
Don't (XML) Mention It: Tagging
XML Content in DITA 1.3

 | Contents | iii

Contents

Part I: ... 5
Don't (XML) Mention It: Tagging XML Content in DITA 1.3...6

Introduction to the XML Mention Domain... 6
Tagging Tags with <xmlelement> and Attributes with <xmlatt>... 6
Referencing Numeric Characters and Text Entities with <numcharref> and <textentity>............. 6
Describing Parameter Entities with <parameterentity>.. 7
Referencing Processing Instructions using the <xmlpi> element...7
Using <xmlnsname> to Describe Namespaces... 7
When and How to Use <markupname>.. 8
Conclusion...8

Part

I
Topics:

• Don't (XML) Mention It: Tagging
XML Content in DITA 1.3

 | | 6

Don't (XML) Mention It: Tagging XML Content in DITA 1.3

Introduction to the XML Mention Domain

A minor frustration with DITA was an inability to easily describe XML content. If you have ever found yourself
using the angle bracket character entities and wishing that there was another, more elegant way to describe your
XML code, then look no further than the XML Mention domain of elements available in DITA 1.3. This domain now
allows content authors to mark up XML content for XML elements and attributes, numeric character references, text
entities, parameter entities, processing instructions and namespaces. Two key advantages of this approach is that you
no longer have to "escape" inline XML references and you have the means to more effectively search for content that
is semantically described by the XML Mention elements. So no more looking through every angle bracket reference,
percentage symbol, ampersand or other typical characters used in formatting XML content in the hope that you will
eventually find what you are looking for. This article focuses on how the DITA 1.3 XML Mention elements can be
used.

Tagging Tags with <xmlelement> and Attributes with <xmlatt>

If you have ever written an internal DITA style guide detailing how to use various DITA elements and attributes, you
will definitely appreciate the new <xmlelement> and <xmlatt> elements.

For example, let's say you are writing an internal DITA style guide, and want to indicate that your writers should
avoid using the non-semantic bold and italic tags in their DITA content. Instead of having to use angle bracket entity
characters to describe what you mean, you can use <xmlelement> instead. For example:

<p>Please avoid using the <xmlelement>b</xmlelement> (bold) and
 <xmlelement>i</xmlelement> (italic) tags in your content. Here at ACME we use
 semantic markup whenever possible.</p>

Similarly, if you want to indicate in your DITA style guide which note attributes to use and not to use, you can
indicate the names of the attributes using <xmlatt>:

<p>When using the <xmlelement>note</xmlelement> element in ACME documentation,
 use the following <xmlatt>type</xmlatt> values: <q>caution</q> to inform
 users when they need to take care before proceeding with a task, <q>warning</
q> to indicate a potentially hazardous situation for the user, and <q>danger</
q> for scenarios that might involve injury or death. ACME documentation also
 uses the <q>tip</q> and <q>important</q> attributes for <xmlelement>note</
xmlelement>.</p>

Referencing Numeric Characters and Text Entities with <numcharref> and
<textentity>

Prior to DITA 1.3, if you wanted to insert a numeric character reference into your document, you had to "escape" the
leading ampersand so that it didn't actually render the character itself. If, for example, you wanted to reference the
Greek capital letter sigma (used as a summation operator in mathematics) inline in your content, you had to write it as
&#931; (decimal base) or &#x3A3; (hexadecimal base) so that it would render as "Σ" and "Σ"
respectively, and not as the character ("Σ") itself. The new <numcharref> element in DITA 1.3 makes this process
easier, eliminating the need for explicitly referencing the leading ampersand and octothorpe characters. The following
sample code demonstrates how <numcharref> can be used:

<p>To include the summation operator symbol, simply type <numcharref>931</
numcharref> or <numcharref>x3A3</numcharref> within the text field.</p>

 | | 7

Similarly, the new <textentity> element in DITA 1.3 allows you to describe character entities the same way.
By default, the DITA Open Toolkit formats a leading ampersand and a trailing semi-colon to the character entity it
encloses, just as with <numcharref>. The following example shows how this element can be used:

<p>Thanks to DITA 1.3, you no longer have to wrap the lesser-than
 (<textentity>lt</textentity>) or greater-than (<textentity>gt</textentity>)
 character entities around elements to describe them in your DITA content, you
 can simply use <xmlelement>xmlelement</xmlelement> instead.</p>

Describing Parameter Entities with <parameterentity>

Parameter entities are used to define a collection of elements, attributes and their values in XML. If you have ever
looked at a DTD, you have seen parameter entities. As an example, the parameter used to define the paragraph
element in DITA is called "%p.content;". If you are trying to explain aspects of a DTD, you may have a need for
the new <parameterentity> element. This element wraps a leading percentage symbol and trails with a semi-colon
around the parameter entity. The following is an example of how it can be used in practice:

<p>For example, the parameter used to define the paragraph element in DITA is
 called <parameterentity>p.content</parameterentity>.</p>

Referencing Processing Instructions using the <xmlpi> element

In XML, processing instructions are used to carry information on how a processor should work with a defined
instruction. An XML processing instruction typically contains a name followed by an optional value. While
processing instructions are not part of the DITA standard, some authoring tools enable their use within DITA.
Additionally, processing instructions are used in other types of XML, such as DocBook or XSL. An example
processing instruction in XSL looks like this: xml-stylesheet type="text/xsl" href="style.xsl", where
"xml-stylesheet" is the name and the remainder is a value that describes how the processor should interpret and
work with it. To describe processing instructions in DITA 1.3, use the <xmlpi> element, which wraps a "<?" to the
beginning of the processing instruction it describes, and a "?>" at its end. The following example shows how it can be
used:

<p>In DocBook processing instructions that begin with <q>dbfo</q> can be
 used for formatting operations. An example of how this can be used to
 set the width for a two-and-a-half inch sidebar would look like this:
 <xmlpi>dbfo_sidebar-width="2.5in"</xmlpi>.</p>

Using <xmlnsname> to Describe Namespaces

In XML a namespace is a mechanism designed to avoid clashes between elements or attributes from more than one
XML vocabulary. For example, HTML and DocBook both have a "table" element just like DITA does, and if you
wanted to be clear as to which table element you are referencing when you are using more than one XML instance of
table, you would do so by declaring the namespace that this table belongs to. The following example shows how it
might be used in practice:

<p>In MathML, the <xmlement>m:math</xmlelement> is the root element. The "m:"
 prefix is bound to the MathML 2.0 namespace: <xmlnsname>http://www.w3.org/
TR/2003/REC-MathML2-20031021/</xmlnsname>.</p>

Unlike all of the other elements discussed in this article, there is no expectation that processing will add any
characters at the beginning and the end of the enclosed text. But, of course it can be formatted at output in order to
make it appear distinct from other content in any way you might want.

When and How to Use <markupname>

While not part of the XML Mention domain, it’s worth including the <markupname> element here, as all of the other
elements within the XML Mention are specialized from it. In general, it is recommended that the other, more specific
XML Mention elements be used whenever possible, or that <markupname> be used for describing XML markup that
is not covered by the other elements in that domain. In environments where the XML Mention domain is constrained
away for whatever reason, <markupname> can act as a generic descriptor for XML markup. Here’s an example of it
in practice:

<p>In commonElementsMod.rng, the <markupname>basic.ph</markupname> pattern
 provides a choice of several inline elements.</p>

There is no guidance in the DITA 1.3 specification as to how <markupname> should be formatted at output. It
semantically describes XML markup but does not prescribe how it should appear.

Conclusion

The addition of the XML Mention domain makes it much easier for content creators to mark up XML within their
documentation without having to resort to using awkward entities.

For more information on the XML Mention domain or anything else relating to DITA 1.3, head to the OASIS website
for the official specification.

Thanks goes out to Jason Owen, Leigh White and Bob Thomas for their editorial assistance with this article.

http://docs.oasis-open.org/dita/dita/v1.3/os/part2-tech-content/dita-v1.3-os-part2-tech-content.html

	Contents
	
	Don't (XML) Mention It: Tagging XML Content in DITA 1.3
	Introduction to the XML Mention Domain
	Tagging Tags with <xmlelement> and Attributes with <xmlatt>
	Referencing Numeric Characters and Text Entities with <numcharref> and <textentity>
	Describing Parameter Entities with <parameterentity>
	Referencing Processing Instructions using the <xmlpi> element
	Using <xmlnsname> to Describe Namespaces
	When and How to Use <markupname>
	Conclusion

