OASIS Mailing List ArchivesView the OASIS mailing list archive below
or browse/search using MarkMail.

 


Help: OASIS Mailing Lists Help | MarkMail Help

docbook message

[Date Prev] | [Thread Prev] | [Thread Next] | [Date Next] -- [Date Index] | [Thread Index] | [List Home]


Subject: Can't open xml document in IE 6.0


Hi,

I have declared the following to support MathML in my xml document.

<?xml version="1.0"?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook V4.5CR2//EN" 
"Y:\Software\docbook\docbookx.dtd" [
<!ENTITY % MATHML.prefixed "INCLUDE">
<!ENTITY % MATHML.prefix "mml">
<!ENTITY % equation.content "(alt?, (graphic+|mediaobject+|mml:math))">
<!ENTITY % inlineequation.content "(alt?, 
(graphic+|inlinemediaobject+|mml:math))">
<!ENTITY % mathml PUBLIC "-//W3C//DTD MathML 2.0//EN" 
"Y:\Software\docbook\mathml2.dtd">
%mathml;
] >

But I can't open my xml document in Internet Explorer 6.0, it shows the 
following error:

"Reference to undeclared namespace prefix: 'mml'. Error processing resource 
'file:///C:/sundar/test/sample.xml'. Line 15, P...

<equation id="ch001eq01" 
label="1.1"><mml:math><mml:semantics><mml:mrow><mml:msub><mml:mi m..."

Could any one help me out o solve the above one. Herewith I have attached my 
sample xml file

-Sunder Raajan

_________________________________________________________________
Best IT jobs on naukri.com 
http://www.naukri.com/tieups/tieups.php?othersrcp=3246
<?xml version="1.0"?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook V4.5CR2//EN" "Y:\Software\docbook\docbookx.dtd" [
<!ENTITY % MATHML.prefixed "INCLUDE">
<!ENTITY % MATHML.prefix "mml">
<!ENTITY % equation.content "(alt?, (graphic+|mediaobject+|mml:math))">
<!ENTITY % inlineequation.content "(alt?, (graphic+|inlinemediaobject+|mml:math))">
<!ENTITY % mathml PUBLIC "-//W3C//DTD MathML 2.0//EN" "Y:\Software\docbook\mathml2.dtd">
%mathml;
] >
<chapter id="ch001">
<title>Force-System Resultants and Equilibrium</title>
<abstract><para>Statics<beginpage pagenum="1-1"/> is a branch of mechanics that deals with the equilibrium of bodies, that is, those that are either at rest or move with constant velocity. In order to apply the laws of statics, it is first necessary to understand how to simplify force systems and compute the moment of a force. In this chapter these topics will be discussed, and some examples will be presented to show how the laws of statics are applied.</para></abstract>
<section id="ch001lev1sec1"><title>1.1. Force-System Resultants</title>
<section id="ch001lev2sec1"><title>Concurrent Force Systems</title><para>Force is a vector quantity that is characterized by its magnitude, direction, and point of application. When two forces <emphasis role="bold">F</emphasis><subscript>1</subscript> and <emphasis role="bold">F</emphasis><subscript>2</subscript> are <emphasis role="bold">concurrent</emphasis> they can be added together to form a resultant <emphasis role="bold">F</emphasis><subscript><emphasis>R</emphasis></subscript>=<emphasis role="bold">F</emphasis><subscript>1</subscript><emphasis role="bold">+F</emphasis><subscript>2</subscript> using the <emphasis role="bold">parallelogram law,</emphasis> <link linkend="ch001fig01">Figure 1.1</link>. Here <emphasis role="bold">F</emphasis><subscript>1</subscript> and <emphasis role="bold">F</emphasis><subscript>2</subscript> are referred to as components of <emphasis role="bold">F</emphasis><subscript><emphasis>R</emphasis></subscript>. Successive applications of the parallelogram law can also be applied when several concurrent forces are to be added; however, it is generally simpler to first determine the two components of each force along the axes of a coordinate system and then add the respective components. For example, the <emphasis>x, y, z</emphasis> (or Cartesian) components of <emphasis role="bold">F</emphasis> are shown in <link linkend="ch001fig02">Figure 1.2</link>. Here, <emphasis role="bold">i</emphasis>, <emphasis role="bold">j</emphasis>, <emphasis role="bold">k</emphasis> are unit vectors used to define the direction of the positive <emphasis>x, y, z</emphasis> axes, and <emphasis>F</emphasis><subscript>x</subscript>, <emphasis>F</emphasis><subscript>y</subscript>, <emphasis>F</emphasis><subscript>z</subscript> are the magnitudes of each component. By vector addition, <emphasis role="bold">F</emphasis>=<emphasis>F</emphasis><subscript>x</subscript>&thinsp;<emphasis role="bold">i</emphasis>+<emphasis>F</emphasis><subscript>y</subscript>&thinsp;<emphasis role="bold">j</emphasis>+<emphasis>F</emphasis><subscript>z</subscript>&thinsp;<emphasis role="bold">k</emphasis>. When each force in a concurrent system of forces is expressed by its Cartesian components, the resultant force is therefore
<equation id="ch001eq01" label="1.1"><mml:math><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="bold">F</mml:mi><mml:mi>R</mml:mi></mml:msub><mml:mo>=</mml:mo> <mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mi mathvariant="bold">i</mml:mi></mml:mrow><mml:mo>+</mml:mo> <mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mi>y</mml:mi></mml:msub><mml:mi mathvariant="bold">j</mml:mi><mml:mo>+</mml:mo> <mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mi>z</mml:mi></mml:msub><mml:mi mathvariant="bold">k</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:semantics></mml:math></equation>where &Sigma;<emphasis>F</emphasis><subscript>x</subscript>, &Sigma;<emphasis>F</emphasis><subscript>y</subscript>, &Sigma;<emphasis>F</emphasis><subscript>z</subscript> represent the scalar additions of the <emphasis>x, y, z</emphasis> components, respectively.<figure id="ch001fig01"><title>Addition of forces by parallelogram law.</title><mediaobject><imageobject><imagedata fileref="gr1"/></imageobject></mediaobject></figure><figure id="ch001fig02"><title>Resolution of a vector into its <emphasis>x, y, z</emphasis> components.</title><mediaobject><imageobject><imagedata fileref="gr2"/></imageobject></mediaobject></figure></para></section>
</section>
</chapter>


[Date Prev] | [Thread Prev] | [Thread Next] | [Date Next] -- [Date Index] | [Thread Index] | [List Home]