
[image: image1.png]OASIS)

Electronic Business Service Oriented Architecture

Service Input Output Validation Pattern
Document identifier:

ebsoa-InputOutputValidation-[version]
Location:

http://www.oasis-open.org/committees/ebsoa

Editors:

Matthew MacKenzie, Adobe Systems <mattm@adobe.com>

Contributors:
Duane Nickull, Adobe Systems < duane@nickull.net >

Kathryn Breininger, Boeing

Tim Mathews, LMI

Ron Schuldt, Lockheed Martin

Abstract:

This pattern is part of a service oriented architecture specification. Together with the specification document, a catalog of specification and other specifications, it constitutes the OASIS Electronic Business Service Oriented Architecture.
Status:

This document is in DRAFT status.
Committee members should submit comments to the ebsoa@lists.oasis-open.org list.

Others should submit comments by filling out the form at http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=ebsoa
Table of Contents

21.1
Document Structure

31.2
Terminology

42
Pattern

42.1
Name

42.2
Also known As (optional)

42.3
Business Problem (Story)

42.4
Context

52.5
Derived Requirements

52.5.1
Forces

Error! Bookmark not defined.2.5.2
Constraints

52.6
Generalized Solution

62.7
Static Structure

62.8
Dynamic Behavior

72.9
Implementation

82.10
Business Problem (Story?) Resolved

82.11
Specializations

82.12
Known Uses

92.13
Consequences

92.14
References

9Appendix A. Acknowledgments

11Appendix B. Revision History

12Appendix C. Notices

1.1 Document Structure

This specification is comprised of several inter-related components. This document is an instance of a pattern and is referenced via the Pattern Catalogue. This pattern is a stand alone document and is structured in the format specified in the eb SOA Specification, in the section on Patterns Meta Model.
[image: image2.png]Spelcation

Catalog of Pattems

Pattern

Pattem

While care has been taken not to create dependencies between patterns, some implementers may find that dependencies exist for their specific application.

The status of each Pattern may change throughout its’ approval lifecycle (example: draft, committee draft, candidate recommendation, approved specification).

1.2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document, and the patterns themselves, are to be interpreted as described in Error! Reference source not found..

2 Service Input Output Validation Pattern

2.1 Name

Service Input Output Validation Pattern

2.2 Also known As (optional)

None known
2.3 Business Problem (Story)

One of the key elements of service oriented architectures is loose coupling between the services. Often, the coupling has to be strengthened at the application level, to assure the correct operation of the logic implemented in the program. One possible area to add tighter constraints to is parameter (data) validation.

Major banks offer services for smaller automatic teller machine (ATM) vendors to post transactions to it’s customers accounts based on when their customers make transactions in the ATM machines. Because the banks cannot control the data integrity of the ATM vendors, they must place a data validation service to check for errors in data input and output from their service interfaces. Even though the banking systems operates on a private wide area network, there are contact points with the internet.

A specific potential problem may occur if a customer enters a negative signed integer value as the value of a withdrawal transaction. Such a withdrawal should not be allowed since it would then constitute a deposit (withdrawing [subtracting] $ -40.00 from an account is the same as adding $40.00 to an account).

There are several key assumptions we will make for this business problem. We will assume the use of the Simple Object Access Protocol (SOAP) v 1.2 although there is no dependency between the transport binding and the parameter data. We will also assume that the bank uses XML in the SOAP:body to pass the parameters to and from the service.

2.4 Context

This pattern will likely be of interest to any service provider who deploys a service and has to impose constraints for the data entered by those calling their service. This pattern addresses a recurring problem of how to maintain 100% data integrity flowing both into and out of services.
2.5 Derived Requirements

The abstract requirements are to have a checkpoint deployed and each transaction must pass through the checkpoint. When instances pass though the checkpoint, they are validated against a set of rules or constraints to ensure they maintain the integrity intended or required by the service provider.

2.5.1 Forces and Constraints
The constraints are:

1. A metadata constraint artifact must be present to constrain instances in sufficient detail to the business requirements. (Note: An alternative is to write custom code to perform data integrity checks).

2. The validation should not be too cumbersome when performance aspects may be adversely affected by its’ presence.

3. The validation process must be capable of constraining data instances in accordance with the level of granularity required by the service provider. Example: W3C XML schema may not be robust enough to permit conditional validation of attributes based on other attribute values of the same parent element.

4. The validation process must provide error reporting and handling in order to let the service consumer be notified that their data has errors.
2.6 Generalized Solution

The solution is to have an artifact that declares the validation constraints to a checkpoint and a checkpoint application that can perform validation on each and every data instance coming in or out of the service.

Embedding those checks in the Service Proxy allows it to maintain proximity between the service and related controls. When a problem is found, the Service Proxy should throw an exception, providing the service consumer with field that caused the error failing the check (data missing, bad length, wrong format, and so on).

The check implemented in the Service Proxy usually has an incrementally approach. A likely implementation is th each check may raise only a single exception and generate a description for that single problem. an alternative is to perform all the checks and then throwing a single exception that describes all the problems encountered.

The Abstract Services defines the abstract methods that will check the input and output of the service. The Service Proxy implements such methods, providing specialized checks to input and output data. The Service Exception represents the problem encountered during verification.

Assuming the use of XML for the data, a simple validating parse against the schema prepared for the

.

2.7 Static Structure

The static structure is to add an Abstract Service component to the basic service pattern and task it with validating the instance data of either the input, the output or both. The validation service uses a set of validation rules, which must be sufficient to constrain the instance data according to the requirements of the Service Provider. The Abstract Service component MUST generate exceptions when the instances of request and responses are invalid.

Exceptions SHOULD be expressed as messages, caught and acted upon (example – reported and logged). This is simply good software design practice in order to determine what happened when something goes wrong with the system in whole.
[image: image3.png]ServiceProvider|

iy Abstractservica
|Sorvice Provider Proxy aldalorRules

[FradareRequesi]

[+vaisateResponss)

~<<generates>>

] excapion
Service Const DatavaldationException

2.8 Dynamic Behavior
The service consumer makes an initial service request to the service provider proxy. Before the service provider proxy forwards the service request to the service provider, it starts a validation service request-response transaction. Under no circumstances would any service request be sent to the service provider unless the data validation response comes back with a successful condition. If the data validation service discovers that the service request data is non-conformant to the constraints imposed upon it (example – an XML instance does not conform to an XML Schema), it MUST generate and pass back an error to the service provider proxy. It is STRONGLY RECOMMENDED that in all implementations, the details of the error are caught and also passed back along with the error message. Such is generally good software architecture practice.

[image: image4.png]‘Servioe Provider Prosy.

‘Service Request

M

Data Validation Request

Data Valdation Response

Parsing Error Message

1oR)

T
|
Native Servioe Request

Service Response

Figure 2.8 – Solution Behavior

While not documented, the caught exception could also be passed back to the original service consumer.
2.9 Implementation

Assuming that the data passing to and from a specific service will be in XML format, the service validation MAY be implemented by using a W3C Schema to constrain XML data instances. This is based on a further assumption that W3C schema is capable of constraining instances in accordance with the requirements of the service provider. Any W3C XML schema compliant validating parser may be used to constrain XML instances.
Since SOAP is commonly used to send messages to and from web based services, the XML schema for the service parameters may be imported using the <xs:import> element of the W3C Schema specification within the <SOAP:Body> element.

As each SOAP message is received, a validating parse may be done immediately on the XML content of the SOAP message instance. The SOAP message instance validation shall generate errors if the instance is not in alignment with the XML schema constraints imposed by the service provider.

Since SOAP is also an XML schema constrained XML language, if any part of the SOAP message fails to pass a well-formed or validating parse, it must generate a SOAP fault in conformance with the SOAP specification. Please refer to references to both the W3C SOAP Specification and the Web Service Interoperability Organization (WS-I) within the reference section of this pattern for details and further constraints.
2.10 Business Problem (Story?) Resolved

The bank that provides the services to the smaller ATM vendors develops and shares a W3C XML Schema instance along with a declaration that all service request messages sent by service consumers must be compliant with the schema. The bank implements an extra step of a validating parse of each incoming transaction, as opposed to a non-validating parse which only checks for well formed-ness. In the event that an incoming service request message is both well formed and valid XML, it will pass to the next steps of processing in alignment with the service. If it fails to pass the validation test, it generates an error message and alerts the service requestor and cancels the pending service request. This does not allow the state of the business process request to advance to the next step.

The bank also logs a record of the details of the error and may also elect to alert a human actor.

2.11 Specializations

There is a specialization of this pattern where a non-validating parse of the incoming service request message is performed by the data validation service, and parameters are un-marshaled from the message serialization into objects, native to a specific programming environment. The Implementer may then utilize the native programming language to implement data validation or verification tests on each parameter. This is a specialization that may be performed in instances where non-xml messages are used to make service requests or pass parameters to services or in situations where using XML in combination with an XML constraint language (such as XML Schema or a Document Type Definition DTD) is not sufficient to meet the service provider or service consumers requirements for data validation.
2.12 Known Uses

Most web service vendors have introduced the concepts of XML Schema based validation in their products. Many products utilize validating XML parsers specific to their programming language. A few of these are discussed herein.

Xerces

Xerces is a free and open source parser with W3C Schema Validation features. It has a cleanly defined API to invoke validation services when parsing instances of XML. It is available in both Java and C++.

MPFCS

Microsoft offers a C# version of a validating XML parser.
Additionally, many Electronic Data Interchange (EDI) software vendors and organizations have developed special software to validate data instances

Perl-EDIFACT module

[CPAN]
2.13 Consequences

Validating data places extra burdens on computer systems in terms of consuming application bandwidth. A validating parse may require that the entire incoming service request be held in memory while tests are run on it in order to determine compliance with the constraints.
2.14 References

SOAP

XML

W3CXML Schema

Xerces.org

CPAN

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

In addition, the following people made contributions to this specification:
Massimiliano Bigatti max@bigatti.it
Appendix B. Revision History

[This appendix is optional, but helpful. It should be removed for specifications that are at OASIS Standard level.]

	Rev
	Date
	By Whom
	What

	
	
	
	

	
	
	
	

	
	
	
	

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 12
2
wd-ebsoa-045

20 August 2004

Copyright © OASIS Open 2004. All Rights Reserved.

Page 1 of 12

