1.1 Processing for CMS Signatures

1.2 A DSS server that produces CMS signatures [RFC 3852] SHOULD perform the following steps, upon receiving a <SignRequest>. These steps may be changed or overridden by the optional inputs, or by the profile or policy the server is operating under.
1.3 The <SignRequest> MUST contain either a single <Document> not having RefURI, RefType set or a single <DocumentHash> not having RefURI, RefType, <ds:Transforms> set.

1.4 Note: With regard to the compatibility issues in validation / integration of PKCS#7 signatures and CMS implementations please refer to [RFC 3852] section 1.1.1 “Changes Since PKCS #7 Version 1.5”.
1.5 Basic Process for <Document>
1. If a <Document> is present, the server hashes its contents as follows:

a. If the <Document> contains <Base64XML>, the server extracts the ancestry context free text content of the <Base64XML> as an octet stream by base64 decoding its contents.

b. If the <Document> contains <InlineXML>, the server extracts the ancestry context free text content of the <InlineXML> as an octet stream as explained in (section 3.3.2 1.a). For CMS signatures that are external/detached/”without eContent”, this octet stream has to be returned inside the <Base64XML> element of a <TransformedDocument> optional output.

Note: The rest of CMS signatures encapsulate the signed data inside its eContent field.
c. If the <Document> contains <EscapedXML>, the server unescapes the content of the <EscapedXML> as a character stream and converts the character stream to an octet stream using an encoding as explained in (section 3.3.3).

d. If the <Document> contains <Base64Data>, the server base64-decodes the text content of the <Base64Data> into an octet stream.

e. The server hashes the resultant octet stream.

2. The server forms a SignerInfo structure based on the input document. The components of the SignerInfo are set as follows:

a. The digestAlgorithm field is set to the OID value for the hash method that was used in step 1.e.

b. The signedAttributes field’s message-digest attribute contains the hash value that was calculated in step 1.e. Other signedAttributes may be added by the server, according to its profile or policy, or according to the <Properties> optional input (see section 3.5.5).

c. The remaining fields (sid, signatureAlgorithm, and signature) are filled in as per a normal CMS signature.

3. The server creates a CMS signature (i.e. a SignedData structure) containing the SignerInfo that was created in Step 2. The resulting SignedData should be detached (i.e. external or “without eContent”) unless the client sends the <IncludeEContent> optional input (see section 3.5.9).

1.5.1 Process Variant for <DocumentHash>

In the case of a <DocumentHash> the Basic Process (section 3.4.1) is replaced as follows:

4. Omitted.

a. Omitted.

b. Omitted.

c. Omitted.

d. Omitted.

e. Omitted.

5. Same as in step 2 of the Basic Process
a. The digestAlgorithm field is set to the OID value that is equivalent to the <ds:DigestMethod> included inside the <DocumentHash> element.
b. The signedAttributes field’s message-digest attribute contains the hash value that was sent in the <ds:DigestValue> included inside the <DocumentHash> element. Other signedAttributes may be added by the server, according to its profile or policy, or according to the <Properties> optional input (see section 3.5.5).

c. Unchanged.

6. Essentially the same as in step 3 of the Basic Process, with the requirement that the signature has to be external/detached/"without eContent", since <DocumentHash> is incompatible with <IncludeEContent>.
