
White Paper: Release Management Domain

 | Contents | 2

Contents

Introduction... 3
Use of dates.. 3

Release management domain elements.. 4
Elements in detail... 4

Examples.. 6
Examples showing date usage..6

 | Introduction | 3

Introduction

Organizations that publish large documents, if these documents must undergo significant revision, are faced with
difficult choices:

• give the reader nothing
• provide an automatically compiled, and usually unsatisfactory, list of changes
• manually maintain a revision history to inform the reader of significant changes

Usually, giving readers new revisions of large documents without some guide to what has been changed is considered
unacceptable. If such documents are given to a captive (i.e., internal) audience, the result may be mere grumbling; if
paying customers are involved, more serious consequences may result.

The key word in this discussion is significant. Machines are notoriously bad at recognizing the significance of human
language, so it is nearly impossible for a computer to distinguish between trivial changes and significant ones. For
large books, automatic lists or difference documents risk obscuring the significant changes in a snowstorm of trivial
ones.

Up to now, manually creating revision history documents meant recording changes in external documents such as
databases or spreadsheets. The DITA 1.3 release management domain facilitates the compilation of such revision
histories. Without prescribing any processing, it provides elements that can be used to record release notes. The user
is free to compile the actual revision history in any convenient way, such as XQuery or script, and can assemble the
notes into any convenient format, such as spreadsheet, text file, or DITA topic.

Having changes recorded in topic eliminates the need for such external files.

This document will describe the release management domain.

Use of dates
An additional requirement is that release notes be filterable. In large content sets, content is frequently shared, thus
increasing the likelihood that some changes apply selectively (to some output documents but not others).

The use of select attributes, while required, is insufficient by itself in some organizations; release notes may belong in
one and only one document. In other words, once the release note has appeared in a release document, it should never
appear in another one. Note, though, that this model is not imposed by the release management domain, which can
also easily support cumulative documents.

Although the date elements are text content and no specific format is required, it is strongly recommended that
the date strings used conform to the ISO 8601 standard unless a machine timestamp (for example a Unix-style
timestamp) is used. The string may contain a date and time or just a date.

Example ISO 8601 date formats:

• 2013-03-06
• 2013-03-06T13:30:22.25
• 2013-03-06T13:30:22.25-05:00

 | Release management domain elements | 4

Release management domain elements

Here are the elements of the release management domain. <change-historylist> is a child of prolog. It can be included
in maps as a child of <metadata>.

change-historylist?
 change-item*
 (change-person | change-organization)*
 change-revisionid?
 change-request-reference?
 change-request-system?
 change-request-id?
 change-started?
 change-completed?
 change-summary?
 data*

Figure 1: Release Management Elements

[[show both?]]

All these elements are derived from <data>; thus, except for the containers change-historylist, change-item, and
change-request-reference, they have CDATA content models. All the elements are optional; the user is free to use as
little or as much of the domain as is needed. Additional data elements of any number may be used as is or specialized
to meet requirements not foreseen. All release management elements support select attribution.

Elements in detail
This section describes the elements in greater detail.

change-item Contains a single release note. It holds information
about when and by whom the topic was edited during its
history.

change-person The person making the change to the document

change-organization An organization that requires or instigates a change.
Examples include government agencies or standards
bodies.

change-revisionid? Contains an identifier associated with the change
described by the release note

 | Release management domain elements | 5

change-request-reference? Changes may result from tickets filed in defect tracking
systems or other databases. This element is a container
for the next two elements

change-request-system? The tracking system or database from which the change
originated (see change-request-reference)

change-request-id? The id or other key number linking the change back to
the tracking system or database (see change-request-
reference)

change-started? The date work on the change began. Recommended date
format is ISO-8601, with or without time information,
(for example 2014-06-17) unless a machine timestamp is
used.

change-completed? The date work on the change was completed.
Recommended date format is ISO-8601, with or without
time information, (for example 2014-06-17) unless a
machine timestamp is used.

change-summary? A text description of the change. This should represent
the actual text describing the change as presented to the
reader.

 | Examples | 6

Examples

Example 1

This figure shows three simple release notes added to a single topic. This topic is used in documentation for two
products, A and B.

<prolog>
...
 <changehistory-list>
 <change-item product="productA productB">
 <change-person>Bill Carter</change-person>
 <change-completed>2013-03-23</change-completed>
 <change-summary>Made change 1 to both products</change-summary>
 <data>Details of change 1</data>
 </change-item>
 <change-item product="productA">
 <change-person>Bill Carter</change-person>
 <change-completed>2013-06-07</change-completed>
 <change-summary>Made change 2 to product A</change-summary>
 <data>Details of change 2</data>
 </change-item>
 <change-item product="productA productB">
 <change-person>Bill Carter</change-person>
 <change-completed>2013-07-20</change-completed>
 <change-summary>Made change 3 to both products</change-summary>
 <data>Details of change 3</data>
 </change-item>
 </changehistory-list>
...
</prolog>

Figure 2: Excerpt from prolog of topic myTopic

Examples showing date usage
Example 2

To illustrate the use of date filtering, in this scenario revision 5 of product A's manual was published on June 1, while
product B's manual hasn't been published since February 10 (revision 2). Then, on September 3, both manuals are
being published. Here is a timeline of events:

product A

product B

time

Feb 10

rev 5

change 1

Jun1 Sep 3July 20Jun 7Mar 23

change 2 change 3

rev 3

rev 6

rev 2

Figure 3: Example 2 timeline

 | Examples | 7

Thus, product A's release notes for revision 6 should include only those changes since June 2, while those for revision
2 of product B should start with changes made on February 11. Here is what these documents' release notes should
contain for this topic:

Table 1: Excerpt from product A's revision 6 release notes, September 3 (last published June 1)

Topic changed details

myTopic Made change 2 to product A

myTopic Made change 3 to both products

Table 2: Excerpt from product B's revision 3 release notes, September 3 (last published February
10)

Topic changed details

myTopic Made change 1 to both products

myTopic Made change 3 to both products

Note that change 1 already appeared in the revision 5 release notes of product A on June 1. Therefore, it must not
appear in the revision 6 release notes, or it will alert the customer to something that hasn't actually changed since the
previous revision.

Achieving this goal with select attributes alone would come at the cost of additional attribute values for not only each
product, but for each revision of each product—which would become unmanageable when instead of two products
there were 35, and instead of one topic 120,000.

	Contents
	Introduction
	Use of dates

	Release management domain elements
	Elements in detail

	Examples
	Examples showing date usage

