AIAG IV&I Security Whitepaper

Jim Kirkley

Anthony Biegen

QAD, Inc

April 25, 2003

Rationale

The sizeable number of vendors of Inventory Visibility (IV) solutions is causing pain for suppliers who are forced to login to several different IV products on a daily basis. Each product has its own way of presenting inventory information, its own way of authenticating the user and so forth. Think of what the world would be like if there were 5 or 6 different telephone companies. To call someone you would have to know which phone company they subscribed to and use that company’s telephone. You would wind up with 5 or 6 phones on your desk and 5 or 6 phone books to look up your call.

The IV&I initiative seeks to solve this problem by creating interoperability standards between IV vendors. QAD proposes to engage in a proof-of-concept demonstration of interoperability between two IV vendors: QAD and SAP. We propose a peer-to-peer model with no central clearing house facility. Therefore each participating vendor must agree to conform to a standard schema for sharing inventory information and a standard protocol to effect the sharing.

Creating an environment where the use of IV products is made easier for suppliers will result in increased acceptance and usage and all parties will benefit. However, as competitive sellers of IV products, we are in competition with one another. We wish to preserve our ability to independently innovate and add value with our products, over and above the value provided through interoperability. Therefore, the design philosophy proposed in this whitepaper is intended to foster maximum independence.

Terms

	Hub
	an IV information collection point. Eg. An instance of SV: ‘SV1’

	Partner Hub
	a hub housing information needing to be shared by another hub and having the ability to share that information. E.g. ‘SAP1’ is a partner hub with ‘SV1’

	Home Hub
	A hub where a user wishes to see aggregated information

	User
	A person with an account on a hub. E.g. Bob has an account on ‘SV1’

	Remote user
	A person wishing to access information on a partner hub via their home hub. E.g. If Bob’s home hub was SV1, he would be a remote user to ‘SAP1’

	HubID
	A unique string denoting the hub. E.g. ‘SV1’

	UserID
	A unique string denoting the user on a hub. E.g. ‘bob’

	
	

Design Philosophy

The design shall preserve, to the greatest extent possible, the autonomy, distinctive characteristics, and competitive differentiation of the participating hubs. Therefore we wish to impose as few interdependencies among the hubs as possible. Each hub shall be able to specify its own security policies and shall have autonomy with regards to which partner hub is allowed access and which user within that hub. For example, each hub shall be able to establish and enforce it's own policies regarding user account password length and password lifetime. (For that matter the hub may require some other authentication mechanism entirely such as picture matching etc.) It shall be necessary for each hub to maintain only minimum information on each partner hub. Remote user passwords shall not be stored on the partner hub. Each product shall be able to cut off access to any remote user at any time without coordination with other partner hubs. Each hub shall be able to cut off access by partner hubs at will. Each hub shall be allowed to present remote data in the native format, displayed in a merged fashion with intermixing of local and remote. Each hub shall be able to apply any sorting, filtering or other data processing of merged remote and local data without dependency on the remote system. Each hub shall be able to tag each data record with a source id to show from which hub it came. Each hub shall be able to time stamp the data record indicating when that data record was last updated.

Inventory Visibility Information Exchange Scenario

In this scenario, we assume two hubs, with HubIDs 'SV1' and 'SAP1'. A user known as 'bob' has an account on SV1 and the same user known as 'robert' has an account on SAP1.

Per the philosophy above, the intent of this scenario is to match as much as possible the native behavior of the hub where a user requests and receives a set of inventory data. We wish to allow the hub to present this data in the native format, displayed in a merged fashion with intermixing of data from SV1 and SAP1. Each data element may be tagged with the source id to show where it came from. We also wish to preserve any sorting or filtering that may be allowed by the hub. (If sorting or filtering were to be performed at the partner hub, this would greatly complicate the interoperability by requiring some sort of sorting or filtering semantics to be passed with the request.) Therefore it is necessary, for simplicity's sake, for the total amount of data allowed to be seen by the user to be passed on request, even though all (or most) of the data may not be displayed. It is assumed that this data will be placed in temporary storage and time stamped so that the hub may treat it as "native" for querying purposes. We also do not want to specify when this data is retrieved. It may be retrieved at the moment of the request issued by the user or it may be pre-fetched on some schedule. If data are pre-fetched, pre-fetching should be done economically so as to minimize the load on the partner hub. This is a courtesy, because there is really no way to regulate this activity short of cutting off the requesting hub.

Precondition: the user has been authenticated and authorized to view the data that she is entitled to see on the home hub (SV1), under the user ID 'bob' (thus, SV1.bob).

Precondition: the user has been authenticated and authorized to view the data that she is entitled to see on the partner hub (SAP1), under the user ID 'robert' (thus, SAP1.robert).

Precondition: a link between SV1.bob and SAP1.robert has been previously created, which establishes that SV1.bob and SAP1.robert user accounts belong to the same person.

1) User 'bob' requests to see inventory data page on SV1, which is his home hub.

2a) SV1 looks at 'bob's account and sees that 'bob' has an account on 'SAP1'

2b) SV1 issues a web service request to partner hub SAP1 for the inventory data. SV1 will pass the 'SV1user/password' to SAP1 for authentication purposes when making these requests, the requests will also contain a data segment containing the user identity 'SV1.bob'.

3) SAP1 will authenticate the request against the SV1 credentials, establishing that SV1 is authorized to make this request.

4) SAP1 will map the identity 'SV1.bob' and retrieve the identity 'robert'

5) SAP1 will retrieve all inventory data that 'robert' is entitled to see on SAP1.

6) SAP1 will return this data in a standard format as a synchronous (?) response to the web service request.

7) SV1 will merge this returned data with the data that 'bob' is entitled to see on SV1

8) SV1 will apply any queries and filters to the merged data set and display it appropriately to 'bob'

Inventory Visibility Security Scenario

In this scenario, we assume two hubs, with HubIDs 'SV1' and 'SAP1'. There is one user known as "bob" on SV1 and as "robert" on SAP1. SV1 already knows about SAP1 and has established a secure link URL to it. SAP1 knows about SV1 and has a secure link to it as well.

1) User logs in as 'bob' to SV1.

2) User requests to do the initial setup to allow his SV1 account to collaborate with the SAP1 hub. This is done by invoking the 'external hub setup' screen.

3) User selects the SAP1 hub as the desired hub in the 'external hub setup' screen, and hits a submit button.

4) SV then does an HTTP redirect to the SAP1 hub's 'hub user validation' URL, passing the <hubID>.<userid> to the SAP1 URL ('SV1.bob', in this example).

5) The SAP1 page returns a 'hub user validation' screen to the user, who then types in their SAP1 username ('robert') and password.

6) The SAP1 hub authenticates the user's entry. If it fails, it simply returns an error page. If it succeeds, then SAP1 creates a user mapping that maps 'SV1.bob' -> 'robert'.

7) At this point, the hub setup is complete.

Continuation to illustrate the nominal usage scenario:

8) Any normal SV1 page request by 'bob' will result in a web service request from SV1 to SAP1 for the SAP data components. SV1 will pass the 'SV1user/password' to SAP1 for authentication purposes when making these requests, though the requests will also contain a data segment containing the user identity 'SV1.bob'.

9) SAP1 will authenticate the request against the SV1 credentials, and then perform a user mapping to retrieve the value 'robert' from the input data 'SV1.bob'.

10a) If the user mapping succeeds in step 9, SAP will then then return the appropriate data authorized for the 'robert' user from SAP1.

NOTE: authentication at SAP1 is done against the SV1 user; authorization at SAP1 is done against the robert' user.

11a) SV1 will combine the data returned from the web service request to SAP1with its own locally queried data, returning this to the user 'bob' in the initial HTTP response to the request made in step 8.

10b) If the user mapping fails in step 9, SAP will return an error web service response. NOTE: this failure could occur for several reasons, for example: the user never successfully set up the hub as in steps 1-7 above, or perhaps the user did this at one point, but then their SAP1 account was later terminated and the mapping cleared in the process.

11b) SV1 will combine the data returned from the web service request to SAP1 with its own locally queried data, returning this to the user 'bob' in the initial HTTP response to the request made in step 8. The error content might contain a link to the SV1 'external hub setup' screen to facilitate the user in correcting the error, bringing the user to step 2 above.

10c) If the user mapping succeeds in step 9, but the SAP1 hub fails to respond within a pre-established time window, the synchronous request from SV1 to SAP1 will time-out.

11c) SV1 will report that SAP1 did not respond, rather than simply omit missing information.

NOTE: This proposal has many advantages:

· It encapsulates local authentication and authorization inside of the hub that is responsible for it.

· It avoids requiring the SV1 hub from having to deal with SAP1 passwords entered into it. It avoids the SAP1 hub from having to trust the SV1 hub to validate the mapping of the SV1.bob user to SAP1.robert. The only trust necessary if that the hubs are able to authenticate their own users (eg. SAP1 trusts SV1 to authenticate SV1.bob).

· It allows hubs to turn off access to other hubs, putting authorization in the control of the hub that contains the data (eg. SAP1 can turn off all access to SV1 by simply removing all 'SV1.*' user mappings.

�PAGE \# "'Page: '#'�'" �� The ability for BPSS to specify temporal relations b/w adjacent instances.

