o ~NOo O b~

10
11

12
13
14

15

16
17
18
19

20

21
22
23

24
25
26
27
28
29
30
31
32

Digital Signature Web Service
Interface

1 Introduction

This document describes an RPC interface for a centralized digital signature web service that
enforces policy controls on who can request signatures for specific transactions. The signature is
calculated using a private key owned by the web service for the purpose of producing an
“organization” signature. Thus, anyone within the organization authorized to obtain an
“organization” signature can obtain it simply by request to the web service.

1.1 Motivation

A digital signature provides:
Authentication:

A digital signature is unique to the private key used in its creation, and as a result it
provides strong authentication of an individual when that individual signs a contract or e-
business transaction.

Support for Non-repudiation:

Once a contract or transaction has been digitally signed, the signer cannot disclaim or
“repudiate" the signature after the fact. This means, for example, that both parties to an
online purchase are bound to the terms of the deal - and thus that both parties to the
transaction are protected from online fraud.

Data integrity:

Included in a digital signature is protection of the signed data against any accidental or
intentional tampering of the data. For example, the value of an online transaction cannot
be compromised without detection, once it has been digitally signed.

Most current implementations of digital signatures bind the public key with a specific individual
that is responsible for the content of any data signed with the corresponding private key.
However, there is a need, especially in the web services paradigm, for signatures that represent
"organizations" (not individuals within organizations) and this need is becoming more apparent
over time. Distributing the "organization" private key among all end users authorized to use it
creates a number of security concerns. It makes sense then to provide a centralized service
which applies all "organization" signatures using a private key unique to the organization. Thus,
this document describes an RPC interface for a centralized digital signature web service that
enforces policy controls on who can request signatures for specific transactions.

33

34
35

36

37

38

39
40

41

42
43

44
45

46
47
48
49
50

51
52

53

54
55
56

57

58
59

2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may,

and optional in this document are to be interpreted as described in [RFC2119].

3 General Interface Design Issues

The major design goals of this specification are simplicity, extensibility and efficiency.

3.1 Related Standards

This specification seeks to leverage both existing and emerging web service standards whenever

possible. The following are particularly noted as relevant standardization efforts.

3.1.1 Existing Standards

WSDL - Defines how abstract interfaces and their concrete realizations are defined.
SOAP - Defines how to invoke remote interfaces.

UDDI — Defines how web services are published, queried and found using standardized
directories.

SSL/TLS - Defines secure transport mechanisms.

URL — Defines URI (includes URL) syntax and encoding

Character set encoding

XML Digital Signatures — Defines how portions of an XML document are digitally signed.
SAML — Defines how authentication and authorization information may be exchanged.

P3P — Defines how a Producer/entity may publish its privacy policy so that a Consumer could
enforce End-User privacy preferences.

3.1.2 Emerging Standards

XML Encryption — Defines how to encrypt/decrypt portions of an XML document.
WS-Security — Defines how document level security standards apply to SOAP messages.

XACML - Defines a syntax for expressing authorization rules.

4 Digital Signature Interfaces

Digital signature interfaces define all operations by the Digital Signature Server that produce a
digital signature upon request by a Digital Signature Client.

60

61
62

63

65
66
67

68
69

70

71
72

73

74
75

76
77
78
79

80
81

82

83
84

85

86
87

88
89
90
91

92
93

94

4.1 envelopingSignXmiData

The envelopingSignXmlData() operation returns an enveloping XML Digital Signature on the
provided XML markup data.

envel opi ngSi gnXm Dat aResponse =
envel opi ngSi gnXm Dat a(t oBeSi gnedXm Dat a) ;

Where:

t oBeSi gnedXn Dat a is the XML markup data to be signed. It is of type string.

envel opi ngSi gnXnl Dat aResponse is the XML markup of the enveloping signature on
t oBeSi gnedXm Dat a computed by the Digital Signature Server. Itis of type string.

This operation SHOULD be invoked only if the requester is authorized to request digital
signatures from the Digital Signature Server.

4.2 envelopingSign

The envelopingSign() operation returns an enveloping XML Digital Signature on the data
pointed to by the given URI.

envel opi ngSi gnResponse = envel opi ngSi gn(t oBeSi gnedUri) ;

Where:

t oBeSi gnedUri is the URI pointing to the data to be signed. It is of type string.

envel opi ngSi gnResponse is the XML markup of the enveloping signature on the data pointed to
by t oBeSi gnedUri computed by the Digital Signature Server. It is of type string.

This operation SHOULD be invoked only if the requester is authorized to request digital
signatures from the Digital Signature Server.

4.3 detachedSign

The detachedSign() operation returns a detached XML Digital Signature on the data pointed to
by the given URI.

det achedSi gnResponse = det achedSi gn(t oBeSi gnedUri) ;

Where:

t oBeSi gnedUri is the URI pointing to the data to be signed. It is of type string.

det achedSi gnResponse is the XML markup of the detached signature on the data pointed to by
t oBeSi gnedUri computed by the Digital Signature Server. It is of type string.

95
96

97

98
99

100
101

102

103
104

105

106
107
108

109

110
111

112

113
114

115

116
117

118
119

120
121
122

123
124
125

126

127
128

129

130
131

This operation SHOULD be invoked only if the requester is authorized to request digital
signatures from the Digital Signature Server.

4.4 envelopedSign

The envelopedSign() operation returns an enveloped XML Digital Signature on the data pointed
to by the given URI.

envel opedSi gnResponse = envel opedSi gn(t oBeSi gnedUri ,
si gnat urePosi tion);

Where:

t oBeSi gnedUri is the URI pointing to the data to be signed. It is of type string. The data being
pointed to MUST be XML markup.

si gnat ur ePosi ti on is the name of an XML element in the resource to be signed to be used as
the insertion point for the signature by the Digital Signature Server. If null, the signature is
inserted as the first child element under document root. It is of type string.

envel opedSi gnResponse is the XML markup of the enveloped signature on the data pointed to
by t oBeSi gnedUri computed by the Digital Signature Server. It is of type string.

This operation SHOULD be invoked only if the requester is authorized to request digital
signatures from the Digital Signature Server.

4.5 envelopedSignXmlData

The envelopedSignXmlData() operation returns an enveloped XML Digital Signature on the
XML markup data in the request.

envel opedSi gnXm Dat aResponse =
envel opedSi gnXm Dat a(t oBeSi gnedXm Dat a, si gnat urePosition);

Where:

t oBeSi gnedXn Dat a is the XML markup data to be signed. It is of type string.

si gnat ur ePosi ti on is the name of an XML element in the resource to be signed to be used as
the insertion point for the signature by the Digital Signature Server. If null, the signature is
inserted as the first child element under document root. It is of type string.

envel opedSi gnXm Dat aResponse is the XML markup of the enveloped signature on the data
pointed to by t oBeSi gnedUri computed by the Digital Signature Server. It is of type string.

This operation SHOULD be invoked only if the requester is authorized to request digital
signatures from the Digital Signature Server.

132

133
134
135

136

137
138
139

140

141
142

143

144
145
146
147

148

149
150

151

152
153

154

155
156

5 Security

Digital Signature Servers will be exposed to many of the same security issues as other web
service systems. For a representative summary of security concerns, refer to the Security and
Privacy Considerations document produced by the XML-Based Security Services Oasis TC.

The Digital Signature Web Server MUST only produce a signature upon request from an
authorized digital signature requester. Thus, the requester MUST be authenticated and policy
controls determining who is authorized MUST be enforced.

5.1 Authentication of Consumer

Digital Signature Server authentication of a requester may be achieved at the transport level
through the use of client certificates in conjunction with SSL/TLS.

5.2 Authentication of Digital Signature Server
Since the requester will likely be sending sensitive data to the Digital Signature Server to be
signed, the Server should be authenticated before the data is sent. Authentication of the server

may be achieved at the transport level through the use of server certificates in conjunction with
SSL/TLS.

5.3 Confidentiality & Message Integrity

SSL/TLS may be used to ensure the contents of messages are neither tampered with nor
decipherable by an unauthorized third party.

For Digital Signature Server - requester communications, the use of SSL/TLS is provided by the
Server’'s WSDL declaring an https: entrypoint.

5.4 Access control

A Digital Signature Server MUST implement access control mechanisms that restrict which end
entities are authorized to request digital signatures on documents.

6 WSDL Interface Definition

<?xm version="1.0" encodi ng="utf-8" ?>
<definitions xm ns:s="http://ww. w3. org/ 2001/ XM_Schema"

xm ns: http="http://schemas. xm soap. org/ wsdl / http/"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: tns="urn: Di gSi g"
t ar get Nanespace="ur n: Di gSi g"
xm ns="http://schemas. xm soap. or g/ wsdl /">

<nmessage nane="envel opi ngSi gnXml Dat a" >
<part name="t oBeSi gnedXmnl Dat a"

xm ns: nart ns="httn- // www wR ara/ 2001/ XM Schem"
type="partns:string" />
</ message>

<nessage name="envel opi ngSi gnXm Dat aResponse" >
<part nanme="result"
xm ns: partns="http://ww. W3. or g/ 2001/ XM_Schenma"
type="partns:string" />
</ message>

<nessage name="envel opi ngSi gn">
<part nanme="t oBeSi gnedUri"
xm ns: partns="http://ww. W3. or g/ 2001/ XM_Schenma"
type="partns:string" />
</ message>

<nessage nane="envel opi ngSi gnResponse"” >
<part name="result"
xm ns: partns="http://ww. w3. or g/ 2001/ XM_Schema"
type="partns:string" />
</ message>

<nessage nane="det achedSi gn">
<part name="t oBeSi gnedUri"
xm ns: partns="http://ww. w3. or g/ 2001/ XM_Schema"
type="partns:string" />
</ message>

<nessage nane="det achedSi gnResponse" >
<part name="result"
xm ns: partns="http://ww. w3. or g/ 2001/ XM_Schema"
type="partns:string" />
</ message>

<nessage nane="envel opedSi gn" >
<part name="t oBeSi gnedUri"

xm ns: partns="http://ww. w3. or g/ 2001/ XM_Schema"
type="partns:string" />

<part nane="si gnat urePosition"
xm ns: partns="http://ww. w3. or g/ 2001/ XM_Schema"
type="partns:string" />

</ message>

<nessage nane="envel opedSi gnResponse" >
<part name="result"
xm ns: partns="http://ww. w3. or g/ 2001/ XM_Schema"
type="partns:string" />
</ message>

<nessage nane="envel opedSi gnXm Dat a" >
<part name="t oBeSi gnedXnl Dat a"
xm ns: partns="http://ww. w3. or g/ 2001/ XM_Schema"
type="partns:string" />
<part nanme="si gnat urePosition"
xm ns: partns="http://ww. W3. or g/ 2001/ XM_Schenma"
type="partns:string" />
</ message>

<nessage name="envel opedSi gnXm Dat aResponse" >
<part nanme="result"
xm ns: partns="http://ww. W3. or g/ 2001/ XM_Schenma"
type="partns:string" />
</ message>

<port Type nane="Di gSi gPort Type" >

<oper ati on nane="envel opi ngSi gnXnl Dat a" >

<i nput nmessage="t ns: envel opi ngSi gnXnl Dat a" />

<out put nessage="tns: envel opi ngSi gnXm Dat aResponse" />
</ oper ati on>

<oper ati on nane="envel opi ngSi gn" >

<i nput nessage="tns: envel opi ngSi gn" />

<out put message="t ns: envel opi ngSi gnResponse" />
</ oper ati on>

<oper at i on nane="det achedSi gn" >

<i nput nessage="tns: det achedSi gn" />

<out put message="t ns: det achedSi gnResponse" />
</ oper ati on>

<oper ati on nane="envel opedSi gn">

<i nput nmessage="tns: envel opedSi gn" />

<out put nessage="tns: envel opedSi gnResponse" />
</ oper ati on>

<oper ati on nane="envel opedSi gnXnl Dat a" >

<i nput nessage="tns: envel opedSi gnXm Data" />

<out put message="t ns: envel opedSi gnXni Dat aResponse" />
</ oper ati on>

</ port Type>

<bi ndi ng nanme="Di gSi gSoapBi ndi ng" type="tns: Di gSi gPort Type">
<soap: bi ndi ng styl e="rpc"
transport="http://schemas. xm soap. or g/ soap/ http" />

<oper ati on nane="envel opedSi gnXnl Dat a" >
<soap: operati on soapAction="" />
<i nput >
<soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
encodi ngStyl e="htt p://schenmas. xnl soap. or g/ soap/ encodi ng/ "
/>
</i nput >
<out put >
<soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
encodi ngStyl e="htt p://schenas. xnl soap. or g/ soap/ encodi ng/ "
/>
</ out put >
</ oper ati on>

<oper ati on nane="envel opi ngSi gnXm Dat a" >
<soap: oper ati on soapAction="" />
<i nput >
<soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
encodi ngStyl e="htt p: //schemas. xnm soap. or g/ soap/ encodi ng/ "
/>
</i nput >
<out put >
<soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
encodi ngStyl e="htt p://schenmas. xn soap. or g/ soap/ encodi ng/ "
/>
</ out put >
</ oper ati on>

<oper ati on nane="envel opi ngSi gn" >

%88 <snan: aner ati on spanActi on="" />

<i nput >
297 <soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
298 encodi ngStyl e="htt p://schemas. xn soap. or g/ soap/ encodi ng/ "
299 />
300 </ i nput >
301 <out put >
302 <soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
303 encodi ngStyl e="htt p: //schemas. xnm soap. or g/ soap/ encodi ng/ "
304 />
305 </ out put >
306 </ oper at i on>
307
308 <oper ati on nane="det achedSi gn" >
309 <soap: oper ati on soapAction="" />
310 <i nput >
311 <soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
312 encodi ngStyl e="htt p://schemas. xnm soap. or g/ soap/ encodi ng/ "
313 />
314 </i nput >
315 <out put >
316 <soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
317 encodi ngStyl e="htt p://schenmas. xnl soap. or g/ soap/ encodi ng/ "
318 />
319 </ out put >
320 </ oper ati on>
321
322 <oper ati on nane="envel opedSi gn" >
323 <soap: oper ati on soapAction="" />
324 <i nput >
325 <soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
326 encodi ngStyl e="htt p: //schemas. xnm soap. or g/ soap/ encodi ng/ "
327 />
328 </i nput >
329 <out put >
330 <soap: body use="encoded" nanespace="urn: Entrust-Di gSi g"
331 encodi ngStyl e="htt p://schenmas. xnl soap. or g/ soap/ encodi ng/ "
332 />
333 </ out put >
334 </ oper at i on>
335 </ bi ndi ng>
336
337 <servi ce nanme="Di gSi g">
338 <docunent ati on>t odo: add your docunentation here</docunentati on>
339 <port nanme="Di gSi gPort" bi ndi ng="tns: Di gSi gSoapBi ndi ng" >
340 <soap: addr ess
341 | ocation="http://ny.org/ D gSi gServer" />
342 </ port>
343 </ servi ce>
344 </ definitions>

s [References

346 7.1 Normative

347 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
348 http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

349 PARTICULAR PURPOSE.

