

1
2

3

4

5

6

7

8
9

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Automated Negotiation of Collaboration-
Protocol Agreements Specification

Version 0.01

OASIS ebXML Collaboration Protocol Profile and Agreement Technical
Committee, Automated Negotiation Subteam

Date TBD

Status of this Document

This document specifies an ebXML SPECIFICATION for the eBusiness community.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version:

URL TBD

Errata for this version:

URL TBD

Previous version:

URL TBD

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 1

1 Automated Negotiation Subteam Members 29

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 2

2 Table of Contents 30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

Status of this Document...1
1 Automated Negotiation Subteam Members...2
2 Table of Contents...3
3 Introduction ...5

3.1 Summary of Contents of Document ..5
3.2 Definition and Scope of this Specification ..5
3.3 Document Conventions ...5
3.4 Versioning of the Specification, Schema, and Related Documents...5
3.5 Definitions ...5
3.6 Audience..5
3.7 Assumptions ..6
3.8 Related Documents..6

4 Design Objectives..7
5 System Overview...8

5.1 What this Specification Does...8
5.2 CPP Formation and Editing ...10
5.3 Discovery of CPPs...10
5.4 Negotiation through an Intermediary...10

6 CPP and CPA Template Content ...11
6.1 Negotiability ..11

7 CPA composition...12
8 CPA Template ...13
9 Negotiation CPA (NCPA) ...14
10 Pre-Conditions for Negotiation..15
11 Negotiation Descriptor Document ...16

11.1 Use of NDD...16
11.2 Contents of NDD...16

12 Negotiation Protocol..18
12.1 BPSS Instance for Automated Negotiation..18
12.2 Offer and Counter Offer ..18

12.2.1 Submission of Proposed CPA to One or Both Parties ..18
12.2.2 Responses to CPA Proposal..18
12.2.3 Counterproposal Acceptance ..19
12.2.4 Counterproposal Counter..19
12.2.5 Offer-Counter Offer Algorithm ..19
12.2.6 Counterproposal Rejection of Proposal or Counterproposal...19

12.3 Reasons for Rejection during Negotiation...19
13 Negotiation Messages..21
14 References ...22
15 Conformance ...23
16 Disclaimer..24
17 Contact Information...25
Appendix A XML Schema for Negotiation Descriptor Document ...27
Appendix B XML Schemas for Negotiation Messages ...28
Appendix C Negotiation CPA Example ..29
Appendix D BPSS Instance Document for Automated Negotiation ...30
Appendix E Example of NDD Instance Document ...31
Appendix F Examples of Negotiation Message Instance Documents ...32
Appendix G Glossary of Terms...33
Appendix H CPA Composition (Non-Normative) ..34

H.1 Suggestions for Design of Computational Procedures..34
H.2 CPA Formation Component Tasks ...36

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 3

H.3 CPA Formation from CPPs: Context of Tasks ...36 83
84
85
86
87

H.4 Business Collaboration Process Matching Tasks ...37
H.5 Implementation Matching Tasks...38
H.6 CPA Formation: Technical Details ...53

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 4

3 Introduction 88

89

90

91

92

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120

121

122
123
124

125

126

3.1 Summary of Contents of Document

3.2 Definition and Scope of this Specification
SEE SECTION 7.6 OF EBCPP FOR IDEAS

3.3 Document Conventions
Terms in Italics are defined in Appendix G or in the glossary of the CPPA specification[ebCPP].
Terms listed in Bold Italics represent the element and/or attribute content of the XML CPP,
CPA, or related definitions.

In this specification, indented paragraphs beginning with "NOTE:" provide non-normative
explanations or suggestions that are not mandated by the specification.

References to external documents are represented with BLOCK text enclosed in brackets, e.g.
[RFC2396]. The references are listed in Section 14.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be
interpreted as described in [RFC 2119].

NOTE: Vendors SHOULD carefully consider support of elements with cardinalities (0 or
1) or (0 or more). Support of such an element means that the element is processed
appropriately for its defined function and not just recognized and ignored. A given Party
might use these elements in some CPPs, CPA, or NDDs and not in others. Some of these
elements define parameters or operating modes and SHOULD be implemented by all
vendors. It might be appropriate to implement elective elements that represent major run-
time functions, such as various alternative communication protocols or security functions,
by means of plug-ins so that a given Party MAY acquire only the needed functions rather
than having to install all of them.

By convention, values of [XML] attributes are generally enclosed in quotation marks; however
those quotation marks are not part of the values themselves.

3.4 Versioning of the Specification, Schema, and Related Documents

3.5 Definitions
Technical terms related to the subject of this specification are defined in Appendix G.
Technical terms related to Collaboration Protocol Profiles and Agreements and to the overall
vocabulary of ebXML are defined in {ebCPP}.

3.6 Audience
One target audience for this specification is implementers of ebXML services and other

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 5

designers and developers of middleware and application software that is to be used for
conducting electronic Business. Another target audience is the people in each enterprise who are
responsible for creating CPPs and CPAs.

127
128
129

130

131
132

133

134
135
136
137
138
139

3.7 Assumptions
It is expected that the reader has an understanding of XML and is familiar with the ebXML
CPPA specification[ebCPP].

3.8 Related Documents
Related documents include ebXML specifications on the following topics:
• ebXML Collaboration Protocol Profile and Agreement Specification[ebCPP]
• ebXML Business Process Specification Schema[ebBPSS]
• ebXML Message Service Specification[ebMS]

See Section 14 for the complete list of references.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 6

4 Design Objectives 140

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 7

5 System Overview 141

142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

5.1 What this Specification Does

Figure 1 is a high-level view of the negotiation process. Following are some details of the
negotiation process illustrated in Figure 1.

• Initial inputs:

♦ CPPs and the associated NDDs of two prospective partners or a CPA template and NDD
that one partner provides to a prospective partner.
 For the case of the CPA template and NDD, the CPA template might be generated by

one of the parties, might be a copy of a CPA used by someone else that is almost
exactly what is needed, or might be supplied by a third-party negotiation service.

♦ Proposed Process Specification document (BPSS instance document)
 The partners can negotiate about which BPSS instance document to use based on the

name of the BPSS instance document (i.e. syntactic negotiation) but not over the
details within a given BPSS instance document (semantic negotiation).

• The negotiation process starts with the two prospective partners exchanging NDDs or (for
third-party negotiation) each prospective partner providing its NDD and CPP to the
negotiation service. Alternatively, once party may provide a CPA template to the other party.
♦ Which party can initially propose a CPA template?

 The party who initiates contact with another party?
 The party who is contacted by another party?
 Either party?

The team agreed that either party could propose a CPA template. However there is a
potential race condition in which each proposes a CPA template. If "either party" is
accepted as the answer, the negotiation specification will have to include a protocol for
that resolves the race condition.

• Composition tool builds initial version of CPA from the two CPPs.
• If the initial CPA is complete (syntactically valid, usable, and agreed to by both parties), does

it go into effect immediately or is human review and approval required? The former would
be chosen if dynamic eCommerce is desired. The choice could be specified in the NDD.
NCPAs could be provided for each alternative.
♦ See "Responses to CPA Proposal"

• Negotiation of items requiring human input
♦ May need to indicate in the NDD, what needs human input.

• Offer, counter-offer information is in business messages exchanged using negotiation
business transactions defined in the NCPA.

• End of negotiation:
♦ A successful result is a CPA that is ready to use, possibly subject to human approval.
♦ An unsuccessful result means that agreement was not reached on some items in the CPA.

Possibly, further human interaction could resolve the disagreement.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 8

 182

183 Figure 1, Negotiation Process

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 9

5.2 CPP Formation and Editing 184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206

207
208
209
210
211
212
213
214
215
216

217

218
219
220
221

These are pre-discovery steps that are out of scope for the negotiation specification, they are
included here in the interest of completeness.
• CPP Template

♦ Supplied with software installation (configured options)
♦ Edited to reflect preferences

• NDD formation.
♦ Although NDD formation is out of scope, the NDD schema is a key component of the

specification.
• Tool for custom CPP formation
• Tool for NDD formation
• Service(s) for supplying CPPs or CPA templates

♦ UDDI advertised, SOAP, ebXML, simple HTTP GET, and so on.
• ebXML registry submission (publication)
• Can a party publish both a CPP and a CPA template?

In principle, a party should be able to publish both a CPP and a CPA template. However, this
would lead to a problem that a given prospective trading partner might find either one. If a
party intends that some prospective trading partners negotiate with a CPP while other are
expected to accept a CPA template, then the party should probably publish only the CPP and
decide whether to send a CPA template based on its knowledge of who the prospective
trading partner is.

5.3 Discovery of CPPs
The discovery process is out of scope for the negotiation specification; it is included here in the
interest of completeness.
• The minimum requirement is to be able to perform an HTTP GET of a CPP from a URL

obtained by means outside the scope of this specification.
• UDDI ebXML Registry bootstrap.
• Search and retrieval in ebXML registry or similar registry.
• Well-known address as done in eCo framework.
• Should/can a registry have any further role(s), perhaps as value-added services?

♦ Notification of CPP expirations?
♦ Accept filled-out CPA templates?

5.4 Negotiation through an Intermediary
Negotiation through an intermediary is out of scope for this version of the specification if it
requires a 3-party negotiation CPA. It may be possible to use an intermediary if the interactions
between each Party and the intermediary are defined by a separate Negotiation CPA and a
suitable BPSS instance document.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 10

6 CPP and CPA Template Content 222

223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

6.1 Negotiability
This section discusses how to express items that are negotiable in the CPP and CPA template
prior to negotiation. The rules ensure that the negotiable CPP or CPA template can be validated
by an XML parser while not appearing to constrain negotiability.

In general, since the negotiability details are provided in the NDD, it should be acceptable to
include any arbitrary value or choice for a negotiable item in the pre-negotiation CPP or CPA
template. In other words, the NDD overrides what is in the pre-negotiation CPP or CPA
template for all negotiable items.

• Numerical values: Any valid value can be stated for a negotiable item in the pre-negotiation

CPP or CPA.
• Cardinality: All acceptable choices that are to be negotiated must appear in the pre-

negotiation CPP or CPA template.

THE ABOVE MATERIAL WILL BE EXTENDED TO ENCOMPASS ALL
NEGOTIABILITY PATTERNS THAT ARE IDENTIFIED.

The following items in the CPP must be listed in preference order.
• PartyId elements under the same PartyInfo element.
• CanSend and CanReceive elements under the ServiceBinding element (NEED TO VERIFY

THIS)
• AccessAuthentication elements under the same TransportSender element
• EncryptionAlgorithm elements under the same TransportClientSecurity or

TransportServerSecurity element.
• TransportProtocol elements under the same Transport element
• AnchorCertificate elements under the same Certificate element

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 11

7 CPA composition 250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

The rules in this section apply to both composition of a CPA from two CPPs and (where
appropriate) to the contents of a CPA template.

 Appendix H contains a detailed discussion of CPA composition. Appendix H WILL BE
DRAWN ON HEAVILY OR MOVED INTO THE NORMATIVE CHAPTERS OF THIS
SPECIFICATION AND REORGANIZED AS NEEDED TO INDICATE WHAT IS
NORMATIVE AND WHAT IS NON-NORMATIVE.
• One party (or the intermediary) creates the initial draft of the CPA by CPA composition from

the two CPPs.
• There is a possibility that both prospective trading partners might compose and send a draft

CPA to each other. This race condition will have to be dealt with.
• A draft of a CPA composed from two CPPs is somewhat similar to a CPA template in that it

is probably incomplete. However, the CPA template, by definition offers few choices to the
other party whereas a draft composed form two CPPs may include a large number of
negotiable items.

• It is likely that the process from the point that a CPA draft is composed from two CPPs will
be very similar to the process for a CPA template except for the number of negotiable items
in the two cases.

• The process of composing the CPA draft from two CPPs will often narrow down the amount
of negotiation relative to the negotiation possibilities expressed in the NDDs. Many items
that are potentially negotiable in the CPPs will be no longer negotiable after the CPA is
composed. For example, there may be only one transport protocol that is common to the two
parties. The negotiation process must evaluate the NDDs againt the composed CPA and not
attempt to negotiate items for which the composition process fixed the result.

• It was noted during the Jan. 30, 2002 face to face meeting that it might not be necessary to
create an XML document containing the composed CPA draft. The negotiation process could
maintain the intersection of the two CPPs in an internal form and not complete the actual
CPA document until the negotiation process has converged. However, some people preferred
to start the negotiation by creating an initial draft CPA and providing it to both parties.

•
THIS SECTION WILL INCLUDE A DISCUSSION OF ERROR CONDITIONS THAT CAN
BE DETECTED DURING THE CPA COMPOSITION PROCESS.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 12

8 CPA Template 284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

• A CPA template can be placed in a registry in place of a CPP when a party wishes to dictate
all terms and conditions of the final CPA. The prospective trading partner would only have
to fill in a minimal set of information, such as an endpoint address and a certificate to be
ready to do business.

• With a CPA template, the accompanying NDD would be very simple but would indicate
which elements and attributes need to be completed by the prospective trading partner.
Having the NDD probably facilitates identifying the items to be negotiated or filled in
compared with having to parse the CPA template to find those items.

• For a CPA template, it is likely that a party would not have multiple NDDs for the same
template. Therefore, it may be appropriate to tie the NDD to the CPA template in the
registry. Possibilities include:
♦ Embedding the CPA template in the NDD
♦ Importing the CPA template namespace and the template itself into the NDD.

• If party A discovers party B's CPP in a registry, Party B does not have party A's CPP. Party
A could compose a CPA template using Party B's CPP, and present that template to Party B.
This would save the extra steps for Party A to send its CPP to Party A and the exchange of
NDDs. Note, however, that in this process, Party A is dominant. This might have a very
different outcome than would result from a peer negotiation between Party A and Party B
using two CPPs and two NDDs.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 13

9 Negotiation CPA (NCPA) 305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

The purpose of this chapter is to:
• Explain how to construct the Negotiation CPA such that it does not have to be negotiated;
• Explain the negotiation aspects of the NCPA. Principally, these aspects are the elements that

define the interface between a CPA and the BPSS instance, i.e. the CollaborationRole,
ProcessSpecification, and Role elements.

The NCPA defines the interactions between two Parties who are negotiating the contents of a
CPA. It identifies the BPSS instance document that defines the negotiation choreography. An
example of an NCPA is in Appendix C.

The following are minimalist requirements that help avoid the need to negotiate the negotiation
CPA.
• Use HTTP POST to send a proposed CPA to a URL.
• Synchronous response to a proposal. This avoids the need for the responder to know the

URL for a response.
• Messaging using basic SOAP or W3C XML Protocol (when available). In this context,

“basic” means that values or choices that have to be negotiated will either be omitted or will
be given fixed values by this specification.

• THIS LIST WILL BE EXPANDED AS NEEDED.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 14

10 Pre-Conditions for Negotiation 325

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

This section discusses conditions that must be met before negotiation. If these conditions are not
met, a successful outcome is unlikely. The discussions relate to CPPs or a CPA template as
appropriate

The two partners must agree on what negotiation process to follow, i.e. what NCPA to use for
negotiation. (The NCPA identifies the negotiation BPSS instance to be used.)

There must be a minimum level of matching (i.e. compatibility) between two CPPs.
• At least one transport protocol in common.
• There must be a minimum level of compatibility between at least one DocumentExchange

element in each CPP (DETAILS TO BE DETERMINED).
• There must be at least one certificate authority (CA) in common between two CPPs. The CAs

are identified in the certificates referred to by ArchorCertificateReference elements.
• THIS LIST WILL BE EXPANDED.

See Section 6 for related information.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 15

11 Negotiation Descriptor Document 343

344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

11.1 Use of NDD
• An NDD could be placed in a registry along with the CPP. NDD and CPP would have to be

connected by registry metadata. We do not want to include a link to the NDD in the CPP
since there may be many NDDs, with different negotiation details, associated with one CPP.

• We believe that the recommended procedure should be not to include an NDD in the registry.
Instead, one a party is discovered by a prospective trading partner, the NDDs should be
exchanged in the opening step of the negotiation. This permits a party to send an NDD that it
considers appropriate for the particular prospective trading partner.

• It should not be necessary to exchange revised NDDs after each negotiation step. The
negotiation process can maintain the detailed state and compose an acceptable CPA at the
end without repeated exchanges of NDDs. Appropriate state information can be exchanged in
the negotiation messages.

• It might be desirable to exchange NDDs and/or a partially completed CPA occasionally as a
checkpoint.

• It is suggested that in the first version of the specification, NDDs be exchanged only during
initialization of the negotiation process. Based on initial experience, intermediate exchanges
of NDDs could be added later.

11.2 Contents of NDD
The NDD must reference both the draft CPA (CPA template) and the CPPA Schema.

It is highly desirable to define the NDD in a sufficiently abstract fashion to be able to apply it to
any kind of XML agreement. Doing so would mean that it would not be necessary to design a
new NDD schema for each kind of document to be negotiated.

The NDD could consist of a variable length (cardinality 1 or more) set of [XPATH] statements,
each of which refers to a negotiable element or attribute.

Under each such XPATH statement, the negotiability of the element or attribute would be
defined by child elements. These child elements have to represent the negotiability
characteristics of the element or attribute identified by the XPATH statement.Examples are:

• Cardinality (range of permitted cardinalities)
• For a numeric value, minimum, maximum, and negotiation step size
• For choices, XPATH statements, ID attribute values, qnames, element values, etc. which

identify the specific choices within the document being negotiated. Examples in the CPA are
certificates, delivery channels, transport protocols, and signature algorithms.

NOTE: It is likely that an NDD expressed in this abstract manner would not be very
readable. This is an opportunity for tool vendors to produce NDD composition tools. Such a
tool would have a GUI that would tailor the view of the NDD to the specific kind of
document to be negotiated. The tool would reference the schema of the document being

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 16

negotiated along with the NDD being constructed, which should supply it with sufficient
information to make the views understandable by someone who is composing an NDD. This
would enable that person to communicate with the tool in terms of the specifics of the
document to be negotiated. The tool could then construct the NDD instance document in
accord with the NDD schema.

385
386
387
388
389

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 17

12 Negotiation Protocol 390

391
392

393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

409

410

411
412
413
414

415

416
417
418
419
420
421
422
423
424
425
426
427

12.1 BPSS Instance for Automated Negotiation
THIS SECTION IS AN EXPLANATION OF THE BPSS DEFINITION FOR AUTOMATED
NEGOTIATION. ONE OR MORE FIGURES WILL BE USEFUL. THE FIGURES MIGHT
BE SIMILAR TO THOSE IN BRIAN HAYES’ “COLLABORATION PROTOCOL
AGREEMENT SIMPLE NEGOTIATION BUSINESS PROCESS MODEL”.

The choreography of the negotiation protocol MAY be defined by an instance document of the
ebXML Business Process Specification Schema[ebBPSS]. The BPSS instance document for
automated negotiation is in Appendix D.

A counter offer should be a requesting document in a new Business Transaction, not a response
to an offer. To issue a counter offer, the recipient of an offer SHALL reply “counter-offer
pending” and then issue the counter offer as a new Business Transaction. This avoids a race
condition with respect to which Party sends the next message. It also avoids any need to for the
two Parties to switch roles.

12.2 Offer and Counter Offer

12.2.1 Submission of Proposed CPA to One or Both Parties

• Protocol(s) for submission and CPAId conventions if ebXML MSG used.
• Lightweight PUT or POST of proposed CPA (to permit use with non-ebXML MSG transport

MSHes.
• Response-to URLs?

12.2.2 Responses to CPA Proposal

This is an example of what might be specified.
• Accept with no changes

♦ Accept
♦ Accept and deploy (dynamic eCommerce)

• Accept with value changes only.
• Counterproposal:

♦ Deleted elements,
♦ Added elements
♦ Re-ordered elements using an [XPATH]-based list of changes with status of required or

preferred.
• Rejection: with reason(s) for rejection

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 18

12.2.3 Counterproposal Acceptance 428

429

430

431
432
433
434
435
436
437
438
439
440
441
442

443

444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

12.2.4 Counterproposal Counter

12.2.5 Offer-Counter Offer Algorithm

• The offer-counter offer procedure must be designed to avoid infinite loops. The algorithm
must converge rapidly to either success or failure. Some kind of forward progress indicator
must be included.

• The convergence procedure must distinguish between an offer-counter offer loop over the
same negotiable item and successive negotiations over different items.

• The NDD focuses the offers and counter offers on what is acceptable. Any offer or counter
offer that is outside the limits defined in either NDD must be rejected.

• The algorithm generally should avoid backtracking over items for which the negotiation has
converged. However there may be cases in which multiple negotiatable items interact. For
such a case, backtracking might a necessary part of of converging the negotiation of the set
of interacting items.

12.2.6 Counterproposal Rejection of Proposal or Counterproposal

12.3 Reasons for Rejection during Negotiation
The process of composing the CPA from CPPs will detect many problems before the negotiation
process begins. Examples are mismatched Process Specification document and mismatched
delivery channel requirements. These are elaborated in Section 7.

The rejection message includes reason, contact name, phone, and/or URL for further
information.

Following are some reasons for rejection:

• CPP/CPA contents. Examples:

♦ base CPP deprecated
♦ signature on CPP failed validation
♦ Signature on agreed CPA failed validation

 CPA is not signed until it is agreed to.
♦ proposed security too weak
♦ proposed Packaging not supported
♦ unable to support signals requested (Process Specification document)

• Business relationship
♦ CPA unsupported without existing business relation

• Negotiation process
♦ Too many counterproposals tried (no forward progress to convergence),
♦ Proposed CPA previously received and not accepted.

• The current offer’s “valid until” date has past.
• CPP/CPA format problems

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 19

♦ parsing error/data invalid 469
470
471

• Internal System Error

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 20

13 Negotiation Messages 472

473
474
475
476
477
478
479
480
481

A negotiation message includes information that controls the negotiation protocol along with (at
least in some messages) the NDD and the CPA being negotiated.

Examples of protocol information are
• The date until this offer is valid.
• Requirements for signing the final CPA
• Error and exception information. See Section 12.3.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 21

14 References 482

483
484
485
486
487
488
489
490
491

VERSION NUMBERS AND URLS TBD

[ebBPSS] ebXML Business Process Specification Schema

[ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification, version 2.0.

[ebMS] ebXML Message Service Specification, version 2.0.

[RFC2119] Key Words for use in RFCs to indicate Requirement Levels, Internet Engineering
Task Force RFC 2119, http://www.ietf.org/rfc/rfc2119.txt 492

493
494

[RFC2396] Uniform Resource Identifiers URI): General Syntax, Internet Engineering Task
Force RFC 2396, http://www.ietf.org/rfc/rfc2396.txt 495

496
497
498

[SOAPATTACH] SOAP Messages with Attachments, John J. Barton, Hewlett Packard Labs;
Satish Thatte and Henrik Frystyk Nielsen, Microsoft, Published Oct 09 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211 499

500
501
502
503
504
505
506
507

[XMLDSIG] XML Signature Syntax and Processing, Worldwide Web Consortium,
http://www.w3.org/TR/xmldsig-core/

[XMLENC] XML Encryption Syntax and Processing, Worldwide Web Consortium,
http://www.w3.org/TR/2002/CR-xmlenc-core-20020304/

[XPATH] XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/xpath 508

509

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 22

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/xpath

15 Conformance 510

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 23

16 Disclaimer 511

512
513
514
515

The views and specification expressed in this document are those of the authors and are not
necessarily those of their employers. The authors and their employers specifically disclaim
responsibility for any problems arising from correct or incorrect implementation or use of this
design.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 24

17 Contact Information 516

517
518
519
520
521
522
523
524

OTHERS TBD

 Martin W. Sachs (Author)
 IBM T. J. Watson Research Center
 P.O.B. 704
 Yorktown Hts, NY 10598
 USA
 Phone: 914-784-7287
 email: mailto:mwsachs@us.ibm.com 525

526
527
528
529
530
531
532

 Dale W. Moberg (Author)
 Cyclone Commerce
 8388 E. Hartford Drive
 Scottsdale, AZ 85255
 USA
 Phone: 480-627-2648
 email: mailto:dmoberg@cyclonecommerce.com 533

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 25

mailto:mwsachs@us.ibm.com
mailto:dmoberg@cyclonecommerce.com

Notices 534

535
536
537

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

NEED TO DETERMINE OF UN/CEFACT HAS TO BE MENTIONED.

Portions of this document are copyright © 2002 OASIS.

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not be modified in any
way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of
developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or
assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Information on OASIS's procedures with respect to rights in OASIS specifications can be found
at the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementors or users of this
specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the
contents of this specification. For more information consult the online list of claimed rights.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 26

Appendix A XML Schema for Negotiation Descriptor
Document

556

557

558 The XML Schema document for the NDD is available as a text file at:

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 27

Appendix B XML Schemas for Negotiation Messages 559

560
561
562
563

The XML Schemas for the negotiation messages are available in text form at:

THESE SCHEMAS SHOULD BE FOR COMPLETE EBXML MESSAGES INCLUDING
THE EBXML MESSAGE SERVICE HEADERS.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 28

Appendix C Negotiation CPA Example 564

565 The text file for this NCPA example is available at:

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 29

Appendix D BPSS Instance Document for Automated
Negotiation

566

567

568
569

The text file for this example of the BPSS instance document for automated negotiation is
available at:

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 30

Appendix E Example of NDD Instance Document 570

571
572

The text file for this example of an NDD instance document for automated negotiation is
available at:

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 31

Appendix F Examples of Negotiation Message Instance
Documents

573

574

575 The text files for the examples of negotiation message instance documents are available at:

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 32

Appendix G Glossary of Terms 576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

This appendix contains definitions of terms created by this specification. For definitions of
terms created by the CPPA Specification[ebCPP] and related terms that are part of the general
ebXML vocabulary, see [ebCPP].

CPA Negotiation Process: The process by which a Collaboration Protocol Agreement (CPA) is
formed based on information provided by two parties interested doing business The negotiation
process is defined in a BPSS instance document.

CPA Template: A CPA template is a CPA with open fields. The schema for a CPA template is
the normal CPP-CPA schema. The means of identifying open fields in the CPA template is
defined in this specification.

Negotiation BPSS Instance Document: The representation of the negotiation-protocol process
by means of an XML instance document that conforms to the ebXML Business Process
Specification Schema specification.

Negotiation CPA (NCPA): The CPA that governs the negotiation process.

Negotiation Descriptor Document (NDD): A Negotiation Descriptor Document (NDD)
describes what is negotiable in a CPP or a CPA template.

Negotiation Protocol: The negotiation process requires the exchange of data between both
parties in the negotiation (and perhaps with a negotiation service). The format of these messages
and the choreography of their exchanged is defined by a negotiation CPA and its corresponding
BPSS instance document.

Negotiation Message: The negotiation protocol consists of exchanges of messages that contain
the details of offers and counter offers. The specification defines the schema and semantics of
each message.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 33

Appendix H CPA Composition (Non-Normative) 606

607
608
609

610

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

THIS APPENDIX HAS BEEN COPIED FROM VERSION 2 OF THE CPPA
SPECIFICATION. IT WILL BE RESTRUCTED AND SOME MATERIAL MOVED TO
APPROPRIATE PLACES IN THE MAIN BODY OF THE SPECIFICATION.

H.1 Suggestions for Design of Computational Procedures
A quick inspection of the schemas for the top level elements, CollaborationProtocolProfile
(CPP) and CollaborationProtocolAgreement (CPA), shows that a CPA can be viewed as a
result of merging portions of the PartyInfo elements found in constituent CPPs, and then
integrating these PartyInfo elements with other CPA sibling elements, such as those governing
the CPA validity period.

Merging CPPs into CPAs is one way in which trading partners can arrive at a proposed or
“draft” CPA. A draft CPA might also be formed from a CPA template. A CPA template
represents one Party’s proposed implementation of a Business Process that uses place-holding
values for the identifying aspects of the other Party, such as PartyId or TransportEndpoint
elements. To form a CPA from a CPA template, the placeholder values are replaced by the actual
values for the other trading partner. The actual values could themselves be extracted from the
other trading partner’s CPP, if one is available, or they could be obtained from an administrator
performing data entry functions.

We call objects draft CPAs to indicate their potential use as inputs to a CPA negotiation process
in which a draft CPA is verified as suitable for both Parties, modified until a suitable CPA is
found, or discovered to not be feasible until one side (or both) acquires additional software
capabilities. In general, a draft CPA will constitute a proposal about an overall binding of a
Business Process to a delivery implementation, while negotiation will be used to arrive at
detailed values for parameters reflecting a final agreement. The Negotiation Descriptor
Document provides both focus on what parameters can be negotiated as well as ranges or sets of
acceptable values for those parameters.

In the remainder of this appendix, the goal will be to identify and describe the basic tasks that
computational procedures for the assembly of the draft CPA would normally accomplish. While
no normative specification is provided for an algorithm for CPA formation, some guidance for
implementers is provided. This information might assist the software implementer in designing a
partially automated and partially interactive software system useful for configuring Business
Collaboration so as to arrive at satisfactorily complete levels of interoperability.

Before enumerating and describing the basic tasks, it is worthwhile mentioning two basic reasons
why we focus on the component tasks involved in CPA formation rather than attempt to provide
an algorithm for CPA formation. These reasons provide some hints to implementers about ways
in which they might customize their approaches to drafting CPAs from CPPs.

H.1.1 Variability in Inputs
User preferences provide one source of variability in the inputs to the CPA formation process.
Let us suppose in this section that each of the Parties has made its CPP available to potential

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 34

collaborators. Normally one Party will have a desired Business Collaboration (defined in a
ProcessSpecification document) to implement with its intended collaborator. So the information
inputs will normally involve a user preference about intended Business Collaboration in addition
to just the CPPs.

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

A CPA formation tool can have access to local user information not advertised in the CPP that
can contribute to the CPA that is formed. A user can have chosen to only advertise those system
capabilities that reflect capabilities that have not been deprecated. For example, a user can only
advertise HTTP and omit FTP, even when capable of using FTP. The reason for omitting FTP
might be concerns about the scalability of managing user accounts, directories, and passwords
for FTP sessions. Despite not advertising an FTP capability, configuration software can use tacit
knowledge about its own FTP capability to form a CPA with an intended collaborator who
happens to have only an FTP capability for implementing a desired Business Collaboration. In
other words, business interests can, in this case, override the deprecation policy. Both tacit
knowledge and detailed preference information account for variability in inputs into the CPA
formation process.

H.1.2 Variable Stringency in Evaluating Proposed Agreements
The conditions for output of a CPA given two CPPs can involve different levels and extents of
interoperability. In other words, when an optimal solution that satisfies every level of
requirement and every other additional constraint does not exist, a Party can propose a CPA that
satisfies enough of the requirements for “a good enough” implementation. User input can be
solicited to determine what is a good-enough implementation, and so can be as varied as there
are user configuration options to express preferences. In practice, compromises can be made on
security, reliable Messaging, levels of signals and acknowledgments, and other matters in order
to find some acceptable means of doing business.

A CPA can support a fully interoperable configuration in which agreement has been reached on
all technical levels needed for a Business Collaboration. In such a case, matches in capabilities
will have been found in all relevant technical levels.

However, there can be interoperable configurations agreed to in a CPA in which not all aspects
of a Business Collaboration match. Gaps can exist in Packaging, security, signaling, reliable
Messaging and other areas and yet the systems can still transport the business data, and special
means can be employed to handle the exceptions. In such situations, a CPA can reflect
configured policies or expressly solicited user permission to ignore some shortcomings in
configurations. A system might not be capable of responding in a Business Collaboration so as
to support a specified ability to supply non-repudiation of receipt, but might still be acceptable
for business reasons. A system might not be able to handle all the processing needed to support,
for example, SOAP with Attachments[SOAPATTACH] and yet still be able to treat the multipart
according to "multipart/mixed" handling and allow a Business Collaboration to take place. In
fact, short of a failure to be able to transport data and a failure to be able to provide data relevant
to the Business Collaboration, there are few features that might not be temporarily or indefinitely
compromised about, given overriding business interests. This situation of "partial
interoperability" is to be expected to persist for some time, and so interferes with formulating a
"clean" algorithm for deciding on what is sufficient for interoperability.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 35

 696

697

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

718

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

H.2 CPA Formation Component Tasks
Technically viewed, a CPA provides "bindings" between Business Collaboration specifications
(such as those defined within the ProcessSpecification’s referenced documents) and those
services and protocols that are used to implement these specifications. The implementation takes
place at several levels and involves varied services at these levels. A CPA that arrives at a fully
interoperable collaboration binding can be thought of as arriving at interoperable, application-to-
application integration. CPAs can fall short of this goal and still be both useful and acceptable to
the collaborating Parties. Certainly, if no matching data-transport capabilities can be discovered,
a CPA would not provide much in the way of interoperable integration. Likewise, partial CPAs
can leave significant system work to be done before a completely satisfactory application-to-
application integration is realized. Even so, partial integration can be sufficient to allow
collaboration, and to enjoy payoffs from increased levels of automation.

In practice, the CPA formation process can produce a complete CPA, a failure result, a gap list
that drives a dialog with the user, or perhaps even a CPA that implements partial interoperability
"good enough" for the business collaborators. Because both matching capabilities and
interoperability can be matters of degree, the constituent tasks are finding the matches in
capabilities at different levels and for different services. We next proceed to characterize the
most important of these constituent tasks.

H.3 CPA Formation from CPPs: Context of Tasks
To simplify discussion, assume in the following that we are viewing the tasks faced by a
software agent when:

1. An intended collaborator is known and the collaborator's CPP has been retrieved,
2. The ProcessSpecification between our side and our intended collaborator has been

selected,
3. The Service, Action, and the specific Role elements that our software agent is to play in

the Business Collaboration (with discussion soon restricted to BinaryCollaborations) are
known, and

4. Finally, the capabilities that we have advertised in our CPP are known.

For vividness, we will develop our discussions using the RosettaNet™ PIP 3A4 BPSS instance
document example and the CPPs of Company A and B that are found in full in appendices of
[ebCPP] and that should also be available at the web site for the OASIS ebXML CPPA
Technical Committee. For simplicity, we will assume that the information about capabilities is
restricted to what is available in our agent’s CPP, and in the CPP of our intended collaborator.
We will suppose that we have taken on the viewpoint of Company A assembling a draft CPA.
Please note that there is no guarantee that the same draft CPAs will be produced in the same
order from differing viewpoints.

In general, the basic tasks consist of finding "matches" between our capabilities and our intended
collaborator’s capabilities at the various levels of the collaboration protocol stack and with

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 36

respect to the services supplied at these various levels. This stack, which need not be
characterized in any detail, is at least distinguished by an application level and a Messaging
transfer level. The application level is governed by a business process flow specification, such as
[ebBPSS]. The Messaging transfer level will consist of a number of requirements and options
concerning transfer protocols, security, Packaging, and Messaging patterns (such as various
kinds of acknowledgment, error Messages, and the like.)

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

759

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786

In actually assembling the tasks into a computational process, it will generally make sense to
perform the tasks in a certain order. The overall order reflects the implicit structure of the CPA:
first undertake those tasks to ensure that there is a match with respect to the Business
Collaboration process. Without finding that the collaborators can participate in the same
ProcessSpecification successfully, there is little point in working through implementation
options. Then, examine the matches within the components of the bindings that have been
announced for the Business Collaboration process, checking for the most indispensable
“matches” first (Transport-related), and continuing checks on the other layers reflecting
integrated interoperability at Packaging, security, signals and protocol patterns, and so on. With
this basic overview in mind, let us proceed to consider the basic tasks in greater detail.

H.4 Business Collaboration Process Matching Tasks
Company A has announced within its CPP, at least one PartyInfo element. For current purposes,
the most important initial focus is on all the sibling elements with the path
/CollaborationProtocolProfile/PartyInfo/CollaborationRole. Each element of this kind has a
child, ProcessSpecification. Our initial matching task (probably better viewed as a filtering
task) is to select those nodes where the ProcessSpecification is one that we are interested in
building a CPA for! Checking the attribute values allows us to select by comparing values in the
name, xlink:href or uuid attributes. The definitive value for matching BPSS Process
Specifications is the value found in the ProcessSpecification/@uuid attribute.

H.4.1 Matching ProcessSpecification/Roles and Actions: Initial Filtering and Selection
The previous task has essentially found two CollaborationRole node sets within our and our
collaborator’s CPP documents where the ProcessSpecifications are identical, and equal to the
value of interest given above. In other words, we have CollaborationRoles with
ProcessSpecification/@name=“PIP3A4RequestPurchaseOrder”. It is convenient but not
essential to use the name attribute in performing this selection.

We next proceed to filter these node sets. We have been given our Role element value for our
participation in the ProcessSpecification. For Company A, this Role has the name attribute with
value “Buyer”. Because we are here considering only BinaryCollaborations in BPSS
terminology (or their equivalent in other flow languages), we are only interested in those
CollaborationRole node sets within our collaborator’s CPP that have a Role value equal to
“Seller”. So we assume we have narrowed our focus to CollaborationRole node sets in Company
A’s CPP with Role/@name=“Buyer” and in Company B’s CollaborationRole node sets with
Role/@name=“Seller”.

For more general collaborations, such as in the MultiPartyCollaborations of [ebBPSS], we
would need to know the list of roles available within the process, and keep track of that for each

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 37

of the CollaborationRoles, the Role values chosen correspond correctly for the participants. We
do not here discuss the matching/filtering task for collaborations involving more than two roles,
as multiparty CPAs are not within scope for version 2.0 of [ebCPP].

787
788
789
790

791

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

H.5 Implementation Matching Tasks
After filtering the CollaborationRoles with the desired ProcessSpecification, we should find one
CollaborationRole in our own CPP where we play the Buyer role and one CollaborationRole in
our intended collaborator Company B's CPP where it plays the Seller role.

Our next task is to locate the specific candidate bindings relevant to CPA formation. There are
bindings for Service and Actions. For initial simplicity, we consider detailed matching tasks as
they arise for a standard collaboration case involving a request Action, followed by a response
Action. For version 2.0 of [ebCPP], most matching tasks will involve matching of referenced
components of the CPPs ThisPartyActionBinding elements under
CollaborationRole/ServiceBinding/CanSend/ and under
CollaborationRole/ServiceBinding/CanReceive.

H.5.1 Action Correspondence and Selecting Correlative PackageIds and ChannelIds
In CPPs, under each of the elements CollaborationRole/ServiceBinding/CanSend and
CollaborationRole/ServiceBinding/CanReceive are lists of ThisPartyActionBindings. For
request-response collaboration patterns, we are interested in matches:

1. In the bindings of the requesting side’s CanSend/ThisPartyActionBinding with the
Responding side’s CanReceive/ThisPartyActionBinding for the request Action, and

2. In the bindings of the Responding side’s CanSend/ThisPartyActionBinding with the
requesting side’s CanReceive/ThisPartyActionBinding for the response Action.

These correlative bindings give us references to detailed components that need to match for a
fully interoperable agreement. Case 1 pertains to the request. Case 2 pertains to the response.

For example, for Company A, we find under CanSend:

<tp:ThisPartyActionBinding tp:action="Purchase Order Request Action"
tp:packageId="CompanyA_RequestPackage">
 <tp:BusinessTransactionCharacteristics ... />

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order"
tp:businessTransactionActivity="Request Purchase Order"
tp:requestOrResponseAction="Purchase Order Request Action"/>
<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

Correlative to this, for Company B, we find under CanReceive:

<tp:ThisPartyActionBinding tp:action="Purchase Order Request Action"
tp:packageId="CompanyB_RequestPackage">
 <tp:BusinessTransactionCharacteristics ... />

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order"
tp:businessTransactionActivity="Request Purchase Order"
tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 38

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

</tp:ThisPartyActionBinding>

The correlation of elements can normally (when we are dealing with BPSS
BinaryCollaborations or their equivalents in other representations) be based on equality of the
Action (or requestOrResponseAction) values. More detailed correlation of elements can make
use of more detailed testing and comparisons of the values in the ActionContext child elements
of the relevant CanSend and CanReceive pairs.

In the preceding, we have illustrated the matching of CanSend and CanReceive for
asynchronous bindings. All CanSend bindings that are siblings under a ServiceBinding element
are asynchronous and make of use separate TCP connections that the CanSend side initiates on a
listening TCP port. In order to represent binding details for synchronous sending, the convention
is adopted whereby the CanSend element for a Receiver is placed under its CanReceive element.
This is illustrated by:

<tp:CanSend>
 <tp:ThisPartyActionBinding
 tp:id="companyA_ABID6"
 tp:action="Purchase Order Request Action"
 tp:packageId="CompanyA_RequestPackage">
 <tp:BusinessTransactionCharacteristics

tp:isNonRepudiationRequired="true"
tp:isNonRepudiationReceiptRequired="true"
tp:isConfidential="transient"
tp:isAuthenticated="persistent"
tp:isTamperProof="persistent"
tp:isAuthorizationRequired="true"
tp:timeToAcknowledgeReceipt="PT2H"
tp:timeToPerform="P1D"/>

 <tp:ActionContext
 tp:binaryCollaboration="Request Purchase Order"
 tp:businessTransactionActivity="Request Purchase Order"
 tp:requestOrResponseAction="Purchase Order Request Action"/>
 <tp:ChannelId>syncChannelA1</tp:ChannelId>
 </tp:ThisPartyActionBinding>
 <tp:CanReceive>
 <tp:ThisPartyActionBinding
 tp:id="companyA_ABID7"
 tp:action="Purchase Order Confirmation Action"
 tp:packageId="CompanyA_SyncReplyPackage">
 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"
 tp:isNonRepudiationReceiptRequired="true"
 tp:isConfidential="transient"
 tp:isAuthenticated="persistent"
 tp:isTamperProof="persistent"
 tp:isAuthorizationRequired="true"
 tp:timeToAcknowledgeReceipt="PT2H"
 tp:timeToPerform="P1D"/>

 <tp:ActionContext
 tp:binaryCollaboration="Request Purchase Order"
 tp:businessTransactionActivity="Request Purchase Order"
 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>
 <tp:ChannelId>syncChannelA1</tp:ChannelId>
 </tp:ThisPartyActionBinding>
 </tp:CanReceive>
 <tp:CanReceive>
 <tp:ThisPartyActionBinding
 tp:id="companyA_ABID8"

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 39

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

 tp:action="Exception"
 tp:packageId="CompanyA_ExceptionPackage">
 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"
 tp:isNonRepudiationReceiptRequired="true"
 tp:isConfidential="transient"
 tp:isAuthenticated="persistent"
 tp:isTamperProof="persistent"
 tp:isAuthorizationRequired="true"
 tp:timeToAcknowledgeReceipt="PT2H"
 tp:timeToPerform="P1D"/>

 <tp:ChannelId>syncChannelA1</tp:ChannelId>
 </tp:ThisPartyActionBinding>
 </tp:CanReceive>
 </tp:CanSend>

This subordination will also carry over to the synchronous receiving side, in which its
CanReceive element(s) is (are) under the CanSend element used to represent the initial sending
of a request. An illustration from Company B’s synchronous binding is:

<tp:CanReceive>
 <tp:ThisPartyActionBinding
 tp:id="companyB_ABID8"
 tp:action="Purchase Order Request Action"
 tp:packageId="CompanyB_SyncReplyPackage">
 <tp:BusinessTransactionCharacteristics
 tp:isNonRepudiationRequired="true"
 tp:isNonRepudiationReceiptRequired="true"
 tp:isConfidential="transient"
 tp:isAuthenticated="persistent"
 tp:isTamperProof="persistent"
 tp:isAuthorizationRequired="true"
 tp:timeToAcknowledgeReceipt="PT5M"
 tp:timeToPerform="PT5M"/>
 <tp:ActionContext
 tp:binaryCollaboration="Request Purchase Order"
 tp:businessTransactionActivity="Request Purchase Order"
 tp:requestOrResponseAction="Purchase Order Request Action"/>
 <tp:ChannelId>syncChannelB1</tp:ChannelId>
 </tp:ThisPartyActionBinding>
 <tp:CanSend>
 <tp:ThisPartyActionBinding
 tp:id="companyB_ABID6"
 tp:action="Purchase Order Confirmation Action"
 tp:packageId="CompanyB_ResponsePackage">
 <tp:BusinessTransactionCharacteristics
 tp:isNonRepudiationRequired="true"
 tp:isNonRepudiationReceiptRequired="true"
 tp:isConfidential="transient"
 tp:isAuthenticated="persistent"
 tp:isTamperProof="persistent"
 tp:isAuthorizationRequired="true"
 tp:timeToAcknowledgeReceipt="PT5M"
 tp:timeToPerform="PT5M"/>
 <tp:ActionContext
 tp:binaryCollaboration="Request Purchase Order"
 tp:businessTransactionActivity="Request Purchase Order"
 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>
 <tp:ChannelId>syncChannelB1</tp:ChannelId>
 </tp:ThisPartyActionBinding>
 </tp:CanSend>
 <tp:CanSend>

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 40

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

 <tp:ThisPartyActionBinding
 tp:id="companyB_ABID7"
 tp:action="Exception"
 tp:packageId="CompanyB_ExceptionPackage">
 <tp:BusinessTransactionCharacteristics
 tp:isNonRepudiationRequired="true"
 tp:isNonRepudiationReceiptRequired="true"
 tp:isConfidential="transient"
 tp:isAuthenticated="persistent"
 tp:isTamperProof="persistent"
 tp:isAuthorizationRequired="true"
 tp:timeToAcknowledgeReceipt="PT5M"
 tp:timeToPerform="PT5M"/>
 <tp:ChannelId>syncChannelB1</tp:ChannelId>
 </tp:ThisPartyActionBinding>
 </tp:CanSend>
</tp:CanReceive>

H.5.2 Matching and Checking DeliveryChannel Details
Until now, most of the matching work has been undertaken to find pairs of correlative
xxxActionBinding, and so the matching has functioned as a filtering mechanism. Once in
possession of pairs of correlative xxxActionBindings, however, the work of checking for
matches across the various dimensions of operation — transport, transport security, PKI
compatibility for various tasks, agreement about Messaging characteristics (reliable Messaging,
digital enveloping, signed acknowledgments (minimal non-repudiation of receipt), non-
repudiation of origin, Packaging details, and more — begins.

Once in possession of the xxxActionBindings, IDREFs provide references to the underlying
components for comparison. For example, when comparing Packaging details, the request
IDREFS are found at CanSend/ThisPartyActionBinding/@packageId and within the other CPP
at CanReceive/ThisPartyActionBinding@packageId. For Company A’s request "Purchase
Order Request Action,” the Packaging IDREF is found in:

tp:packageId="CompanyA_RequestPackage"

and this IDREF value refers to:

<tp:Packaging tp:id="CompanyA_RequestPackage">
 <tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>
 <tp:CompositeList>
<tp:Composite

tp:id="CompanyA_RequestMsg"
tp:mimetype="multipart/related"
tp:mimeparameters="type=text/xml;">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>
 <tp:Constituent tp:idref="CompanyA_Request"/>
 </tp:Composite>
 </tp:CompositeList>
</tp:Packaging>

For Company A’s request "Purchase Order Request Action”, the delivery channel IDREF is
found in:

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 41

and this IDREF value refers to the element with this ID, namely: 1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

<tp:DeliveryChannel tp:channelId="asyncChannelA1" tp:transportId="transportA1"
tp:docExchangeId="docExchangeA1">
<tp:MessagingCharacteristics
 tp:syncReplyMode="none"
 tp:ackRequested="always"
 tp:ackSignatureRequested="always"
 tp:duplicateElimination="always"/>
</tp:DeliveryChannel>

Two remaining crucial references for understanding the binding, are found in attributes of the
DeliveryChannel, namely: DeliveryChannel/@transportId and in the attribute
DeliveryChannel/@docExchangeId.

For Company A, for example, we find transportId="transportA1" and
docExchangeId="docExchangeA1" are the IDREFs for the continuing binding information with
the DeliveryChannel, “asyncChannelA1”. Resolving these references, we obtain:

<tp:Transport tp:transportId="transportA1">

<tp:TransportSender>
<tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:TransportClientSecurity>
<tp:TransportSecurityProtocol
tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <ClientCertificateRef tp:certId="CompanyA_ClientCert"/>
 <tp:ServerSecurityDetailsRef

tp:securityId="CompanyA_TransportSecurity"/>
 </tp:TransportClientSecurity>
 </tp:TransportSender>
 <tp:TransportReceiver>

<tp:TransportProtocol
tp:version="1.1">HTTP</tp:TransportProtocol>
<tp:Endpoint
tp:uri="https://www.CompanyA.com/servlets/ebxmlhandler/async"
tp:type="allPurpose"/>

 <tp:TransportServerSecurity>
<tp:TransportSecurityProtocol
tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyA_ServerCert"/>
 <tp:ClientSecurityDetailsRef

tp:securityId="CompanyA_TransportSecurity"/>
 </tp:TransportServerSecurity>
 </tp:TransportReceiver>
</tp:Transport>

for transportID "transportA1” and

<tp:DocExchange tp:docExchangeId="docExchangeA1">
 <tp:ebXMLSenderBinding tp:version="2.0">
 <tp:ReliableMessaging>
 <tp:Retries>3</tp:Retries>
 <tp:RetryInterval>PT2H</tp:RetryInterval>
 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>
 </tp:ReliableMessaging>
 <tp:PersistDuration>P1D</tp:PersistDuration>
 <tp:SenderNonRepudiation>
 <tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#
 </tp:NonRepudiationProtocol>

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 42

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1
</tp:HashFunction>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1
</tp:SignatureAlgorithm>
<tp:SigningCertificateRef tp:certId="CompanyA_SigningCert"/>
</tp:SenderNonRepudiation>
<tp:SenderDigitalEnvelope>
<tp:DigitalEnvelopeProtocol
tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>
<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>
<tp:EncryptionSecurityDetailsRef
tp:securityId="CompanyA_MessageSecurity"/>
</tp:SenderDigitalEnvelope>
</tp:ebXMLSenderBinding>
<tp:ebXMLReceiverBinding tp:version="2.0">
<tp:ReliableMessaging>
<tp:Retries>3</tp:Retries>
<tp:RetryInterval>PT2H</tp:RetryInterval>
<tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>
</tp:ReliableMessaging>
<tp:PersistDuration>P1D</tp:PersistDuration>
<tp:ReceiverNonRepudiation>
<tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#
</tp:NonRepudiationProtocol>
<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1
</tp:HashFunction>
<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1
</tp:SignatureAlgorithm>
<tp:SigningSecurityDetailsRef
tp:securityId="CompanyA_MessageSecurity"/>
</tp:ReceiverNonRepudiation>
<tp:ReceiverDigitalEnvelope>
<tp:DigitalEnvelopeProtocol
tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>
<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>
<tp:EncryptionCertificateRef tp:certId="CompanyA_EncryptionCert"/>
</tp:ReceiverDigitalEnvelope>
</tp:ebXMLReceiverBinding>

</tp:DocExchange>

for the docExchangeId, docExchangeA1.

There are, of course, other references, such as those to security-related capabilities, that will be
important to resolve when checking detailed matching properties, but the four IDREFs (two for
the sender and two for the Receiver) that have just been introduced are critical to the remainder
of the match tests that will lead to the formation of draft CPAs. We will assume at this point that
the reader can resolve IDREFs using the example CPPs and CPAs for Company A and B in the
appendices, and will not exhibit them in the text in order to save space.

We next turn to a more in-depth treatment of the tests that are involved in finding the elements
for a draft CPA.

The detailed tasks to be discussed in greater depth are:

1. Matching Channel MessagingCharacteristics
2. Checking BusinessTransactionCharacteristics coherence with DeliveryChannel details
3. Matching Packaging

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 43

4. Matching Transport and Transport[Receiver|Sender]Security 1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

5. Matching and checking DocExchange subtrees.

Because agreement about Transport is quite fundamental, we shall consider it first.
Computational processes are likely to first find pairs that match on Transport details, and will
ignore pairs failing to have matches at this level.

H.5.2.1 Matching Transport
Matching Transport first involves matching the Transport/TransportSender/TransportProtocol
capabilities of the requester with the Transport/TransportReceiver/TransportProtocol
capabilities found under the collaborator receiving the request. Several such matches can exist,
and any of these matches can be used in forming a draft, provided other aspects match up
satisfactorily. Each CPP is assumed to have listed its preferred transport protocols first (as
determined by the listing of the Bindings that reference the Transport element, but different
outcomes can result depending on which CPP is used first for searching for matches. In general,
resolution of preference differences is left to a distinct phase of CPA negotiation, following
proposal of a draft CPA. Negotiation can be performed by explicit Actions of users, but is
expected to become increasingly automated.

Matching transport secondly involves matching the TransportSender/TransportProtocol
capabilities of the responding collaborator with its TransportReceiver/TransportProtocol
capabilities found under the collaborator receiving the response, which is typically the
collaborator that has sent a request. Several such matches can exist, and any of these matches can
be used in forming a draft. In one case, however, there may be no need for the second match on
TransportProtocol. If we are using HTTP or some other protocol supporting synchronous replies
and the DeliveryChannel has a MessagingCharacteristics child that has its syncReplyMode
attribute with a value of “signalsAndResponse,” then everything comes back synchronously, and
there is no need to match on TransportProtocol for the response DeliveryChannel.

If TransportSecurity is present, then there can be additional checks. First,
TransportSender/TransportClientSecurity/TransportSecurityProtocol should be compatible
with TransportReceiver/TransportServerSecurity/TransportSecurityProtocol. Second, if either
the TransportSender/TransportClientSecurity/ClientSecurityDetailsRef or
TransportSender/TransportClientSecurity/ServerSecurityDetailsRef elements are present, and
the IDREF references an element containing some AnchorCertificateRef, then an opportunity
exists to check suitability of one Party’s PKI trust of the certificates used in the
TransportSecurityProtocol. For example, by resolving the IDREF value in
TransportSender/TransportClientSecurity/ClientCertificateRef/@certId, we can obtain the
proposed client certificate to use for client-side authentication. By resolving the IDREFs from
the AnchorCertificateRef, we become able to determine whether the proposed client certificate
will “chain to a trusted root” on the server side’s PKI. Similar remarks apply to checks on the
validity of a server certificate found by resolving
TransportReceiver/TransportServerSecurity/ServerCertificateRef . This server certificate can
be checked against the CA trust anchors that are found by resolving
TransportSender/TransportClientSecurity/ServerSecurityDetailsRef/@securityId, and finding
CA certificates (or CA certificate chains) in the KeyInfo elements under the Certificate element

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 44

obtained by resolving the IDREF found in AnchorCertificateRef@certId. 1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

When matches exist for the correlative Transport components, we then have discovered an
interoperable solution at the transport level. If not, no CPA will be available, and a gap has been
identified that will need to be remedied by whatever exception handling procedures are in place.
Let us next consider other capabilities that need to match for “thicker” interoperable solutions.

H.5.2.2 Checking BusinessTransactionCharacteristics and DeliveryChannel

MessagingCharacteristics
Under each of the correlative xxxActionBindings, there is a child element of DeliveryChannel,
MessagingCharacteristics, that has several attributes important in CPA formation tasks. The
attributes having wider implications are syncReplyMode, ackRequested, and
ackSignatureRequested; for the duplicateElimination and actor attributes, compatibility exists
when the attributes that are found under the CanSend and CanReceive DeliveryChannels have
the same values. As the element’s name implies, all of these DeliveryChannel features pertain to
the Messaging layer.

In addition, BusinessTransactionCharacteristics, found under ThisPartyActionBinding,
contains attributes reflecting a variety of features pertaining to desired security and Business
Transaction properties that are to be implemented by the agreed upon DeliveryChannels. These
properties may have implications on what capabilities are needed within more detailed
components of the DeliveryChannel elements, such as in the Packaging element. When using a
BPSS ProcessSpecification, these properties may be specified within the BusinessTransaction.
The properties of the BusinessTransactionCharacteristics element are, however, the ones that
will be operative in the implementation of the BusinessTransaction, and may override the
specified values found in the BPSS ProcessSpecification. Because the properties are diverse, the
details that implement the properties can be spread over other elements referenced within the
DeliveryChannel elements.

These attributes apply to either a request or a response delivery channel, but can impact either
the Sender or Receiver (or both) in a channel. In addition, the attributes governing
acknowledgments, for example, qualify the interrelation of DeliveryChannel elements by
specifying behavior that is to occur that qualifies the contents of a return Message.

The most basic test for compatibility for any of the attributes in either MessagingCharacteristics
or BusinessTransactionCharacteristics is that the attributes are equal in the sending Party’s
DeliveryChannel referenced by CanSend/ThisPartyActionBinding/ChannelId and in the
receiving Party’s DeliveryChannel referenced by
CanReceive/ThisPartyActionBinding/ChannelId. If they are unequal, and all bindings have
been examined on both sides, a draft CPA will represent a compromise to some common set with
respect to the functionality represented by the attributes.

In the following discussions, we will consider many of the attributes in the two
xxxCharacteristics elements, and relate them to additional underlying implementational details,
one of which is Packaging.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 45

From a high level, basic agreement in Packaging is a matter of compatibility of the generated
Packaging on the sending side with the parsed Packaging on the receiving side. The basic
Packaging check is, therefore, checking Packaging compatibility under the CanSend element of
a sender Action with the Packaging under the CanReceive element of that same Action under the
Receiver side.

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

For efficiency, representation of capabilities of parsing/handling Packaging can make use of
both wildcards and repetition, and as needed these capabilities can also express open data
formatting used on the generating side. For example, consider the SimplePart:

<tp:SimplePart tp:id="IWild" tp:mimetype="*/*"/>

By wildcarding mimetype values, we represent our capability of accepting any data, and would
match any specific MIME type. Also, consider a Constituent appearing within a Composite:

 <tp:Constituent tp:idref="MsgHdr"/>
 <tp:Constituent minOccurs="0" maxOccurs="10" tp:idref="IWild"/>

This notation serves to capture the capability of handling any number of arbitrary MIME
bodyparts within the Composite being defined. A Packaging capability such as this would
obviously match numerous more specific generated Packaging schemes, as well as matching
literally with a scheme of the same generality.

Certain more complex checks are needed for more complicated Packaging options pertaining to
syncReplyMode. These are discussed in the following.

syncReplyMode
The syncReplyMode attribute has a value other than “none” to indicate what parts of a Message
should be returned in the reply of a transport capable of synchronous operation, such as HTTP.
(We here use “synchronous” to mean “on the same TCP connection,” which is one use of this
term. We do not specify any waiting, notification, or blocking behavior on processes or threads
that are involved, though presumably there is some computational activity that maintains the
connection state and is above the TCP and socket layers.)

The possible implementations pertaining to various values of the syncReplyMode attributes are
numerous, but we will try to indicate at least the main factors that are involved.

As will be seen, the Packaging element is important in specifying implementation details and
compatibilities. But, because business-level signals may be involved, other xxxActionBindings
may need examination in addition to the already selected bindings for the request and response.
Also, the values of TransportReceiver/Endpoint/@type might need checking when producing
draft CPAs.

Let us first begin with the cases in which responses, Message Service Handler signals and
business signals return in some combination of a synchronous reply and other asynchronous
Message(s). These various combinations will be discussed for the syncReplyMode values:
“mshSignalsOnly,” “signalsOnly,” “responseOnly”, and “signalsAndResponse”.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 46

 1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

By convention, synchronous replies are represented by subordinating CanSend or CanReceive
elements under the CanReceive or CanSend elements that represent the initial request binding
capabilities. For representing asynchronous requests, replies, or signals, the CanSend or
CanReceive elements are all siblings and directly subordinate to the ServiceBinding. Therefore,
both asynchronous and synchronous capabilities can be grouped under a ServiceBinding in a
CPP, and can still be unambiguously distinguished. In principle, increasing subordination
(nesting) can indicate patterns of dialog more elaborate than request and response. Few use cases
for this functionality are common at the time of this writing.

mshSignalsOnly
The request sender’s DeliveryChannel (referenced by
CanSend/ThisPartyActionBinding/ChannelId) and the request Receiver’s DeliveryChannel
(referenced by CanReceive/ThisPartyActionBinding/ChannelId) both should have
MessagingCharacteristics/@syncReplyMode value of “mshSignalsOnly”.

While a Party can explicitly identify a DeliveryChannel for the SOAP envelope with
subordinate CanSend and CanReceive elements, and with them specialized bindings, these are
typically omitted for ebXML Messaging software. It is presumed that each side can process a
synchronous reply constructed in accordance with ebXML Messaging. The DeliveryChannel
representation mechanism here serves as a placeholder for capturing other Messaging signal
protocols that might emerge.

Currently, acknowledgments and signed acknowledgments, along with errors, are the primary
Message Service signals that are included in the SOAP envelope. If Company A set
syncReplyMode to mshSignalsOnly, then Company B’s correlative
CanReceive/ThisPartyActionBinding/@packageId should contain a nested
CanSend/ThisPartyActionBinding/@packageId for a Message without any business payload or
signals. In addition, the CanSend/ThisPartyActionBinding/@packageId of Company B’s
response should resolve to Packaging format capable of returning the response (and possibly
other constituents) asynchronously. The compatibility of the DeliveryChannel elements can be
checked, as can the capability of Company A to receive that response payload, the signal
payload(s), or responses bundled with signals as specified by the Packaging formats that are
referenced through the relevant ThisPartyActionBinding element’s packageId attribute values.

signalsOnly
The request sender’s DeliveryChannel (referenced by its
CanSend/ThisPartyActionBinding/ChannelId) and the request Receiver’s DeliveryChannel
(referenced by its CanReceive/ThisPartyActionBinding/ChannelId) both should have
MessagingCharacteristics/@syncReplyMode value of signalsOnly.

If Company A sets syncReplyMode to “signalsOnly”, then under Company B’s correlative
CanReceive element, there should be a nested CanSend/ThisPartyActionBinding whose
packageId attribute’s value resolves to a Packaging format appropriate for signals. For the
CanSend/ThisPartyActionBinding/@packageId associated with Company B’s business-level
response, the attribute IDREF value should resolve to a Packaging format capable of returning

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 47

payloads and that omits business signals. This CanSend element will be a direct child of
ServiceBinding, a placement representing its asynchronous character. The original requesting
Party will need to have a CanReceive/ThisPartyActionBinding that is compatible with the
responding Party, and that is a direct child of its ServiceBinding element.

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

Using subordinate CanSend and subordinate CanReceive elements can be useful if the
DeliveryChannel details for exception signals differ from those specified for request and
response. signal bindings, for example, may differ by omitting ackRequested, or possibly one of
the security features (digital enveloping or non-repudiation of receipt) that are used for requests
or responses. Just as with other tests on requests and responses, there can be checks for
compatibility in Packaging, DocExchange, MessagingCharacteristics, or
BusinessTransactionCharacteristics referred to in the correlative subordinate CanSend and
CanReceive DeliveryChannels.

responseOnly
The request sender’s DeliveryChannel (referenced by
CanSend/ThisPartyActionBinding/ChannelId) and the request Receiver’s DeliveryChannel
(referenced by CanReceive/ThisPartyActionBinding/ChannelId) both should have
MessagingCharacteristics/@syncReplyMode value of “responseOnly”.

 If Company A sets syncReplyMode to “responseOnly”, the
CanSend/ThisPartyActionBinding/@packageId of Company B’s response should resolve to a
Packaging format capable of returning payloads, but omitting business signals. The
CanSend/ThisPartyActionBinding element will be included as a child of the CanReceive
element so the responder can indicate that it is a synchronous response.

 There should be an independent way to return business-level error signals. So, there should be a
ThisPartyActionBinding for any signal payload announced, and these bindings should be at the
direct child of ServiceBinding level to represent their asynchronous flavor.

It is not too likely that ReceiptAcknowledgment and similar signals will be used when a response
is returned synchronously. The motivation for using these signals is indicating positive forward
progress, and this motivation will be undermined when a response is returned directly.

For the “responseOnly” case, including subordinate CanSend/ThisPartyActionBinding and
CanReceive/ThisPartyActionBinding, means that there can be checks for compatibility in
Packaging, DocExchange, MessagingCharacteristics, or BusinessTransactionCharacteristics.
The syncReplyMode and ackRequested attributes here should be carefully considered because a
“mshSignalsOnly” value here would mean that another round of synchronous Messaging will
need to occur on the same connection. Incidentally, for Transport elements referenced under
subordinate bindings, there need not be any Endpoint elements. If there are Endpoint elements,
they may be ignored.

signalsAndResponse
The request sender’s DeliveryChannel (referenced by
CanSend/ThisPartyActionBinding/ChannelId) and the request Receiver’s DeliveryChannel

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 48

(referenced by CanReceive/ThisPartyActionBinding/ChannelId) both should have
MessagingCharacteristics/@syncReplyMode value of “signalsAndResponse”.

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405

If Company A sets syncReplyMode to “signalsAndResponse”, the
CanSend/ThisPartyActionBinding of Company B’s response should be subordinate to Company
B’s CanReceive element. The Packaging format that is referenced should be capable of returning
payloads and signals bundled together. If no asynchronous bindings exist for error signals, this
will be the only defined DeliveryChannel agreed to for all aspects of Message exchange for the
Business Transaction. However, it is likely that an asynchronous binding would normally be
provided to send exception signals.

ackRequested and ackSignatureRequested
Checks on the ackRequested and ackSignatureRequested attributes within correlative
DeliveryChannels (that is, correlative because referenced under one Action’s CanSend and
CanReceive elements) are primarily to see that the values of the corresponding attributes are the
same.

However, there are some interactions of these attributes with other information items that need to
be mentioned.

The principal use of the ackRequested attribute is within reliable Messaging configurations. If
reliable messaging is to be configured, then checks on agreement in the correlative
ReliableMessaging elements as found under DocExchange/ebXMLSenderBinding and
DocExchange/ebXMLReceiverBinding are in order. Also, the value of the
duplicateElimination attribute of MessagingCharacteristics should be checked for agreement.
Draft CPAs may be formed by deliberately aligning values that are not equal along some of these
dimensions. Downgrading may provide draft CPAs most likely to gain acceptance; so, for
example, if duplicateElimination is “false” on the receiving side, aligning it to “false” on the
sending side is most likely to produce a draft that succeeds.

The additional function of ackSignatureRequested is that it provides a “thin” implementation for
non-repudiation of receipt. The basic check is for equality of attribute value, but additional
constraints may need test and alignment. If no signal capable of implementing non-repudiation of
receipt is found under the ServiceBinding, then having an “always” value for
ackSignatureRequested suggests aligning the BusinessTransactionCharacteristics attributes,
isNonRepudiationReceiptRequired, to be “true”. However, if this is done, care should be taken
to check that the BusinessTransactionCharacteristics attribute isIntelligibleCheckRequired is
“false”. This is because the Messaging implementation only deals with receipt in the sense of
having received a byte stream off the wire (and persisting it so that it is available for further
processing). It is not safe to presume that any syntactical or semantic checks on the data were
performed.

H.5.2.3 DocExchange Checks for BusinessTransactionCharacteristics
When using CPPs and CPAs with ebXML Messaging, which is the most likely early deployment
situation, there exists an opportunity to check agreement on BusinessTransactionCharacteristics
attributes.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 49

 1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454

The following three attributes need to have equal values in the bindings for a request or for a
response. No further discussion will be provided in this appendix on these “deadlines,” except to
say that a sophisticated proposed CPA generation tool might check on the coherence of the
values chosen here with values for reliable Messaging parameters, existence of compatible
ReceiptAcknowledgment or AcceptanceAcknowledgment bindings, and consistency with
syncReplyMode internal configuration.

<attribute name="timeToAcknowledgeReceipt" type="duration"/>
<attribute name="timeToAcknowledgeAcceptance" type="duration"/>
<attribute name="timeToPerform" type="duration"/>

The remaining attributes involve a number of security related issues and will be the focus of the
remaining discussion of BusinessTransactionCharacteristics attributes:

<attribute name="isNonRepudiationRequired" type="boolean"/>
<attribute name="isNonRepudiationReceiptRequired" type="boolean"/>
<attribute name="isIntelligibleCheckRequired" type="boolean"/>
<attribute name="isAuthenticated" type="tns:persistenceLevel.type"/>
<attribute name="isTamperProof" type="tns:persistenceLevel.type"/>
<attribute name="isAuthorizationRequired" type="boolean"/>
<attribute name="isConfidential" type="tns:persistenceLevel.type"/>

Here, the basic test is that for correlative DeliveryChannels, the corresponding attributes have
the same values. Again there are some interaction aspects with parts of the DeliveryChannel that
motivate making some additional checks.

Previously, when discussing the MessagingCharacteristics attribute ackSignatureRequested, it
was pointed out that the Messaging implementation provides thin support for holding
isNonRepudiationReceiptRequired “true” provided that the attribute
isIntelligibleCheckRequired is “false”. When both are “true”, then there should exist a business
signal with compatible Packaging and DeliveryChannel values. If the signal has been
independently described within asynchronous CanSend and CanReceive elements, knowing the
signal name (such as, “ReceiptAcknowlegment”) may support a relatively simple search and test.
However, if synchronous Transports are involved, some filters using syncReplyModes may be
needed to discover an underlying support for a “thick” implementation of non-repudiation of
receipt.

When non-repudiation of receipt is implemented by a business signal, then checks on signing
certificate validity can involve the CollaborationRole/ApplicationCertificateRef and the
CollaborationRole/ApplicationSecurityDetailsRef that provides a reference to the
SecurityDetails element containing the list of TrustAnchors. The certificate from the side
signing the ReceiptAcknowledgment would be checked against the certificates referred to by the
AnchorCertificateRef under TrustAnchors.

The business signal will sometimes be conveyed as part of a Message. It remains true that the
Message itself will still be sent through a Message Service Handler, and that the Message
Service Handler can also sign the Message using the certificate found by resolving the IDREF
found at

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 50

DocExchange/ebXMLSenderBinding/SenderNonRepudiation/SigningCertificateRef/@certId. 1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501

If a particular software component implements both Message Service Handler functionality and
business-level security functionality, it is possible that the same certificate may be pointed to by
ApplicationCertificateRef and SigningCertificateRef/@certId. In other words, the distinction
between Message Service Handler-level signing and application level signing is a logical one,
and may not correspond with software component boundaries. Because the Message Service
Handler signature is over the Message, the Message signature may be over an application-level
signature. While this may be redundant for some system configurations, protocols may require
both signatures to exist over the different regions.

Failure to validate a certificate may not prevent formation of a draft CPA. First, the sender’s
signing certificate can be a self-signed certificate. If so, a reference to this self-signed certificate
may be added to the Receiver’s TrustAnchors/AnchorCertificateRef list. This proposal amounts
to proposing to agree to a direct trust model, rather than a hierarchical model involving
certificate authorities. Second, a proposal to add a trusted root may be made, again by
appropriate revision of the TrustAnchors.

When non-repudiation of receipt is implemented by the Messaging layer, the checks on PKI
make use of elements under DocExchange.

isNonRepudiationRequired
isAuthenticated
isAuthorizationRequired
isTamperProof

The ideas of authentication, authorization, non-repudiation and being “tamper proof” may be
very distinct as business-level concepts, yet the implementation of these factors tend to use very
similar technologies. Actually, prevention of tampering is not literally implemented. Instead,
means are provided for detecting that tampering (or some accidental garbling) has occurred.
Likewise, implementations of authorization usually are provided by implementations of access
control (permitting or prohibiting a user in a role making use of a resource) and presentation of a
token or credential to gain access, which may involve authentication as an initial step! Non-
repudiation may build on all the previous functions, plus retaining information for supplying
presumptive evidence of origination at some later time.

When checking whether isNonRepudiationRequired can be set to “True” for both Parties, check
whether the signing certificate will be counted as valid at the Receiver.
The IDREF reference to the signing certificate is found in
DocExchange/ebXMLSenderBinding/SenderNonRepudiation/SigningCertificateRef/@certId.
The referenced certificate should be checked for validity with respect to the trust anchors
obtained from TrustAnchors/AnchorCertificateRef elements under the SecurityDetails element
referenced by the IDREF at
DocExchange/ebXMLReceiverBinding/ReceiverNonRepudiation/SigningSecurityDetailsRef/@securityId.

As previously noted, failure to validate a certificate does not prevent constructing a draft CPA.
Either self-signed certificates or new trust anchors can be added to align the trust model on one

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 51

side with the other side’s certificate. 1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547

In addition to checking the interoperability of the PKI infrastructures, checks on compatibility of
values in the other attributes in
DocExchange/ebXMLReceiverBinding/ReceiverNonRepudiation and in
DocExchange/ebXMLSenderBinding/SenderNonRepudiation can be made.
NonRepudiationProtocol, HashFunction, and SignatureAlgorithm values may be compatible
even when not equal if knowledge of the protocol requirements allows fallback to a mandatory-
to-implement value. So values here can be found equal, aligned, or negotiated to reach an
agreement.

If isNonRepudiationRequired is “True”, the isAuthenticated and isTamperProof should also be
“True”. This is because in implementing isNonRepudiationRequired by means of a digital
signature, both authentication (with respect to the identity associated with the signing certificate)
and tamper detection (with respect to the cryptographic hash of the signature) will be
implemented as well. The converses need not be true because authentication and tamper
detection might be accomplished without archiving information needed to support claims of non-
repudiation.

isConfidential
The isConfidential attribute indicates properties variously distributed among levels of the
application-to-application sending/receiving stacks.

isConfidential has possible values of "none", "transient", "persistent", and "transient-and-
persistent". The “persistent” or “transient-and-persistent” values indicate that some digital
enveloping function is present; a “transient” value indicates that confidentiality is applied at the
transfer layer or below.

ebXML Message Service Specification, version 2.0[ebMS] does not have an “official”
implementation for digital envelopes, and refers to the future XML Encryption
specification[XMLENC] as its intended direction for that function. However, the XML
Encryption specification is now a candidate recommendation, and is suitable for preliminary
implementation.

Within the CPA, the DocExchange/ebXMLSenderBinding/SenderDigitalEnvelope and
DocExchange/ebXMLReceiverBinding/ReceiverDigitalEnvelope can provide configuration
details pertaining to security in accordance with [XMLENC]. Use of XML Encryption also will
normally show up in the value of DigitalEnvelopeProtocol, and can also appear within a
NamespaceSupported element within Packaging.

Currently, [ebMS] has only indicated a direction to eventually use XML Encryption, but has not
mandated any digital envelope protocol. Digital enveloping may be done at the “application
level,” and will show up under MIME types within the Packaging element. PKI matching will
make use of certificates supplied in ApplicationCertificateRef and
ApplicationSecurityDetailsRef. If other protocols are to be used, it would be safest to use
extensions to the content model of DocExchange, such as, XXXSenderBinding and

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 52

XXXReceiverBinding, and follow the pattern of the ebXML content models for DocExchange.
Future versions of [ebCPP] intend to make these extension semantics easier to use interoperably;
currently, the extensions would be a multilateral extension within some trading community.

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581

1582

1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593

When checking whether isConfidential can be set to “persistent” or “transient-and-persistent”
for both Parties, check whether the key-exchange certificate will be counted as valid at the
sender. The IDREF reference to the SecurityDetails element is found in
DocExchange/ebXMLSenderBinding/SenderDigitalEnvelope/EncryptionSecurityDetailsRef/@securityId.
The trust anchor certificates obtained from TrustAnchors/AnchorCertificateRef elements under
the SecurityDetails element will be used to test that the certificate referenced by
DocExchange/ebXMLReceiverBinding/ReceiverDigitalEnvelope/EncryptionCertificateRef/@certId
validates at the sender side.

As previously noted, failure to validate a certificate does not prevent constructing a draft CPA.
Either self-signed certificates or new trust anchors can be added to align the trust model on one
side with the other side’s certificate.

In addition to the PKI-related checks and alignments, the elements EncryptionAlgorithm and
DigitalEnvelopeProtocol should be checked for equality (or compatibility) and, if not
compatible or equal, aligned to values that would work for an initial version of a proposed CPA.
Preferences and alignment of these elements can be achieved in a subsequent negotiation phase.

Finally, it is possible that one side’s DigitalEnvelope will be modeled using either the
DocExchange/ebXMLSenderBinding/SenderDigitalEnvelope and
DocExchange/ebXMLReceiverBinding/ReceiverDigitalEnvelope, while the other side uses only
Packaging to indicate use of, for example, S/MIME Digital Envelopes, because it receives an
already enveloped payload from an application. In such a case, the PKI certificate validation
check could require checking that a certificate described by
DocExchange/ebXMLReceiverBinding/ReceiverDigitalEnvelope/EncryptionCertificateRef/@certId
validates against the TrustAnchors found by resolving
CollaborationRole/ApplicationSecurityDetailsRef. This complication arises from the possibility
that digital enveloping functionality can be spread over quite distinct portions of the stack in
different software installations.

H.6 CPA Formation: Technical Details
When assembling a draft CPA from matching portions of two CPPs’ PartyInfo elements, some
additional constraints need to be observed.

First, as mentioned in section 9.11.1 of [ebCPP], software for producing draft CPAs needs to
guarantee that ID values in one CPP are distinct from ID values in the other CPP so that no
IDREF references collide when the CPPs are merged. The following ID values are potentially
subject to collision:

Certificates
SecurityDetails
SimplePart

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 53

Packaging 1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

DocExchange
Transport
DeliveryChannel
ThisPartyActionBinding

There are elements and complex type definitions containing IDREFs. Also some elements have
attributes with IDREF values. These are:

PartyInfo
ActionBinding.type
ThisPartyActionBinding
OtherPartyActionBinding
OverrideMSHActionBinding
ChannelId
DeliveryChannel
Constituent
CertificateRef.type
AnchorCertificateRef
ApplicationCertificateRef
ClientCertificateRef
ServerCertificateRef
SigningCertificateRef
EncryptionCertificateRef
CertificateRef
SecurityDetailsRef.type

Second, when the CanSend and CanReceive binding information has been found to match
(equal, correspond with, or be compatible with) the binding information under the other Party’s
CanReceive and CanSend elements, the IDREF references for the OtherPartyActionBinding
are filled out in the CPA.

Third, for CPAs that are signed, the implementer is advised to review section 9.9.1.1 of [ebCPP]
when using [XMLDSIG] for the signature technique. A proposed CPA need not have a signature.

Fourth, when a CPA is composed from two CPPs, see section 8.8 of [ebCPP] in which it is stated
that all Comment elements from both CPPs SHALL be included in the CPA unless agreed to
otherwise.

Fifth, several tests on CPA validity could be conducted on draft CPAs, but these tests are more
critical for a negotiated CPA that is to be deployed and imported into run-time software
components.

1. Expiration: Certificates used in signing a CPA can be checked to verify that they do not
expire before the CPA expires, as given in the End element.

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 54

Negotiation.spec.16July02.doc 7/16/2002 10:44 AM 55

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658

2. Certificate expiration: If a CPA lifetime exceeds the lifetime of certificates accepted for
use in signing, key exchange or other security functions, then it would be advisable to
make ds:KeyInfo refer to certificates, rather than to include them within the element by
value.

3. Process-Specification references can be checked in accordance with the provisions of

section 8.4.4 of [ebCPP] and its subsections.

Finally, a CPA has several elements whose values are not typically derived from either CPPs
(and can need checking when using a CPA template as the basis for a draft CPA.) The Status,
Start, End, and possibly a ConversationConstraints element need to be added. The attributes,

CollaborationProtocolAgreement/@cpaid,
CollaborationProtocolAgreement/@version,
CollaborationProtocolAgreement/Status@value,
CollaborationProtocolAgreement/ConversationConstrain@invocationLimit, and
CollaborationProtocolAgreement/ConversationConstraint@concurrentConversations,

can also be supplied values as needed.

	Status of this Document
	Automated Negotiation Subteam Members
	Table of Contents
	Introduction
	Summary of Contents of Document
	Definition and Scope of this Specification
	Document Conventions
	Versioning of the Specification, Schema, and Related Documents
	Definitions
	Audience
	Assumptions
	Related Documents

	Design Objectives
	System Overview
	What this Specification Does
	CPP Formation and Editing
	Discovery of CPPs
	Negotiation through an Intermediary

	CPP and CPA Template Content
	Negotiability

	CPA composition
	CPA Template
	Negotiation CPA (NCPA)
	Pre-Conditions for Negotiation
	Negotiation Descriptor Document
	Use of NDD
	Contents of NDD

	Negotiation Protocol
	BPSS Instance for Automated Negotiation
	Offer and Counter Offer
	Submission of Proposed CPA to One or Both Parties
	Responses to CPA Proposal
	Counterproposal Acceptance
	Counterproposal Counter
	Offer-Counter Offer Algorithm
	Counterproposal Rejection of Proposal or Counterproposal

	Reasons for Rejection during Negotiation

	Negotiation Messages
	References
	Conformance
	Disclaimer
	Contact Information
	Notices

