAR HTML is a collection of file and HTML Help utilities for authors. If you need to quickly
manipulate HTML files, or create and edit HTML Help 1.x or MS Help 2.x projects then FAR will save you lots of
time. You can safely use FAR HTML and MS Workshop side by side. Download the full working version of FAR
HTML free today. FAR can be used in conjunction with the HTMLHelp2 plug-in to test context-sensitive callbacks
once they have been compiled into Microsoft HTML Help.

http://www.helpware.net/FAR/index.html

• Plus HTML Plug-in: An updated plug-in for Microsoft HTML Help generation from DITA sources is also available
at Yahoo. See the dita-plus.zip download.

Yahoo DITA plug-ins site (you'll need a yahoo account): http://tech.groups.yahoo.com/group/dita-users/files/Demos/

• Eclipse Help: Eclipse Help documentation and links to downloads are available at:

Eclipse User Assistance http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/ua.htm

Eclipse Help
http://help.eclipse.org/ganymede/topic/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_help_toc.html

Further Reading

Consult the following resources to learn more about

• Dynamic Rendering to HTML from DITA Sources: Tony Self has an article on how he dynamically renders DITA
content on his HyperWrite website. In the "Articles" section, a DITA map is transformed into an HTML web page
listing the titles of articles. When a user clicks one of these links, MS ASP.net fetches the DITA source for the
selected article and renders it dynamically as HTML. There are no links or conrefs between articles.

Article: http://www.hyperwrite.com/Articles/showarticle.aspx?id=68

HyperWrite web site: http://www.hyperwrite.com

• Help Context IDs in Separate Files: Tony Self has an article on how you can store your Help context IDs in a
separate file that can be used by DITA when it produces .chm output for MS Help.

http://www.hyperwrite.com/Articles/showarticle.aspx?id=71

OASIS DITA Help Proposals for Further Development

Consult the following resources to learn more about

• DITA Help Implementation Scenarios: Tony Self has shared several models for how organizations producing
Help from DITA sources can manage their tools workflow.

http://wiki.oasis-open.org/dita/Implementation_Scenarios

• DITA Help features to consider: Tony Self has a list that was reviewed favorably by the DITA Help Subcommittee.

http://www.hyperwrite.com/Articles/showarticle.aspx?id=65

• DITA Help APIs: Tony Self offered several models for context-sensitive Help callback conventions.

http://wiki.oasis-open.org/dita/Help_API

• Char James-Tanny HAT Matrix:Char James-Tanny has a feature matrix for Help Authoring Tools (HATs). It is
a useful compendium of Help features across Help applications.

http://hat-matrix.com/compare_hats/

• Help Metadata in DITA Attributes: Tony Self has proposed the idea that we can embed Help context IDs and
other related information in the metadata in topic and topicref attributes.

Verivue | Resources | 83

http://www.helpml.com/winant_setup.exe
http://www.helpware.net/FAR/index.html
http://tech.groups.yahoo.com/group/dita-users/files/Demos/
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/ua.htm
http://help.eclipse.org/ganymede/topic/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_help_toc.html
http://www.hyperwrite.com/Articles/showarticle.aspx?id=68
http://www.hyperwrite.com
http://www.hyperwrite.com/Articles/showarticle.aspx?id=71
http://wiki.oasis-open.org/dita/Implementation_Scenarios
http://www.hyperwrite.com/Articles/showarticle.aspx?id=65
http://wiki.oasis-open.org/dita/Help_API
http://hat-matrix.com/compare_hats/

http://www.oasis-open.org/apps/org/workgroup/dita-help/download.php/28362/dita-proposalcsh1.html

• DITA Target Window Specification: Tony Self offered a proposal for specifying in DITA a target Help window.

http://www.oasis-open.org/apps/org/workgroup/dita-help/download.php/28363/dita-proposalcsh-win.html

• DITA Help in a DITA Exchange Package (DXP): Eliot Kimber is working on a standard for compiled DITA called
the DITA Exchange Package (DXP). This may be a way to bundle DITA Help sources and/or output conveniently.

http://ditadxp.sourceforge.net/

84 | Verivue | Resources

http://www.oasis-open.org/apps/org/workgroup/dita-help/download.php/28362/dita-proposalcsh1.html
http://www.oasis-open.org/apps/org/workgroup/dita-help/download.php/28363/dita-proposalcsh-win.html
http://ditadxp.sourceforge.net/

Index

A

AIR Help 50
Arbortext Digital Media Publisher 62

C

CSHelp plug-in 38
Custom DITA-based Help systems 74

D

DHTML effects 75
DITA Help 5

defined 5
dynamic XHTML rendering 77

E

Eclipse Help 34, 38, 42
CSHelp plug-in 38
Eclipse_CSH plug-in 42

Eclipse_CSH plug-in 42
existing Help authoring tools 19
existing Help environments 74

F

further reading 82
downloads 82
OASIS resources 82
online demonstrations 82

H

HTMLSearch plug-in 19

I

introduction 4

J

JavaScript context-sensitive Help 78

L

Leximation AIR Help plug-in 50

M

Microsoft HTML Help DITA-OT transform 48
Microsoft HTML Help htmlhelp2 plug-in 47

R

RoboHelp 54

T

tocjs plug-in 28
tocjsbis plug-in 28

U

user assistance 5

W

WebHelp 54
WinANT 68, 71

support for HTML output 68
support for Microsoft HTML Help 71

Verivue | Index | 85

	Contents
	Introduction
	Editorial Preface
	DITA and User Assistance
	Definition of DITA Help
	Contributors
	Document History

	Help Delivery Technologies
	Adobe AIR-based Help
	Browser-based Help
	MadCap DotNet Help
	Eclipse Help
	IDPF ePub Deliverable
	Java Help
	Microsoft HTML Help
	Microsoft Viewer 1.0 Help
	Microsoft WinHelp
	Omni Systems OmniHelp
	Oracle Help
	PDF Deliverable
	PTC Arbortext DMP Help
	Quadralay WebWorks Help
	UNIX Man Pages
	Wiki

	Help Development Tools
	DITA Open Toolkit
	DITA-OT: PDF
	DITA-OT: Browser-based Help
	HTMLSearch Plug-in
	TOCJS and TOCJSBIS Plug-ins

	DITA-OT: Eclipse Help
	CSHelp Plug-in
	Eclipse_CSH Plug-in for Dynamic Context-Sensitive Help

	DITA-OT: DITA for Publishers Plug-in
	DITA-OT: Microsoft HTML Help
	Context-Sensitive Help Using the Enhanced HTML (htmlhelp2) Plug-In
	Context-Sensitive HTML Help Using the The DITA Open Toolkit

	DITA-OT: Leximation AIR Help Plug-in

	Adobe FrameMaker
	Adobe RoboHelp
	Converting DITA Content to WebHelp using RoboHelp

	DITA Exchange
	JustSystems XMetaL
	MadCap Blaze
	MadCap Flare
	Omni Systems DITA2Go
	SyncRO Soft Ltd Oxygen 12.x Editor
	PTC Arbortext Digital Media Publisher
	Quadralay ePublisher
	SDL XPP
	WinANT Echidna
	WinANT Options Supporting HTML-Based Output
	WinANT Options Supporting Microsoft HTML Help

	XMLMind DITA Converter

	Help Development Techniques
	Developing Custom DITA-based Help Systems
	Developing DITA-based Help for Existing Help Environments
	DHTML Effects in HTML Generated from DITA
	Dynamic Rendering of DITA into XHTML
	JavaScript-Based Context Sensitive Help

	Resources
	Index

