Time: Monday May 10, 2004, 2pm PT

(joint with New Orleans f-2-f, Thu Apr 29)

Host: Fujitsu

Toll only : 1-512-225-3050

Participant code: 716071

Attendees:

Michael Kass (NIST)

Monica Martin (Sun)

Jacques Durand (Fujitsu)

Pete Wenzel (SeeBeyond)

excused:

Steve Yung (Sun)

Agenda:

1- secretarial position: only Michael Kass nominated, so we will vote if we have quorum,

else we open a mail vote (1 week).

2- TestFramework 1.1 Follow-up on the simplification of control flow operators for test case scripting.

- go through use cases (see attached) and decide which operators in TFk1.1 are sufficient to best script them.

[MIKE] - I spent last week studying BPSS 1.05 specification, trying to understand similarities/differences between

the Test Framework scripting and BPSS "scripting". As Monica pointed out, the Test Framework scripting can be thought

of as a "process" in its own right, and some of the entities defined in the UML description of a Business Process do rather

effectively map well to a few entities in the Test Framework. Of particular note are:

Business Transaction ---> Test Step

Binary Collaboration ---> Thread

 A BPSS Business Transaction is an "atomic" level operation, consisting of a single message "request", and possibly multiple

message "responses". This maps well to a Test Step, which (right now) is defined as a single "request" or a single

"response". For the purposes of scripting and as a POC for the use cases that Jacques submitted, I have modified a

Test Case to now allow for multiple requests and responses within a Test Step (this alignes it more with the BPSS definition, and also

enhances the power and flexibility of a Test Step, without breaking any kind of backward compatibility with version 1.0 of the Test

Framework specification.

 A BPSSS Binary Collaboration is a "higher level" entity, capable of containing/choreographing multiple Business Transaction activities,

as well as containing other Binary Collaboration activities (i.e. recursing binary collaborations). A Binary Collaboration

maps well to our "Thread" entity in our Test Framework. A Thread MAY contain multiple Test Steps (Transactions), and may additionally

contain "child" Threads (Binary Collaborations). Test Framework Threads provide a mapping to the "recursive" functionality defined in BPSS

Binary Collaborations within Binary Collaborations.

 It is intersting that BPSS also has a concept of "atomic" levels of operations (i.e. branching from within a Business Transaction is not

allowed), as doing so would destroy the hierarchy of the entity model. Branching (based upon a business "state") occurs only at the

Binary Collaboration level. The same is true for the Test Framework.

 While it was not my intention to emulate BPSS, these two entities do fundamentally map well.

DIFFERENCES and FUNCTIONALITY NEEDED in the Test Framework to support BPSS:

 Clearly, the Test Framework scripting is not intended to be a BPSS scripting language. The semantics of BPSS are well beyond what

the Test Framework scripting can do, and should do. The Test Framework scripting languages is a testing language only,

agnostic to what messages, and what business semantics are being tested. It only sends and receives messages,

and tests assertions based upon the message content it receives.

That said, in order to test if a BSI is conformant/interoperable, the Test Framework scripting MUST be able to choreograph, verify and

validate BUSINESS MESSAGE content (including message attachments) based upon what is defined in a BPSS instance document. I believe that

we can map (via transformation) from a BPSS Instance document to a Test Framework script. The use cases attached represent a POC of

the Test Framework capability to do conformance testing of a BSI based upon messages received by the Test Driver.

A more rigorous POC is necessary, using a BPSS instance document, a BPSS "Test Service", and a Test Framework V1.1

implementation to verify this mapping. A good exercise would be to start with a simple BPSS instance document, and transform it into

Test Cases.

- recap of BPSS choreography patterns and what operators are most familiar to workflow.

[MIKE] - I used the current BPSS schema (provided with Monica's "Refactoring" document), and the BPSS 1.05 specification to define some operators.

- outline what simplifications can we do to TFk1.1 scripting, while covering BPSS test requirements.

3- TestFramework 1.1 : what Test Service for BSI (BPSS engine)?

- at f-2-f, we have outlined the possibility of using a subset of Test Driver, to simulate the application components

that process and send payloads via the BSI.

-------------------------- minutes ---------------------------------

1. Secretary

- Mike only nominee. Will open the vote by email.

2- TestFramework 1.1 Follow-up on the simplification of control flow operators for test case scripting

2.a: time control

- we reviewed the use cases. Use case #1: timing operators today cannot handle "TimeToPerform" (BPSS)

[MIKE] - Borrowing from BPSS 1.05 specification, I include a "timeToPerform" attribute to a new <Transaction>

element (which groups Test Steps into their equivalent BPSS Transaction Activity). Business Transaction Activies and

Forks (Splits) MAY have a "timeToPerform" attribute, so I added the same to the Test FRamework <TRansaction> and <Split>

elements.

- we need more powerful primitives (not necessarily higher level)

[MIKE] - Choreographing transitions at the Test Step level is equivalent to choreographing transitions at the Business Transaction level.

BPSS does not do that, and I am not sure why we would want to do that. Additionally, as mentioned earlier, parameter scoping in the

Test Framework is hierarchical:

Test Suite parameters = "global"

Test Case parameters = "local" to the Test Case and its descendent Threads/Test Steps

Thread parameters = "local" to the current Thread, and its descendent Threads/Test Steps

Test Step parameters = "local" to the current Test Step only (this is the lowest/atomic level in the class hierarchy)

Changing the hierchy to:

Test Suite

Test Case

Thread

Test Step

Thread........ destroys parameter scoping (a valuable tool for setting/comparing message content values and

 restricting their influence/domain)

I’m open to alternatives, I just need to see how we can do this without losing

parameter scooping.

- Pete> need also to control timing of "retries", e.g. reliability. That is, duration of an iteration. (need use case #4)

[MIKE] - I introduced a "loop" (integer) attribute for a <Thread>, and we also have a "repeat" (integer) attribute for <PutMessage> that

instructs the Test Driver to send multiple copies of the same message. Timing of retries could be done by adding a

"retryInterval" attribute to <PutMessage> or permitting <Sleep> to be inserted between consecutive <PutMessage> and/or

<GetMessage> operations. Currently, <Sleep> is defined as an instruction only available at the <Thread> level. Adding <Sleep>

at a lower operating level would be useful I think.
- Mike> XPath 3.0 support time conditions.

[MIKE] - Since there is not yet an XPath 3.0 W3C Recommendation, we must work without the ability to use XPath to handle

all our "time" verifications. I added a 3rd operation (called <VerifyTime> for <TestAssertion> (Currently we have <VerifyContent> and <ValidateContent>

operations).

<VerifyTime><TimeToAcknwoledgeReceipt> performs a "time difference" computation (implementation specific) between the time of

the last <PutMessage> and a dateTime value extracted from a received business acknowledgment signal.

<VerifyTime><TimeToAcknwoledgeAcceptance> performs a "time difference" computation (implementation specific) between the time of

the last <PutMessage> and a dateTime value extracted from a received business acknowledgment signal.

Additionally, I added a "timeToPerform" attribute to both the <Transaction> element and the <Split> element (this maps to

BPSS usage of "timeToPerform").
- Test log couldbe queried - but not everything goes to the log.

[MIKE] - We have not specified in detail what is logged, only what exists in the MessageStore.
- issue: we need to be able to time any arbitrary sequence of steps. SOme of these sequences may

also overlap. Cannot just associate timeouts with threads.

[MIKE] - The <Transaction> element currently encloses a group of Test Steps (modeling BPSS).

So it is written as:

<Transaction timeToPerform="T600S">

<TestStepId="a"/>

<TestStepId="b"/>

<TestStepId="c"/>

<TestStepId="d"/>

<TestStepId="e"/>

<TestStepId="f"/>

</Transaction>

 If we need to time an arbitrary

group of Test Steps then we could

define <Transaction> as:

<Transaction timeToPerform="T600S">

<TestStepId="a"/>

<TestStepId="b"/>

<TestStepId="f"/> ... excluding steps c,d and e

</Transaction>

- Monica> need to time bus transactions, and the entire bus collaboration that include these (nesting), and

we don't want to "wait" until a timeout to fail/pass the test case.

[MIKE] - We can do that with the <Transaction> element in the scripting, and can time operations between

a <Split> and <Join> with the "timeToPerform" attribute attached to a <Split> element (equivalent to the "timeToPerform" attribute on

a BPSS <Fork> element, with its corresponding semantics).
- outline of a solution: need a primitive to log a date/time value (with identifier), and then at any point

in the test case, a testAssertion can compare this to current time (we can always specify a primitive

that gives current date/time), and make fail/continue decision. An exception thread

could be started just to loop on this check and fail the test case if timeout expired.

[MIKE] - Implemented this with the <VerifyTime> operation in <TestAssertion> (see use case #1 XML document)

- Accommodating BPSS opeators and concepts? (i.e. having these built-in the framework?) Monica and Jacques

believe we don't have to: we don't want the test driver to become a BPSS engine (and just that).

But if the test case script language uses more general and low-level primitives that can test any

BPSS bus transaction or collaboration, then it should be possible to generate such a test case script

(concrete syntax) from a BPSS definition.

[MIKE] - I don't believe that we should either.. although there are some accomodations that are somewhat "natural",

(such as the a general mapping of <TestStep> to <Transaction> and <Thread> to <BinaryCollaboration>). As an exercise, starting

with the "Rosettanet PIP3A4" Business Process instance example would be a good start.
2.b: Conditional statements:

- Monica will provide input on conditional branching for bus collaborations.

[MIKE] - I can definitely use her input regarding the semantics of branching in BPSS
- The concept of "if <thread> then ..." is unnatural to Workflow users.

It seems what we need is

"if <assertion> then..." where <assertion> if XPath based, on same nature as regular test assertion elements.

[MIKE] - Then we branch to what (within our Test Step) .. a <Thread>? This will break parameter scoping. If we can

do this without breaking parameter scoping that would be a good thing..
- Does not have to be part of (nested in) existing test steps ops either: could be an extenal branching op like split.

[MIKE] - The problem I see with external operations referencing a <TestAssertion > is that there is "context" associated with test

step ops like <GetMessage> and <GetPayload> (i.e the current <FilterResult>). The External references to <TestAssertions> do not have that context.

Can you show me a simple example script?
2:c: loops:

- not good support for this yet: need looping over several test steps.

[MIKE] - We can add that with a grouping element, like

<Transaction loop="10">

<TestStep/>

<TestStep/>

</Transaction>
- Monica will get Dale Moberg white paper on this.

3- TestFramework 1.1 : what Test Service for BSI (BPSS engine)?

[MIKE] - I can envision a similar "Test Service" like that used for MS testing.. A small set of Actions that, coupled with a BSI

must perform all the semantics described in a standard Business Process instance document.
- Testing BSI can be considered at two levels:

(1) conformance testing where a BSI is tested from the "other party" side.

Test Driver then simulates one side of the process "on the wire"

[MIKE] - Yes, this is black box conformance testing

(2) interop testing where two BSIs are communicating according to a BPSS def.

Test driver then has to simulate one of the applications (i.e. implements "business activities" that

consume and generate messages.)

[MIKE] - Agreed
