Dear Ed,

I have read the EPM profile that you submitted some days ago.

What follows below is a set of comments and questions that have

come up to my mind as I have gone through this very good document.

This is why this message may be a bit lengthy. Sorry about that.

1. COMMENTS ON OVERLAP WITH XAdES Profile.

I've decided to start with this set of comments for obvious reasons.

After my first reading, I have identified a number of common things that EPM and XAdES profile may do.

a. Both profiles allow for requesting and issuing Time-stamps on signature, i.e., on <ds:SignatureValue> element. The main differences are:

1. Ways of requesting its computation:

a. XAdES-prof. makes usage of <SignatureForm> optional input containing an URI that identifies the signature form that contains this specific time-stamp. Good
b. EPM-prof. uses <AddTimeStamp> element. (XAdES-profile. uses this element for requesting time-stamps on documents to be signed). The profile also allows generate time-stamps on the signature value by requesting PostmarkedReceipt, True, but the PostMarkedReceipt acts as receipting mechanism to the fact that the EPM is holding evidence data for the customer
<JC>Yes, I understood the purpose</JC>

but this is an operation whose semantics are beyond the scope of XAdES profile.

2. Types of time-stamps returned.

a. Begin XAdES-prof. fully addressed to deal with XAdES and TS 101733 (RFC 3126) signatures, this profile allows the inclusion, within a XMLDSIG signature, of a XML time-stamp OR a RFC3161 (as xades:TimeStampType defined in XAdES spec shows). However, what is not allowed is to include within a TS101733 a XML time-stamp. The reason is obvious: when XAdES spec was written there was not a proposed XML time-stamp format in any standardization body.

b. EPM prof. links the format of the signature with the format of the time-stamp.
Not entirely true. On a Verify, EPM implementations are free to use RFC3161 binary timestamps instead of including the TstInfo reference. See 3.2.3.4 last 2 paragraphs.

<JC>You are right: My wording was not good. What I meant is that in the Sign operation this freedom does not exist for the returned signature: section 3.1.2.2 clearly states that depending on the signature requested the time-stamp will be RFC3161 or DSS...it is under this perspective that I made the comment.</JC>

<ed>Yes you are right, the timestamp is tied to the SignatureType in the Sign protocol.</ed>

<JC>In addition section 3.2.3.4 only refer to <PostMarkReceipt>, not to <SignatureObject></JC>
<ed>This section is a general explanation of the PostMarkedReceipt. But I guess it should be in a common elements section instead of within the Sign section, especially since it is talking about both Sign and Verify. I agree with your point.</ed>
QUESTION #1: Could not also be useful, even as an interim solution to allow the inclusion of a RFC3161 time-stamp within a XMLDSIG signature?
Yes, this is provided for in the profile, see above answer.

<JC>Sorry, but I do not see it when speaking of the time-stamp of a signature. I see it for the PostMarkReceipt, as you mention, but not for the signature...I think that if you mean that EPM servers may generate a XMLDSIG and include a RFC3161 base-64 encoded within it, then the place for saying that is section 3.1.2.2,
<ed>Oh Yes !!! Now I see your point. Section 3.1.2.2 should be the place where the possibility of an RFC3161 timestamp in an XMLDSIG signature should be mentioned. I point to DSSCore on line 248, but that is not explicit enough. I will fix that.</ed>
the first one that mentions the generation of a signature AND its corresponding signature time-stamp, and gives rules on how to compute it. If your requirements do not contemplate it, then this is a different story, but taking into account that XMLDSIG are there, that RFC3161 time-stamps are there, and that DSS XML time-stamps are not yet there, although they may appear soon, perhaps this is a strong constrain</JC>

<ed>No, I believe DSSCore makes room for it, and I will clarify in section 3.1.2.2 as you suggest. Good.</ed>
3. Ways of incorporating these time-stamps.

a. XAdES signatures define a standard way of incorporating the time-stamp. They even give a specific name identifying this time-stamp as one covering the <ds:SignatureValue> element. XAdES-profile establishes the generation of XAdES or TS 101 733 signatures with their well-defined ways of incorporating them to the signatures.

b. It seems to me that when the signature is a CMS it mandates to proceed as stated by TS 101733, as it even makes usage of the OID defined there.

Actually there are 3 different variations supported on timestamping for the Sign protocol. They are outlined in sections 3.2.4.1 thru 3.2.4.3. Only the last describes embedding of timestamps in the incoming signature. The first two approaches both return standalone timestamps.

<JC>Before going further, I will summarize my interpretation of the text:

section 3.1.2.2 is talking about the case when the client requests to sign something and as additional input also requests to add the signature time-stamp value. Apart from that I tend to think that sections 3.2.4.1 thru 3.2.4.3 refer to situations where the client requests only the time-stamp of a document, its hash or even a signature already existing.
</JC>

<ed>Yes, you are right. 3.1.2.2 addresses timestamps on the back of signature creation, and 3.2.4.x refers to requesting standalone timestamps like a TSA would. We extend the base model to support 3 variations. You are right in your interpretation.</ed>
<JC>I think that I did not circumscribe the scope of my comment. This comment was restricted to the case when the client requests to sign something and as additional input also requests to add the signature time-stamp value. It did not addressed the requesting of a time-stamp of a document, a hash or a previously generated signature. And in section 3.1.2.2 it is written: "The RFC3161 timestamp token will be added as an unauthenticated attribute, as defined above, of the generated signature. The result will be returned in <SignatureObject>". This seems to say that whenever you use the <AddTimeStamp> and an RFC3161 is generated then the TS101733 signature will be generated with the corresponding signature timestamp field.</JC>

<ed>Yes, line 245 states that it will be returned in <SignatureObject> and yes it will be embedded. Correct. Is there a problem ? Is there a documentational problem ?</ed>
However, when talking about XMLDSIG, nothing is said on how to incorporate it to the <ds:Signature> structure. Clearly stated in 3.2.4.1 thru 3.2.4.3 XMLSig is handle as per DSSCore section 5.1.1
<JC>Well, section 3.2.4.3 heading is: "Embedding a signature timestamp into a user-provided <SignatureObject>", but I was not talking of this case, but the one treated in section 3.1.2.2: request of a signature generation and the corresponding timestamp.</JC>

<JC>In addition In this section you say that when the client requests a timestamp of an already existing XML signature, then "dss:SignatureObject of type ds:Signature is used for returning XMLSig timestamps including the TSTInfo type as child of the referenced Object element as per section 5.1.1".. What about saying: "for returning the embedded XML timestamps in the XMLSig sent by the client. These timestamps will include...."?

The idea is that what is returned is the XMLSig sent by the client that contains somehow the time-stamp... and now I still have the question: how this XML timestamp is embedded the XMLSig?.</JC>

<ed>Yes I think you mean placement. Since it is essentially a counter-signature, we are following the approach used for the PostMarkedReceipt, and that is to place the timestamp signature at the same level as target signature and immediately in front of it. The example in the Section 7 shows this. Again, you are right, it is not explicitly stated in 3.1.2.2 or anywhere else that matter. Is this what you want me to fix ? </ed>
Section 3.2.4.3 seems to give a different treatment: include it within the signature according to TS101733 no mention of TS101733 is made,

<JC>Not, but I think that there is an implicit mention: in "dssSignatureObject of type dss:Base64Signature is used for returning RFC3161 timestamps embedded within a signature"... as the only mechanism described in the document for doing this is the one present in section 3.1.2.2 that is clearly the one specified in T101733.</JC>

<ed>Yes, I agree. It is implied.</ed>
and returning the isolated time-stamp for XML signatures ... ???

<JC>Right: nothing to do with isolated timestamps. Sorry</JC>

clearly states "... as per section 5.1.1 of DSSCore ..." in 3.2.4.3

<JC>Section 5.1.1 of DSSCore does not say how to embed a XML timestamp within a XMLSignature, this is all I mean</JC>

<ed>Yes, I see your point. We should not only fix this in the EPM Profile, but also in DSSCore. Correct ?</ed>
SUGGESTION #1: give indication on how the server will incorporate the time-stamp within a XMLDSIG.
Already done, see above. This is the reason for sections 3.2.4.1 thru 3.2.4.3 which exist solely to clarify timestamp handling in the Sign protocol.

<JC>Sorry, I still do not see it...</JC>
<ed>I know. It is not there. I agree. I will correct this.</ed>
SUGGESTION #2: although this may be going too far, could it be possible to suggest incorporation according XAdES spec?
Possibly, but only 1 of the 3 timestamp variations would be supported via XAdES.

<JC>If my interpretation is OK, then the two isolated cases are out of the scope of XAdES, as the timestamps of these two cases are isolated</JC>

<ed>Yes, correct.</ed>
I Assumed a signature timestamp is pretty conventional and is also used in RFC3126 and therefore is not specific to XAdES. The EPM is however contemplating explicit support of several XAdES forms. At that time we could make specific reference to the XAdES schema. Comments ?

<JC>What XAdES forms? Is the one with <SignatureTimeStamp> one of them? If so, we can make reference to it. And this could be one way of embedding the signature timestamp within a XMLSig.</JC>
SUMMARY: EPM-prof and XAdES-prof allow for requesting the same time-stamp. They make usage of different elements for requesting it. They allow different combinations in formats of time-stamps and signatures. They share the same kind of incorporation for CMS-based signatures (the TS 101733 way) this is not the only way,

<JC>The timestamps may be returned isolated but with regards to embedded timestamps

I only see one explicitly described in the document: the TS101733...perhaps I have not been able to identify the other(s),... could you point out which else appear?</JC>

but it is not clear for XMLDSIG-based signatures.
"... as per section 5.1.1 of DSSCore ..." in 3.2.4.3

<JC>See my comments above...</JC>

<ed>Correct. I will fix this.</ed>
QUESTION#2 Should we try to agree one common way of managing this type of time-stamp for both profiles? the only overlap is the 3rd variation as described in 3.2.4.3. We could explore this small level of integration, but again I do not believe that CMS-based timestamp embedding is exclusive to XAdES and would rather keep it generic for now. Comments ?
<JC>You are right: it is not exclusive to XAdES (well, to TS101733) but in fact it is the first one that standardizes the integration of the time-stamp within the CMS signature, and I have not heard from any other standard to do that... if there is a standard way of doing that, why do not use it?

<ed>You have convinced me. I will use it and refer to TS 101733 profile. However, because the EPM uses the PostMarkedReceipt to hold everything, including the timestamp and the receipt, I cannot reuse XAdES. I can reuse TS 101 733. Since the DSS XAdES Profile covers both, I will ref your “DSS profile schema” (not the XAdES schema). OK ? </ed>
In addition, the EPM has to do it in one way or the other... what you are saying is that EPM will give freedom to implementers on how to embed timestamps within the signatures? would not be better to use it? In addition, you are mandating its usage in section 3.1.2.2 although you do not mention TS101733</JC>

<ed>You have sold me on referring to the XAdES DSS Profile for CMS timestamp embedding. See above.</ed>
b. Both profiles allow to include in a the response validation data, i.e., CRL information or OCSP

responses information. The main differences are:

1. Ways of requesting it:

a. XAdES-prof. uses the <SignatureForm> element to request a signature that contains itself such an information.

b. EPM-prof uses the <ReturnX509Info> flag.

2. Type of information returned.

a. XAdES-prof. relies on XAdES and TS101733 signature structures. They allow to incorporate references to validation data (they contain hash values of CRLs or OCSP or other data, as well ass identifiers of these pieces of data), or validation data themselves (CRL values, OCSP responses values, etc.).

b. EPM-prof allows to return values of OCSP responses and a set of values extracted from a CRL. But it seems that no CRL value itself may be returned.

The ValidationData element is actually extensible in the EPM schema, and can be used to house any appropriate information based on implementer preferences. It is essentially a less specific way of doing things as compared to the XAdES. This was done to support EPMs with different Validation Authority setups (e.g. OCSP versus no OCSP, etc ...). Almost anything can be placed in ValidationData based on implementer-specific policy.

<JC>Understood. OK</JC>
3. Ways of returning them.

a. XAdES-prof. allows returning this information directly incorporated in the Signature, as specified in XAdES and TS 101733.

b. EPM-prof allows returning this information within the <epm:X509Info> element, separated from the signature.

SUMMARY: EPM-prof and XAdES-prof allow both for requesting validation data to the servers. They differ in the way of doing that, the type of information returned and the way in which it is returned.

MY personal view is that these differences are less relevant as the former ones on the time-stamp, as in fact, it is not even clear that within the context of EPM usage the validation data should be incorporated within the structure of the signature. If this was the case, then perhaps we could talk of that.

2. COMMENTS ON THE DOCUMENT ITSELF.

Below follows a number of comments and questions that have come up to my mind as I have gone through the document.

COMMENT#1. Section 3.1.2.3. SignaturePlacement.

I find the text in the first paragraph a bit confusing, mainly because it seems to be jumping from one case to the other. See below:

"When creating RFC3275-compliant XML Digital Signatures as indicated by the <SignatureType> optional input element, the <SignaturePlacement> optional input element is not required. The EPM will assume an enveloped signature unless an <EnvelopingSignature> optional input is present. The resultant ds:Signature will be returned in the <SignatureObject> as per [DSSCore]."

--->The first sentence is dealing with enveloped signatures. The second says what to do for getting enveloping signatures, and the third says where the enveloping signatures will appear but without mentioning that it is talking of enveloping signatures.

" Additionally, the resultant signature will be inserted after the last child of the root node of the <Document> element of <InputDocuments> and will be returned in the <DocumentWithSignature> element. "

---> Now the text jumps again and says where the enveloped signature will be returned.

This is default handling. For <EnvelopingSignature>’s the EPM requires the <Document>’s RefURI and ID attributes to construct the <DocumentWithSignature>. The standalone ds:Signature will also be placed in the <SignatureObject>.

---> And finally here it comes back to talk about enveloping....

SUGGESTION#3: Could it be possible to reorganize the text and give all the information for each case packed in the same paragraph?

Yes this should be clarified. I agree. I will work on this.
COMMENT#2. Section 3.1.2.4 and its relationships with examples in section 6.

QUESTION#3. I understand that even the XML input document is encoded in Base64, am I OK?. If this is OK, should not the examples start with <DocumentWithTemplate> instead with <Document>?

Yes, you are right.
QUESTION#4: From the text in third paragraph I understand that in a request you have <Document> or <DocumentWithTemplate> element... am I right?

Yes, you are right.
COMMENT#3: Section 3.1.4.6 <SignatureObject> as optional input

This section says:

"This optional input is only used when users are requesting a timestamp <SignatureType>, and additionally would like that timestamp embedded into an existing signature they may have in their possession."

QUESTION#5: should not be better to make use of the protocol verify with the option of updating a signature? I guess that you may answer me that in this way you are not requesting to verify the signature, but only incorporating the time-stamp, isn't it?

Yes, you are right. This is how I would respond.

But then are not you open the door to a situation where a time-stamp may be added to a signature that has not been verified?

This is why we have the PostMarkedReceipt which carries that extra contractual binding. The receipt concept parallels the physical world. A timestamp is just a timestamp to the EPM.
<JC>Understood. OK</JC>

COMMENT#4: Section 3.2.3.4

Editorial:

"Correspondingly, when the EPM issues a PostMarkedReceipt as a result of a Verify operation using <ReturnUpdatedSignature> or <IssuePostMarkedReceipt>, the EPM is attesting to both the validity of both the verified ..."

QUESTION#6: are the two "both" at the end intentional?

Yes, they are. The EPM supports both methods of asking for the PostMarkedReceipt. In both cases the results are the same. A PostMarkedReceipt is returned.

<JC>But you have suppressed the first one....probably I did not correctly word my question. Anyway, I now agree with the text in version 03. </JC>
<ed>Actually you are right. I changed my mind in version 3 and suppressed <ReturnUpdatedSignature> as you point out. The equivalent <IssuePostMarkedReceipt> is mentioned in the text. </ed>

QUESTION#7: Does the <TimeStampToken> element contain a RFC3161 time-stamp? This is what I have concluded from the text, but it is not explicitly said there. Should not be better to clearly indicate this?

It is already indicated. See 3.2.3.4 last 2 paragraphs.
<JC>OK in the third version.</JC>

<ed>Yes, I fixed this based on your input. </ed>
COMMENT#7: Section 4.1.1.7

QUESTION#8: Does the text:

"If this receipt is required, the user must pass in the single signature to be verified along with its associated document in a single <Document> element without either a <SignaturePtr> or a <SignatureObject>." mean that this is only for enveloped signatures?

I guess we could state that the PostMarkedReceipt would have to be standalone for enveloping signatures ? Do you agree with this ?
<JC>If you want to also issue PostMarkedReceipt of enveloping signatures you can keep the PostMarkedReceipt standalone or create a new document with the enveloping signature and the PostMarkedReceipt being detached:

<PostMarkedReceiptAndSignature>

<PostMarkedReceipt>...</PostMarkedReceipt>

<ds:Signature>...</ds:Signature>

</PostMarkedReceiptAndSignature>

</JC>

<ed>I gather you mean side by side under a new root in a new document. Yes, we could do that. I’ll change the text. This sounds easy. </ed>
COMMENT#6: Sections 4.2.2 and 4.2.3.1.

QUESTION#9:Text in both sections are the same. I must confess that I had lost a number of details when I arrived here, but is it possible that <SignatureObject> and <DocumentWithSignature> may both be returned on the same conditions in the request?. From the examples and what I have read, I think that if <ReturnUpdatedSignature> is added, only the second one may be generated?

<ReturnUpdatedSignature> and <IssuePostMarkedReceipt> do/return the exact same thing, which is influenced by <SignatureType>. Is there still an outstanding problem with this ?

<JC>Yes, you are right... I misunderstood the whole thing. Sorry.</JC>

<ed>Actually you were right. I have fixed this to be more clear, and one is suppressed. </ed>
Well, I think that these are my comments and questions so far.

Sorry by this lengthy message.....

Regards

Juan Carlos.

