

MATCHING OF EBXML BUSINESS PROCESSES

Document Details:

Author

Dennis Krukkert

Document Number Report
Project number IST 2001-28548 openXchange
Deliverable type Research report
Version 0.31
Contractual Delivery date July 2003
Actual Delivery date -
Status

In Progress

Summary: This document describes the results of a M.Sc thesis research on matching of ebXML
business processes.

Distribution

Consortium

File

 Report

IST 2001-28548 openXchange 2

TABLE OF CONTENTS

Table of Contents ..2

Executive Summary ..4

List of figures ..5

1 Introduction...6

1.1 BACKGROUND..6
1.2 BUSINESS PROCESSES...7
1.3 ASSIGNMENT..8

1.3.1 Title..8
1.3.2 Research goal...8
1.3.3 Problem description ..8
1.3.4 Research questions...8

1.4 OUTLINE OF THIS DOCUMENT ...9

2 Introduction into ebXML..11

2.1 THE EBXML PROJECT , THE NEW WAY OF B2B E-COMMERCE?...11
2.2 USING EBXML..11
2.3 THE EBXML FRAMEWORK ..13

2.3.1 Component overview..13
2.3.2 Business Process Specification Schema (BPSS) ..14

3 The problem of matching ..16

3.1 INTRODUCTION ...16
3.2 DEFINITION OF EQUALITY..16
3.3 THE TWO ASPECTS OF MATCHING...17

4 Matching structure..19

4.1 INTRODUCTION ...19
4.2 UML ACTIVITY DIAGRAMS...19
4.3 THE PROBLEM OF MATCHING ACTIVITY DIAGRAMS..21

4.3.1 How to match?...21
4.3.2 Techniques used...21

4.4 TOWARDS A SOLUTION ..23
4.4.1 Eliminating true parallelism..23
4.4.2 State transition systems ...24
4.4.3 Matching two activity diagrams ...25
4.4.4 Example ...28
4.4.5 Transformation to ebXML...29

5 Matching of content ..30

5.1 INTRODUCTION ...30
5.2 DOCUMENTS IN EBXML..30

5.2.1 The purpose of document exchange..30

 Report

IST 2001-28548 openXchange 3

5.2.2 Core Components and Business Information Entities...31
5.2.3 Use of qualifiers...32
5.2.4 Document assembly..33

5.3 USING EBXML IN THE NUON - MANPOWER PILOT ...33
5.4 MATCHING OF DOCUMENTS...34

5.4.1 Relation between CC and BIE..34
5.4.2 Context matching...35
5.4.3 Matching syntax..36

5.5 MATCHING OF CONDITIONS..37

6 Conclusions and future work ..38

6.1 CONCLUSIONS..38
6.2 RECOMMENDATIONS FOR FUTURE WORK..38

References ..40

Appendix A Project Details ..41

Appendix B Example of simulation..43

Appendix C Harmonisation worksheet ..44

Appendix D NUON – Manpower REA model...45

Appendix E Example Timecard message...46

 Report

IST 2001-28548 openXchange 4

EXECUTIVE SUMMARY
EbXML is a relative new standard that presents a framework for doing electronic business. One of the
things that distinguishes ebXML from other standards is the possibility for a company to specify its
business processes and publish this in a public registry. When a company is looking for a business partner,
it can compare the business process specification of itself with those of others. When business processes
become more and more complex and the number of process specifications increases, it becomes more
and more time consuming to manually compare the process specifications.

This report presents the results of an effort to create a system for automated business process matching
within ebXML. The matching process has two aspects: the matching of structure and the matching of
content. The first results are positive and a solution is presented that can match both aspects.
Nevertheless, some issues remain unsolved and additional research is required.

 Report

IST 2001-28548 openXchange 5

LIST OF FIGURES

Komt nog

 Report

IST 2001-28548 openXchange 6

1 INTRODUCTION

1.1 Background
Every time two companies want to conduct business, communication is required. This communication
usually consists of a flow of documents like orders, order conformations, invoices, etc. These documents
vary in nature, but they all have one thing in common: they need to be transported from one party to
another. Technology has advanced the means of communication, but still, devices like fax, telex and e-mail
require human involvement in the communication process. Although human involvement has a lot of
advantages, humans have two major drawbacks: they make mistakes and the time needed for a single
administrative action is significant larger then the time needed by a computer.

In conventional trade (figure 1.1a), first an employee of the ordering company has to print list off all items
he wants to order. Then, through fax, phone or some other form of communication, the supplier must be
made aware of the fact that someone is ordering supplies from his. Once an employee of the supplying
company communicated with the potential customer, he has to enter the order in their ERP (Enterprise
Resource Planning) system. Now, the order can be handled and goods can be delivered.

 Figure 1.1a: Traditional trade Figure 1.1b: Electronic trade

For cost efficiency and error reduction, it would be better to eliminate human involvement in this part of
the process (figure 1.1b). In the ‘80s the organization currently known as UN/CEFACT worked on a
standard for electronic data interchange (EDI) between applications in different companies. The result of
this work led to the publishing of the UN/EDIFACT standard by the International Standards Organization
(ISO) in 1987: ISO9735. The great advantage of this system seems evident, since the time that documents
take to reach their destination (inside the other party’s application) are reduced to almost zero. Also, the
human factor is eliminated, resulting in fewer errors.

EDI has had (and still has) a lot of impact on the way companies do business, especially large and
medium-sized companies and is still being used all over the world. To give an impression: nearly all
companies in the Fortune 500 have EDI connections with some of their suppliers [Ram99]. Although EDI
has been very successful, there are some major drawbacks to this system. First of all, an EDI system is
expensive, not affordable by small or medium sized companies. Money is saved during the transactions, so
EDI is only interesting if a company does a lot of transactions. For an EDI system, specialised middleware
is needed and a company that implements EDI has to agree upon a message format with each of its
trading partners that it wants to use EDI with [Blo92]. The system offers no flexibility towards the
message: the format is fixed. Finally, EDI only offers the possibility of sending messages and receiving.
Other information, like business profiles or business processes or binary data like pictures cannot be
exchanged [Ram99].

 Report

IST 2001-28548 openXchange 7

In 1999, a join effort of UN/CEFACT and OASIS resulted in the ebXML project [Ebx02]. The main goal
of this project was to define a framework for electronic business to business (b2b) e-commerce. The first
meeting was in November 1999 and 18 months later, in May 2001, the first version of the framework was
completed. The framework consisted of about 25 documents specifying a large variety of concepts
including business profiles, business process specification, registry / repository specification, core
components and of course document specification. EbXML document specifications are the counterpart
of the EDI message standards.

The ebXML project aims to lower the initial costs so that SME’s can also participate in the process of
electronic business. EbXML has some advantages over EDI. First of all, information is stored (and
messages are exchanged) in the XML format, which is extensible and is or will be supported by most
standard applications and middleware. Secondly, the Internet is used to exchange documents. Since
nowaday most companies are connected to the Internet, a large infrastructure is available.

Companies can make a profile and publish that in a public registry. Their profile can reference business
processes, either newly designed or already existing, so others can see how they want to commit business.
Communication consists of exchanging xml documents. The way this exchange takes place is very
flexible. Companies can use protocols like http, ftp, smtp, etc for the exchange (even floppies could be
used technically, but then the argument of time reduction is not valid anymore). The supported protocols
can be published in the company’s profile.

This research is done as part of the openXchange project that aims to create a framework for doing
cross-industry, cross-country e-business. At the start of the openXchange project a comparison was
made between several e-business standards and it became clear that the objectives of ebXML were very
similar to the objectives of openXchange. The openXchange framework is compatible with ebXML and
openXchange contributes to the development of ebXML.

1.2 Business Processes

As said, ebXML offers a language for specifying business processes [Bps02]. This is done in the
Business Process Specification Schema (BPSS). The term business process is somewhat misleading since
the BPSS does not specify business processes, but business collaborations. Both business processes and
business collaborations describe business-related activities that take place in order to achieve a certain
business goal (e.g. the placing of an order), and the ordering of these activities in relation to each other.
The difference between business processes and business collaborations is that business processes
describe the activities from the point of view of only one company. Two types of business processes can
be identified: internal and external. Internal business processes describe activities that take place within
the company and do not have any interaction with external companies. External business processes also
specify interaction with external companies.

When specifying collaborations, the term “party” is often used instead of company. Business
collaborations specify the collaboration between parties, by specifying the interaction points of external
business processes. In contrast to a business process, a collaboration is not created from the view of one
party, and does not focus on that party, but on the collaboration. There are two types of business
collaborations: binary collaborations and multiparty collaborations. A binary collaboration describes a

 Report

IST 2001-28548 openXchange 8

collaboration process between two parties. A multiparty collaboration describes a collaboration between
multiple parties.

In ebXML, binary collaborations are described in UML activity diagrams. Multiparty collaborations are
specified using activity diagrams, by combining multiple binary collaborations. Activity diagrams offer
some modelling flexibility. The same collaboration may be modelled by differently looking activity
diagrams. Moreover, if two companies do not support exactly the same collaboration, they might still be
able to do business if the collaborations have enough similarities. It is the goal of this M.Sc thesis to
develop an algorithm that can match business collaborations on similarity.

1.3 Assignment
This paragraph will state the research goal and problem description and describe the research approach

1.3.1 Title

Matching of ebXML business processes

1.3.2 Research goal

Finding a way to make an automated match between two ebXML business processes

1.3.3 Problem description

In order for two organisations to do business, their business processes must be able to collaborate. Within
the ebXML framework, interaction between two organisations is specified with binary collaborations,
using UML activity diagrams. A definition of similarity between two collaborations must be given. An
algorithm has to be developed and a prototype has to be implemented in order to check whether two
binary collaborations fulfil this definition of similarity. Also, the correctness of the solution has to be
shown.

1.3.4 Research questions
In order to solve the problem stated in the problem description it has to be split up into a number of sub-
problems. In this paragraph each of sub-problems is identified, including the research question necessary
to solve them.

ebXML
ebXML offers a framework for b2b e-commerce. This framework includes information about business
collaborations. In order to solve the problem stated in the problem description, certain aspect of these
business collaborations should be clear

1. What is ebXML?
2. How are business collaborations described in ebXML?
3. Define the intended users and the intended use of the algorithm.
4. Define when two collaborations are similar.
5. Verify the definition of similarity.

Activity diagrams

 Report

IST 2001-28548 openXchange 9

Binary collaborations are based on UML activity diagrams. Prior to developing an algorithm for comparing
binary collaborations, an algorithm needs to be developed to compare two activity diagrams according to
earlier defined similarity.

6. What are UML activity diagrams?
7. Design an algorithm for comparing two activity diagrams according to the definition of

similarity
8. What methods are available for proving correctness of an algorithm?
9. Prove that the algorithm fulfils the definition of similarity

Binary collaborations
The algorithm for comparing activity diagrams has to be extended in order to compare binary
collaborations. To realize this extension, the following questions have to be answered

10. What elements have to be added to an activity diagram in order to be able to describe a binary

collaboration?
11. Determine which of these elements are most relevant for the comparison.
12. Adjust the algorithm so it can handle binary collaborations

Prototype
Prototypes are used for different purposes and there are many ways of prototyping. From the start of the
project, it was clear that a prototype should be delivered.

13. What types of prototypes are available?
14. Determine the intended use of the prototype.
15. Design and implement the prototype.

Testing
After the algorithm has been developed and the prototype has been build, the algorithm has to be tested.

16. What methods for testing exist?
17. Design the test.
18. Test the algorithm

1.4 Outline of this document
This research focuses on the matching of ebXML business collaborations. In order to successful introduce
ebXML in an organisation, people within that organisation must be aware of the advantages of doing
electronic business. EbXML, is only a means to achieve a certain goal. Chapter two will start off with
pointing out the advantages of doing business in an electronic way, and then introduce the ebXML
framework.

Chapter three will introduce the concept of matching, explain why matching is necessary and explain
when matching should be used. The problem of matching is twofold. Chapter four will describe a method
for the matching of structure of collaborations. A business collaboration (or collaboration), consists of a
number of activities. In order to come to a successful matching solution, activities have to be matched on
a semantic level. Chapter five will present a solution that can be used to match activities within ebXML.

 Report

IST 2001-28548 openXchange 10

Finally, some conclusions and recommendations for future work are given in chapter six. Figure 1.2 shows
the structure of this document.

1 - Introduction

2 - The ebXML framework

5 - Matching content4 - Matching structure

3 - Problem of matching

6 - Conclusion

 Figure 1.2: Outline of document

 Report

IST 2001-28548 openXchange 11

2 INTRODUCTION INTO EBXML
This chapter describes several aspects of ebXML. First some background is given on the project and the
so-called ‘vision’ of ebXML will be explained. Once the goal of ebXML is clarified, an introduction to the
components of the framework is given. After this introduction, the reader shall be familiar with the most
common aspects of ebXML and most of the abbreviations are introduced. Before a company can use
ebXML, it has to take some steps. These steps shall be explained to give the reader an impression on
what it takes to use ebXML. Finally, after having explained what ebXML is, an impression is given into
what ebXML is not. Readers that are familiar with ebXML may skip this chapter and proceed to the
problem of matching.

2.1 The ebXML project, the new way of B2B e-commerce?
In 1999, a project was started as a joint effort of OASIS (a non-profit, member based consortium) and the
United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT, a world-wide
organisation that is part of the United Nations). The first project meeting was in November 1999 and 18
month later, in May 2001 some 25 documents were delivered. The intended result of the project is very
well caught in one of the first white papers [Whi00] on this subject:

“The vision of ebXML is to create a single global electronic marketplace where enterprises of any
size and in any geographical location can meet and conduct business with each other through the
exchange of XML based messages. ebXML enables anyone, anywhere, to do business with anyone
else over the internet.”

To accomplish this vision, a number of working groups has been created, all focussing on one particular
piece of the puzzle. Two things were clear from the start: XML and the Internet had to be used. XML
offers a lot of flexibility and seemed the ideal standard for exchanging information between different
applications. Using the Internet lowers costs since nowadays almost every company is connected to the
Internet.

Although the original project was concluded in May 2001, the working groups are still working on the
specifications, correcting issues and adding features.UN/CEFACT and OASIS are still involved and more
and more companies start using ebXML.

2.2 Using ebXML
This section describes an example that illustrates the steps a company has to take in order to adopt
ebXML. Some components of the framework are mentioned to give the reader an idea about the intended
use of those components and the relation between components. In the following section, the components
are described in more detail.

Consider the following scenario. Cantena is a company that sells food and drinks. Their assortment
consists of products that are sold in canteens of sporting clubs and companies. Typical products are
instant soup, coffee, candy, fast food and soft drinks. Currently clients fax or phone their orders and these
orders are processed manually. Because this manual processing takes a lot of time and is sensitive to
errors, Cantena wants to automate the ordering (and invoicing) process. EbXML is chosen instead of EDI
since most of Cantena’s customers are small or medium sized companies, and these companies do not
want to invest is an expensive EDI system. Cantena is a member of an industry organisation, which

 Report

IST 2001-28548 openXchange 12

already defined ebXML business collaborations and documents for its members and stored these in a
public registry.

Multiware is a wholesaler in building and construction materials and offers a large variety of products.
Multiware has EDI connection with some of its large suppliers, but the majority of its suppliers do not
offer this, simply because EDI is too expensive. Around a year ago, Multiware and some of its suppliers
started using ebXML since it offers the advantages of doing electronic business, but the start-up costs are
considerably lower than the costs of EDI. EbXML is not only used for communication with suppliers, but
also some of the Multiware’s clients are using ebXML. Recently some of Multiware’s clients (especially
building firms) ask for products like coffee, soft drinks, soup and candy bars. Multiware will have to look
for a new supplier since none of its current suppliers do not has these kinds of products.

ebXML compliant
software system

Business Profiles
Scenarios

ebXML
Registry

INDUSTRY
XML Specifications

Request Industry Process Details

1

Build Local System
Implementation

Register Implementation Details
Register Cantenas Profile

3

2

5
Agreeon Trading Arrangement4

Query about Cantenas
profile

Download ebXML components

DO BUSINESS TRANSACTIONS

6

Cantena

Multiware

Figure 2.1: business th e ebXML way

1. Cantena wants to use ebXML and starts by querying the registry / repository for standardised

business collaborations and documents. After searching the registry, Cantena downloads the
collaborations and documents provides by the industry organisation

2. Once the choice has been made on which of the business collaborations will be supported through

ebXML, the internal systems have to be adjusted. In order to use ebXML, software components have
to be build (or bought) that can extract the necessary information from the companies ERP system,
and store new information into it. Also a messaging service has to be installed, and choices need to be
made about the technical issues (like supported protocols).

 Report

IST 2001-28548 openXchange 13

3. Once Cantena finished implementing, a profile (called CPP in ebXML) is created that contains a
description of the company and references to supported business collaborations. Cantena may choose
to use the collaborations and documents that are provided by the industry organisations. If the
standard collaborations are not compliant with their internal processes, Cantena may choose to create
their own collaborations and reference these from the profile. Once the profile is finished, it is
published in a public registry.

4. Multiware is already using ebXML and looking for a supplier that can deliver new products. After

doing some searching, Cantena’s profile is found and downloaded. Now Multiware has to decide
whether or not Cantena is a suitable supplier.

5. Multiware decides that Cantena looks like a suitable supplier, and an agreement (called CPA in

ebXML) has to be made on the way they will do business. The profiles of both companies are
compared and an agreement is formed. This agreement contains technical issues (like supported
protocols) and references to business collaborations and is valid for a specific period. Since Multiware
and Cantena both member a different industry organisation, it is likely that they reference different
collaborations. This does not necessarily mean they cannot do business. Part of the agreement
formation is a matching algorithm that will compare the collaborations.

6. The final step is doing business. In this step, business documents like orders and invoices are

exchanged in real-time to support the trade between both companies.

This example shows the steps necessary for a company to use ebXML. The steps 1 to 3 usually have to
be done once. Only if a company changes something that is reflected in the CPP (e.g. buy a new
messaging system that supports other protocols), it will have to go through step 3 again. Step 4 and 5 only
have to take place if a company is looking for a new business partner, or if the agreement expires. The
final steps takes place every time a company starts a business collaboration (e.g. every time something is
ordered).

2.3 The ebXML framework
In contrast to e.g. EDI, which is only a messaging standard, ebXML is a framework that contains a
number of elements that can be used for doing e-business. A company doesn’t necessarily have to use all
components of the framework, but can adopt just a few of them, depending on its needs.

2.3.1 Component overview
This section gives in introduction into the components of the ebXML framework. Following sections give
more detailed information into the components used for matching of collaborations: BPSS and Core
Components.

• In a Business Process Specification Scheme (BPSS) instance, a company specifies its business

processes. This name is somewhat misleading since such a specification only describes those parts of
the business process that includes interaction with external parties. Internal activities are omitted.
Roughly speaking, a BPSS instance specifies which business documents are exchanged, in which
order they are exchanged, and the conditions under which certain activities can take place. A detailed
description of bpss can be found in section 2.3.2.

 Report

IST 2001-28548 openXchange 14

• The Collaboration Protocol Profile CPP describes a company’s profile considering its e-business
capabilities. Besides referencing the supported BPSS files, it also describes technical issues like the
transport protocol being uses (http / ftp / smtp / etc). The Collaboration Protocol Agreement
(CPA) is formed from two CPP’s and contains agreements on both technical issues and supported
BPSS.

• The Core Components (CC) and Business Information Entities (BIE) are in fact the building

blocks that can be used to create the business documents used in the BPSS. BIE’s are the actual
building blocks that are used in a specific context (e.g. the business area of temporary staffing). CC’s
are the abstract, context free versions of BIE’s. Details on Core Components and Business
Information Entities can be found in chapter 5. For the time being it is sufficient to know BIE’s are
small building blocks used for document assembly.

• In ebXML, reusability is one of the key features. The Registry and Repository play an important

role to achieve this. Industry organisation can publish standard (industry specific) BPSS files and
Business Information Entities in the Repository. CPP’s are published in the registry and can reference
the supported BPSS files in the Repository. Companies are left free though to publish their own BPSS
files. Besides the reusability aspect, the registry is used for finding suitable business partners (like the
yellow pages).

• The messaging service takes care of all communication within ebXML and uses SOAP With

Attachments (SWA) as protocol. It used for exchanging messages between two business partners,
and for communication with e.g. the registry. SWA uses XML to describe the message format and
can use multiple transport protocols like HTTP, FTP or SMTP.

2.3.2 Business Process Specification Schema (BPSS)
Within ebXML the BPSS is used to specify business processes. The BPSS itself is a XML schema,
described in [Bps02]. A company can describe its business collaborations as an instance of this schema
and publish it in a public registry. This section gives a detailed introduction into the various aspects of the
BPSS.

In ebXML, a business collaboration may consists of multiple layers (figure 2.2). A multiparty collaboration
describes a collaboration between multiple companies. The example in figure 2.3 describes a multiparty
collaboration between 3 companies.

Multiparty Collaboration

Binary Collaboration

Business Transaction Activity

Document

Business Information Entity

Place order

PickupDelivery

 Figure 2.2: Layers in ebXML Figure 2.3: Multiparty collaboration

 Report

IST 2001-28548 openXchange 15

The retailer orders goods from a wholesaler’s. A transport company picks up the goods from the
wholesaler’s and delivers at the retailer. Like all multiparty collaborations in ebXML, the multiparty
collaboration in this example is constructed by combining multiple binary collaborations. Every arrow in
figure 2.3 represents a binary collaboration.

A binary collaboration consists of a number of activities that are performed by both parties that participate
in the collaboration. Binary collaborations are modelled using UML activity diagrams. Each activity in a
binary collaboration is either a business transaction (called BusinessTransactionActivity) or a nested
binary collaboration. In case of a nested collaboration, entering the activity triggers the start of the nested
collaboration. The activity is left immediately after the nested transaction has terminated. An activity can
contain pre- and post conditions. The specification is not consistent on the semantics of these conditions.
On one hand, the specification states that an activity may not be entered (left) if the pre (post) condition is
not valid. This way, the conditions are used as guards on transitions. On the other hand, the specification
states that pre- and post conditions do not interfere with the choreography of the collaboration (and
therefor only used for effect definition). Besides pre and post conditions, an activity also has a “begins
when” and “ends when” expression. According to the specification, an activity immediately starts when
the “begins when” expressions becomes true. This is strange though, since it is not guaranteed that the
collaboration has already reached the activity (and if pre conditions are used as guards, it is not
guaranteed that the guard of the incoming transition is true). The specification does not treat this issue. If
the “ends when” condition becomes true, the activity is immediately left.

Another problem using pre conditions, post conditions, begins when and ends when is that the specification
gives no language for specifying these conditions. The specification suggest to use OCL (Object
Constraint Language), but does not force to use this language, so the user is left free to choice his own
language. The lack of a formal language makes it impossible to specify constraints in a clear, unambiguous
was.

Each transaction activity consists of the exchange of documents between two parties. Within a
transaction activity, there is always one requesting party and one responding party. The requesting party
only sends the first document. The responding party may send one or more documents. Every transaction
has a couple of parameters including:

− isLegallyBinding (legal status of the documents)
− timeToPerform (maximum time to perform the activity)
− isGuaranteedDeliveryRequired (specifies requirements on messaging service that delivers

documents)
− isNonRepudiationRequired (can a party deny sending a specific document)
− isNonRepudiationReceiptRequired (can a party deny that it received a sent document)

Documents can be seen as electronic variants of paper business documents commonly used when doing
business. Examples include “order” and “invoice”. A document assembled from standardised building
blocks called “Business Information Entities”, or BIE’s for short. The use of standardised building blocks
has a lot of advantages concerning reusability and compatibility between companies. The problem
however is that, at the moment of writing this rapport, none of the recent specifications describe how this
assembly takes place. There is a specification called “document assembly”, but this specification is
outdated in relation to current specifications.

monica.martin
The specification is not consistent on the semantics of these conditions.
On one hand, the specification states that an activity may not be entered (left) if the pre (post) condition is
not valid. This way, the conditions are used as guards on transitions. On the other hand, the specification
states that pre- and post conditions do not interfere with the choreography of the collaboration (and
therefor only used for effect definition).

monica.martin
Besides pre and post conditions, an activity also has a “begins
when” and “ends when” expression. According to the specification, an activity immediately starts when
the “begins when” expressions becomes true. This is strange though, since it is not guaranteed that the
collaboration has already reached the activity (and if pre conditions are used as guards, it is not
guaranteed that the guard of the incoming transition is true). The specification does not treat this issue. If
the “ends when” condition becomes true, the activity is immediately left.

monica.martin
Another problem using pre conditions, post conditions, begins when and ends when is that the specification
gives no language for specifying these conditions. The specification suggest to use OCL (Object
Constraint Language), but does not force to use this language, so the user is left free to choice his own
language. The lack of a formal language makes it impossible to specify constraints in a clear, unambiguous
was.

monica.martin
There is a specification called “document assembly”, but this specification is
outdated in relation to current specifications.

 Report

IST 2001-28548 openXchange 16

3 THE PROBLEM OF MATCHING

3.1 Introduction

In the previous chapter, an introduction is made into ebXML. This chapter first explains when business
processes should be matched and when a match should be considered successful. Once this is clear, an
introduction is given into some of the aspects of matching. Each of the aspects is dealt with in detail in the
following chapters.

3.2 Definition of equality
In ebXML, every business collaboration (e.g. the ordering, delivery and payment of goods) consists of a
number of activities. Every company has its own guidelines on how, and under what conditions, it wants to
participate in a business collaboration. For instance, a supplier of certain goods may decide that it wants to
get paid before it will deliver the goods, while another supplier does not care whether it gets paid before or
after the delivery. Also the conditions under which a certain activity takes place may vary from company
to company. Conditions include:

− pre and post conditions on activities (a temporary worker may only be hired if he has already reached

the age of 18)
− legal status of documents (if a document is received, the sender cannot ignore sending it)
− the maximum time that is allowed for an activity (payment must be received within 7 days after

delivery).

In ebXML, business collaboration specifications are used to address all these issues and specify how a
certain company wants to do business.

Once a company has published its profile (including references to business collaboration specifications) it
is ready to start looking for potential business partners. If a new business partner is found, an agreement
has to be formed before these two companies can start doing business transactions. This agreement
(CPA) includes a specification of the way the two companies shall do business. It seems evident that a
collaboration specification included in a CPA needs to be supported by both companies. To determine this,
the collaboration specifications of both companies need to be compared. Currently ebXML does not offer
any functionality to do this in an automated way, therefore the need arose within the openXchange project
to create a system that can do this.

If two companies reference the same business collaboration, for instance one that was created by the
branch organisation, and both companies take a different role (e.g. buyer and seller), we speak of a trivial
match. The collaboration specification that both companies have in common can be referenced from the
CPA and the two companies are ready to start doing business.

Sometimes however, companies may reference different collaborations. This does not necessarily have to
mean that these companies cannot do business together. In some cases, a new collaboration can be
formed that is supported by both companies. This collaboration that should be stored in a new bpss
document (called bpss ‘a’ in figure 3.1), describes the compatible parts of two collaborations and can be
considered as the “agreement” of two collaborations. It is the task of the matching algorithm to form this
‘agreement’ collaboration and store it in a bpss document. Before an algorithm can be created it has to be

 Report

IST 2001-28548 openXchange 17

clear under what conditions (parts of) two collaborations can be considered compatible, or to be more
precise, what the definition of a successful match is.

Company BCompany A

CPA

CPP

BPSS

CPP

BPSS

BPSS’A’

 Figure 3.1: Agreement on BPSS

This research only focuses on the matching of business collaborations. Automated generation of a CPA is
also a focus within openXchange, but is not addressed in this research. The main goal for the matching
algorithm is to determine whether there is a way for the two companies to do business together. One can
consider a collaboration as a specification of all possible business scenarios that are supported by a
company (for that specific business process). This brings us to the following definition: Two business
collaborations match if there is at least one successful business scenario that is supported by both
process specifications. It is hard (if not impossible) to formally that this is a useful definition, but it was
checked and agreed upon by several experts on this subject. Therefore this definition is used as the
starting point when developing the algorithm.

3.3 The two aspects of matching
The problem of matching is twofold. First the structure of two collaborations need to be compared. As
mentioned earlier, a business scenario consists of a number of activities that need to be done. A
collaboration specification defines all possible orders of these activities. In some cases there may be some
differences in this ordering, but still there might be some orders that are supported by both specifications

Consider a simple example to illustrate this (figure 3.2). Suppose that two companies reference different
collaboration in which two activities take place: the delivery of goods and the payment of these goods. The
supplier first wants to receive his payment before he is going to deliver. The consumer on the contrary has
no preference. Even though it seems obvious that these two companies can do business together by first
paying and then delivering the goods, standard ebXML offers no functionality to check this compatibility.
The algorithm has to detect and specify this collaboration.

The second part of the matching is the matching of content or
semantics. In the previous example there were two activities, delivery
and payment. The assumption is made that the delivery activities of the
buyer and the seller are equal, but this doesn’t necessarily have to be the
case. Sometime companies use the same name but actually specify
different activities or specify different conditions. Also companies may
use different names, but actually specify the same activity. To solve this
problem, the algorithm has to check whether or not the activities are
equal. If two activities are different, the algorithm has to check whether
or not these differences can overcome.

Figure3.2: Differences in
choreography

Payment

Delivery

Delivery

Payment

monica.martin
This research only focuses on the matching of business collaborations.

monica.martin
The second part of the matching is the matching of content or
semantics. In the previous example there were two activities, delivery
and payment.
Payment

 Report

IST 2001-28548 openXchange 18

In the next chapter the matching of structure will be explained. In chapter 5, the matching of content shall
be addressed.

 Report

IST 2001-28548 openXchange 19

4 MATCHING STRUCTURE

4.1 Introduction
Since Multiparty Collaborations are top-level process specifications, it seems logical to start the matching
algorithm at this type of collaboration. However, for the following reasons the choice is made to start
matching on the level of binary collaboration:

− The matching algorithm is meant to be used as part of an algorithm for automated CPA generation. A

CPA is an agreement between two parties and references binary collaborations.

− A company is only interested in business transactions it participates in. Third party collaborations are

not that interesting. Related to this is the fact that in some complex real-world business scenarios,
none of the participating companies may have a complete view on the total collaboration.

− The specifications are still under development, and they still contain some errors. The bpss

specification, which describes both binary and multiparty collaborations, especially has some flaws on
the specification of the multiparty collaborations. It is unclear how to link companies to a specific role,
and more companies can be linked to the same role.

4.2 UML Activity diagrams
In ebXML, binary collaborations are expressed in UML activity diagrams. In order to build an algorithm
that can match binary collaborations, first an algorithm has to be created that can match activity diagrams.
This paragraph will describe the UML activity diagram notation style. It is intended to give the reader an
impression on this notation style and will not go into all formal aspects. Only those aspects necessary for
this thesis will be treaded.

An activity diagram is a directed graph, consisting of nodes and directed edges An activity diagram
describes a system. Nodes describe the possible states of the system while edges describe the allowed
state transitions. The UML activity diagram notation style defines one type of edge and several types of
nodes. The various types of nodes are shown in figure 4.1. First the semantics of all possible nodes are
treated and then some of the problems concerning the semantics are addressed.

Wait_1

Activity A

Activity D

Activity CActivity B

Wait_2

[Failure] [Success]

Activity

Wait state

[Guard]

Start state

Activity

Wait state

Transition

Join / fork

Choice / merge

Final state

Figure 4.1: UML Activity Diagrams

In the activity diagram notation style, edges are called transitions. A transition always has one source node
and one target node, and may contain a guard. If a transition contains a guard, it can only be taken if the
guard is valid. The system can never be “in a transition, a transition from one node to another does not
consume any time. This means the diagram is always in one (or more) nodes. An activity diagram is

monica.martin
Since Multiparty Collaborations are top-level process specifications, it seems logical to start the matching
algorithm at this type of collaboration. However, for the following reasons the choice is made to start
matching on the level of binary collaboration:

monica.martin
The matching algorithm is meant to be used as part of an algorithm for automated CPA generation. A
CPA is an agreement between two parties and references binary collaborations.

monica.martin
In ebXML, binary collaborations are expressed in UML activity diagrams. In order to build an algorithm
that can match binary collaborations, first an algorithm has to be created that can match activity diagrams.

 Report

IST 2001-28548 openXchange 20

deterministic, this means that, unless guards are used, each node can only contain one outgoing transition
(e.g. activity D in figure 4.1). The only exception to this rule is the fork node which does have multiple
outgoing transitions. To preserve determinism when a node has more outgoing transitions, guards have to
exclude each other (formally, the UML does allow guards to overlap, but for this research we do not).

Within activity diagrams, two categories of nodes can be identified. First, there are the ‘normal’ nodes,
which are used to describe the state of a system. The other category consists of ‘pseudo states’. The
system can never be in a pseudo state and, just like a transition, a pseudo state doesn’t consume any time.
Pseudo states therefore are syntactic sugar, used to glue edges together.

The first pseudo state is the start state. Every diagram may only contain exactly one start state. This start
state has exactly one outgoing transition and no incoming. The outgoing transition of a start state may not
contain a guard. A system stops once it is in a final state. The final state only has incoming transitions,
never an outgoing transition. Incoming transitions of a final state may contain a guard.

A choice state has one incoming transaction and multiple outgoing transaction. The incoming transition of
a choice state may not have a guard, all outgoing transactions must contain a guard. As explained, the
guards on transitions leaving a choice state have to exclude each other. Besides the fact that guards must
exclude each other, always one guard must be true (or else the system could get stuck in a choice node).
One way to make sure that one of the guards is true is by adding a [else] guard. This [else] guard is true
if all other guards are false. A merge state allows multiple incoming transactions and has one outgoing
transaction.

The last pseudo states are the fork and join. When a fork state is used, the thread splits up into several
parallel threads. Every fork state has exactly one join state. In a join state, parallel threads are merged.
Before parallel threads can be merged, all threads must have reached the join state, meaning all states that
have an outgoing transition leading to the fork must be terminated.

The UML activity diagram notation style identifies three types of normal states: action, wait and
composite states. When the system enters an action state, the execution of an atomic activity is triggered.
The system will leave the state immediately after the activity is finished. The activity is atomic, meaning
that either the complete activity is executed or the activity is not executed at all. The atomic activity
cannot be interrupted. In a wait state, the system waits for external event to leave the state. An external
event can either be an event that happens outside the system, or a state transition within the diagram. No
activities are performed in a wait state. In a composite state, another, nested activity diagram is executed.
The execution of the nested diagram starts once the composite state is entered. The composite state is left
once the nested diagram terminates.

 UML activity diagrams lack a formal semantics. Some of the problems that arise because of this lack are
treaded in [Esh02]. One of the issues relevant for matching of activity diagrams is the termination of
activities that lead to a fork state. Consider the example in figure 4.2-a (which is valid according to the
UML specification). Both activities A and B are action states, meaning that the outgoing transitions are
triggered by internal activities. Suppose activity A terminates while activity B is still running. Termination
of A means that the system cannot stay in action state A so the outgoing transition must be taken. This
causes a problem since all transitions leading to a join must be taken at the same time. Action state may
not be left yet since the atomic activity B is not finished. To avoid this problem, transitions to a join may
never originate from an action or composite state, but only from a wait state as in figure 4.2-b.

monica.martin
The only exception to this rule is the fork node which does have multiple
outgoing transitions. To preserve determinism when a node has more outgoing transitions, guards have to
exclude each other (formally, the UML does allow guards to overlap, but for this research we do not).

monica.martin
A choice state has one incoming transaction and multiple outgoing transaction. The incoming transition of
a choice state may not have a guard, all outgoing transactions must contain a guard. As explained, the
guards on transitions leaving a choice state have to exclude each other. Besides the fact that guards must
exclude each other, always one guard must be true (or else the system could get stuck in a choice node).
One way to make sure that one of the guards is true is by adding a [else] guard. This [else] guard is true
if all other guards are false. A merge state allows multiple incoming transactions and has one outgoing
transaction.

monica.martin
The activity is atomic, meaning
that either the complete activity is executed or the activity is not executed at all. The atomic activity
cannot be interrupted. In a wait state, the system waits for external event to leave the state. An external
event can either be an event that happens outside the system, or a state transition within the diagram. No
activities are performed in a wait state.

monica.martin
UML activity diagrams lack a formal semantics. Some of the problems that arise because of this lack are
treaded in [Esh02]. One of the issues relevant for matching of activity diagrams is the termination of
activities that lead to a fork state.

monica.martin
To avoid this problem, transitions to a join may
never originate from an action or composite state, but only from a wait state as in figure 4.2-b.

 Report

IST 2001-28548 openXchange 21

Activity C

Activity BActivity A

Activity C

Activity BActivity A

Wait_1 Wait_2

 Figure 4.2a: Join w/o wait state Figure 4.2b: Join with wait state

4.3 The problem of matching activity diagrams
Now the introduction to process specifications and activity diagrams is made, the first step in process
matching can be made. The criteria for a successful match will be given first. There are currently no
techniques for matching activity diagrams, so some older techniques were examined whether or not they
would apply in a new setting.

4.3.1 How to match?
Before an algorithm can be created to match two activity diagrams, it has to be clear when two activity
diagrams are considered to be ‘compatible’. This means a definition has to be created for a successful
match. The definition of equality for business processes (page 17) is “..there must be at least one
business scenario that is supported by both”. Since each business scenario is a run of activities through
the activity diagram, the algorithm should give a successful match if there exists at least one run that can
be taken in both activity diagrams.

Preferably, the algorithm does not only check whether or not there is such a run (and give that run), but
also give all possible runs that can be taken in both diagrams. This set of possible runs can itself be
described as an activity diagram. To conclude, the algorithm takes two activity diagrams as input and, if
there is a successful match, create a new activity diagrams that represents all possible runs.

4.3.2 Techniques used
Although a lot of research has been done on activity diagrams, there are no techniques available to
compare two diagrams. Therefore research has been done on a number of older techniques, in order to
check whether they would be usable for the comparison of two activity diagrams. The most obvious
candidate is bisimulation, as used in process algebra. Another possible solutions seemed to be using set
theory in order to determine trace equivalence. These two techniques, and the problems identified when
using them, will be treated. Some other techniques that were tried, like the use of logic, will not be dealt
with in this report.

Simulation
In ebXML, activity diagrams are used to represent a business process. A diagram technique called
process graphs as used in process algebra has a lot in common with activity diagrams. A process graph
consists of nodes (that represent atomic actions) and of transitions between these nodes. In process
algebra, a technique called bisimulation is used to define an equivalence relation between two process
graphs. If there is a bisimulation relation between two process graphs, every trace in one graph is possible
in the other graph and vice versa. This relation is too strong for the goal of matching business processes
within ebXML since we only need one trace that exists in both graphs.

monica.martin
“..there must be at least one
business scenario that is supported by both”.

monica.martin
Since each business scenario is a run of activities through
the activity diagram, the algorithm should give a successful match if there exists at least one run that can
be taken in both activity diagrams.

monica.martin
If there is a bisimulation relation between two process graphs, every trace in one graph is possible
in the other graph and vice versa. This relation is too strong for the goal of matching business processes
within ebXML since we only need one trace that exists in both graphs.

 Report

IST 2001-28548 openXchange 22

If the bisimulation is weakened in such a way that every trace of one graph is possible in another graph
(but not vice versa), the relation is usable. We call this relation a simulation relation. Consider two graphs:
graph A and graph B. Graph A is simulated by graph A’ if:

1. Every node a in graph A has an equivalent node a’ in graph A’.
2. For every edge (a,b) in graph A there is an edge (a’,b’) in graph A’.

How can this simulation technique be used to compare activity diagrams? The goal of the algorithm is to
find all possible traces possible in two given activity diagrams A and B, and represent these traces as a
new diagram C. According to the previous definition, C is simulated by both A and B.

Activity
Diagram A

Activity
Diagram B

Activity
Diagram C

Simulation

A

B C

Figure 4.2: Simulation Figure 4.3: Parallelism

Although there is a lot of resemblance between activity diagrams and process graphs, there is one big
difference: activity diagrams can contain parallelism, introduced by a fork node (see figure 4.3). Without
parallelism, the state of a system is always represented by exactly one node. With the introduction of
parallelism, the state of the system is represented by multiple nodes at the same time. This makes the
simulation relation unusable. There are some variations on process algebra that also support parallelism,
but this is another form of parallelism. More details on the differences in parallelism are treated in section
4.4.1

Set theory

Another technique examined is set theory. The goal of the matching of two activity diagrams is to
determine whether there exists a trace that can be performed in both activity diagrams. If an activity
diagram is converted into a set of all possible traces, two diagrams A and B can be matched by checking
whether there is overlap in the set of possible traces of both diagrams. This overlap represents the
(partial) trace equivalence of A and B and can be represented by an activity diagram C. Figure 4.4
illustrates this.

monica.martin
How can this simulation technique be used to compare activity diagrams? The goal of the algorithm is to
find all possible traces possible in two given activity diagrams A and B, and represent these traces as a
new diagram C. According to the previous definition, C is simulated by both A and B.

monica.martin
Parallelism

BPEL
BPSS

 Report

IST 2001-28548 openXchange 23

Traces of A Traces of B

Traces of C

Traces of A Traces of B

A

B

Figure 4.4: Set theory Figure 4.5: Problem with cycles

As with the simulation solution, a problem is encountered when applying the set theory. The algorithm
requires calculating all possible traces. In large activity diagrams this can become a problem, since it
required calculation power grows exponentially with the size of the diagram. In some cases, where the
diagram contains a cycle (figure 4.5), it is impossible to calculate all possible traces since the number is
infinite.

4.4 Towards a solution
All efforts to apply older, well-known techniques to solve the matching problem failed. In all cases this
was either because of parallelism or because of cycles. One way of solving this is to make the assumption
(and specify it as requirement) that one of these constructs cannot be used. This would of course mean
that the algorithm isn’t generic anymore. Another possible solution would be to eliminate one, thereby
keeping the solution generic. One way to eliminate parallelism is explained in [Pra91].

4.4.1 Eliminating true parallelism
Before eliminating parallelism its important to understand that two types of parallelism can be identified.
First there is true parallelism in which activities take place exactly at the same time and may influence
each other. The other form of parallelism is branching time parallelism. In branching time parallelism, all
activities are actually executed sequentially, but the order in which the execution takes place is undefined
(so actually, this is a form of non-determinism).

Consider the example in figure 4.6 where two activities are specified to execute parallel (a). There are
three possible execution scenarios (b): first A then B, first B then A or A and B simultaneously. If only
the first two scenarios would be possible, the parallelism would be branching time and the diagram could
be transformed relatively easily into a sequential one (c). The third scenario causes problems, since it’s
not clear what state changed the system undertakes before the final state is reached. This is a case of
true parallelism.

A B

Start

End

?

A

B

B

A

A B

AB

Figure 4.6(a) Figure 4.6(b) Figure 4.6(c)

monica.martin
As with the simulation solution, a problem is encountered when applying the set theory. The algorithm
requires calculating all possible traces. In large activity diagrams this can become a problem, since it
required calculation power grows exponentially with the size of the diagram. In some cases, where the
diagram contains a cycle (figure 4.5), it is impossible to calculate all possible traces since the number is
infinite.

monica.martin
The other form of parallelism is branching time parallelism. In branching time parallelism, all
activities are actually executed sequentially, but the order in which the execution takes place is undefined
(so actually, this is a form of non-determinism).

monica.martin
Before eliminating parallelism its important to understand that two types of parallelism can be identified.
First there is true parallelism in which activities take place exactly at the same time and may influence
each other. The other form of parallelism is branching time parallelism. In branching time parallelism, all
activities are actually

 Report

IST 2001-28548 openXchange 24

The problem of true parallelism could be illustrated by the following example. Consider the parallelism in
figure 4.6(a) to be true parallelism. Suppose if activity A could be decomposed in the sequential execution
of u,v and w while B can be decomposed in x,y and z. In this case, the diagram in figure 4.6(c) does not
have the same traces as the diagram in figure 4.6(a). Diagram (c) only supports two executions:
u,v,w,x,y,z and x,y,z,u,v,w while diagram (a) also supports e.g. x,u,y,v,z,w. If the parallelism in figure
4.6(a) is considered branching time parallelism, then both diagrams do have the same
possible traces.

According to [Pra91], a diagram using true parallelism can be considered as a diagram
using branching time parallelism, as long as all states (or activities) are atomic. To
achieve this, every nested activity (in the previous example both A and B) should be
expanded in order to remove the nesting.

4.4.2 State transition systems
One of the mayor problems in comparing activity diagrams is the use of parallelism
(either true or branching time). Once parallelism is introduced, the state of a system is
no longer represented by one node (or activity), but by multiple nodes. This eliminates
the possibility of using simulation to compare two diagrams. After converting true
parallelism into branching time parallelism, the activity diagram can be transformed into
a standard State Transition System (or STS) containing no parallelism. In a STS, each
possible state of the system is represented by exactly one node.

If an activity diagram is to be represented by a STS, each possible combination of states in the activity
diagram must be represented by exactly one node in the STS (e.g. CD and CE). This implies that the STS
representation will have at least the same amount of states. The number of states grows with the number
of branches and the number of states in each branch. Given a partial STS S representing a parallel part P
with n parallel branches of an activity diagram, the maximum number of states of S can be calculated as:

• ∏
=

=
n

x
xPS

0

)(#)max(#

where #X is the number of states in X and Pn is branch number n.

In an activity diagram, a state transition is made immediately after an activity terminates, therefore
termination of an activity must lead to a transition in the STS. Suppose the activity diagram is in two states
and both states have one outgoing transition (e.g. C and D in figure 4.7). The STS representation has one
state (CD) and two outgoing transitions. After termination of one of the two activities, it is clear what the
next state of the activity diagram will be (termination of D leads to states C and E while termination of C
leads to Wait_1 and D). To make this distinction in the STS (which has two outgoing transitions), each
transition needs a guard stating the termination of one of the activities. Note that simultaneous termination
of both activities is not possible if both activities are atomic.

State Transition Systems are either deterministic or non-deterministic. In a deterministic system, the state
of the system can always be determined given the trace history. In a non-deterministic system this is not
always the case. Consider state E in figure 4.7: after termination of E, either Wait_2 or D is active (and
of course C or Wait_1), but it is not clear which one. Although it is possible to create a deterministic STS
of each activity diagram, an algorithm for creating a non-deterministic STS is more strait forward.

Figure 4.7: Trace history

A

B

C D

E

F

Wait_2Wait_1

monica.martin
If the parallelism in figure
4.6(a) is considered branching time parallelism, then both diagrams do have the same
possible traces.

monica.martin
According to [Pra91], a diagram using true parallelism can be considered as a diagram
using branching time parallelism, as long as all states (or activities) are atomic. To
achieve this, every nested activity (in the previous example both A and B) should be
expanded in order to remove the nesting.
B

monica.martin
In an activity diagram, a state transition is made immediately after an activity terminates, therefore
termination of an activity must lead to a transition in the STS. Suppose the activity diagram is in two states
and both states have one outgoing transition (e.g. C and D in figure 4.7). The STS representation has one
state (CD) and two outgoing transitions. After termination of one of the two activities, it is clear what the
next state of the activity diagram will be (termination of D le ads to states C and E while termination of C
leads to Wait_1 and D). To make this distinction in the STS (which has two outgoing transitions), each
transition needs a guard stating the termination of one of the activities. Note that simultaneous termination
of both activities is not possible if both activities are atomic.

monica.martin
State Transition Systems are either deterministic or non-deterministic. In a deterministic system, the state
of the system can always be determined given the trace history. In a non-deterministic system this is not
always the case. Consider state E in figure 4.7: after termination of E, either Wait_2 or D is active (and
of course C or Wait_1), but it is not clear which one. Although it is possible to create

monica.martin
forward.

monica.martin

monica.martin
deterministic STS

monica.martin
Õ=
of each activity diagram, more strait forward.

monica.martin
an algorithm for creating

monica.martin
a non-deterministic STS is

 Report

IST 2001-28548 openXchange 25

According to [Sud97], every non-deterministic STS can be transformed into a equivalent deterministic
STS. For the purpose of matching, a deterministic STS is preferred.

4.4.3 Matching two activity diagrams
The first step in matching two activity diagrams is converting each activity diagram into an activity
diagram in which each activity is atomic. This is done by inspecting each activity and splitting it up into
several activities. No generic algorithm can be presented since atomicy depends on the nature of the
activities. After this conversion, the both activity diagrams are converted into a non deterministic STS
using the algorithm presented below.

Wait-states were introduced to make a correct synchronisation in a join node. No activity is done in a
wait-node and therefore wait-nodes are not relevant for matching. Moreover, since wait-nodes are only
introduced before a join node, an activity diagram without parallelism shall never contain a wait node,
meaning that an activity diagram that contains parallelism shall never successfully match a diagram
without parallelism. This is unwanted behaviour and therefore wait states are removed from states in the
STS. In an activity diagram, just before a join, the state of the system is represented only by wait states
(e.g. in figure 4.7, the state of the system before state F is (Wait_1,Wait_2). Removing all wait states
from states in a STS means that for every join in the activity diagram, the STS contains an empty state.
This empty node shall be removed and all incoming transitions shall be connected to the destination of the
outgoing transition. The example in section 4.4.4 demonstrates this.

After creating a non deterministic STS, a deterministic STS is created for each activity diagram according
to transformation rules explained in [Sud97]. The match of the two original activity diagrams can be
calculated by generating the intersection of two deterministic STS diagrams. This intersection is
represented as a third STS which can be transformed back into an activity diagram.

Algorithm 1 uses functions the following functions that will not be specified in detail:

• successor(AD,N). This function returns the nodes (activities) in activity diagram AD that can be
reached from node N by taking exactly one transition. The result of this function is:

o and({node}) if a single node or a fork node is reached after taking the transition. If a fork
node is reached, {node} contain the nodes that are directly reachable from the fork. In
the activity diagram AD depicted in figure 4.7, the function successor(AD,D) will return
and({E}), while successor(AD,B) will return and({C,D})

o or({node}) if N has more than one outgoing transition, or if N has a transition that leads to
a choice node. In case of a choice node, {node} will contain the set of nodes that are
reachable from the choice node. In figure 4.7, successor(AD,E) will return
or({Wait_2,D})

o join({node}) if the outgoing transition of N leads to a join node. {node} contains the set of
nodes that also have a transition leading to N (these nodes should all be Wait nodes
according to paragraph 4.2). Note that this is different from the previous two results
where {node} contains the set of nodes that are reachable from N. In figure 4.7,
successor(Wait_1) returns join({Wait_1,Wait_2).

• getNode(AD,N) returns node N from activity diagram AD
• hasNode(GR,N) returns true if graph GR contains node N. Otherwise, this function returns false.
• hasEdge(GR,O,D) returns true is graph GR has an edge originating from node O and leading to

node D. Otherwise, this function returns false.
• addNode(GR,N) adds node N to graph GR
• addEdge(GR,O,D,L) adds an edge in graph GR from node O to node D with label L

monica.martin
Wait-states were introduced to make a correct synchronisation in a join node. No activity is done in a
wait-node and therefore wait-nodes are not relevant for matching.

monica.martin
After creating a non deterministic STS, a deterministic STS is created for each activity diagram according
to transformation rules explained in [Sud97]. The match of the two original activity diagrams can be
calculated by generating the intersection of two deterministic STS diagrams. This intersection is
represented as a third STS which can be transformed back into an activity diagram.

monica.martin
For the purpose of matching, a deterministic STS is preferred.

 Report

IST 2001-28548 openXchange 26

Algorithm 1
ADN :: activity
GRN :: {activity}+
ADE :: (source :: ADN,dest :: ADN)
GRE :: (source :: GRN,dest :: GRN,label::string)
STS :: ({GRN},{GRE})
ActivityDiagram = ({ADN},{ADE})

Graph = new(STS)
ActD = read(ActivityDiagram)

newNode :: GRN
newNode = getNode(ActD,start)
addNode(Graph,newNode)
process(Graph,newNode,ActD)
end

Function process(GR::STS, GrNode::GRN, AD:: ActivityDiagram)
newnode :: GRN
FOR EACH a ∈ GrNode DO
 succ = successor(getNode(AD,a))
 IF succ = join(XS) THEN
 IF XS ⊆ GrNode THEN
 newNode = GrNode – XS ∪ successor(joinNode)
 addAndProcess(GR, GrNode, newNode)
 ELSE
 END IF

 ELSE IF succ = and(XS) THEN

 newNode = (GrNode - a) ∪ succ
 addAndProcess(newNode,a)

 ELSE (**succ = or(XS) **)
 FOR EACH x ∈ XS DO
 newNode = (GrNode - a) ∪ x
 addAndProcess(GR, GrNode, newNode, x, AD)
 END FOR
END process

Function addAndprocess(GR::STS, GrNode::GRN, newNode::GRN, label::string, AD::ActivityDiagram)
IF hasNode(GR, newNode) AND hasEdge (GR, GrNode,newnode) THEN
 (** do nothing **)
ELSE IF hasNode(GR, newNode) THEN
 addEdge(GR, GrNode, newNode, label)
ELSE
 addNode(GR, newNode)

Within the algorithm, four blocks can be identified. These blocks are numbered and treated after the
algorithm is given.

1

3

A

4

2

A

C

B

B

C

 Report

IST 2001-28548 openXchange 27

The algorithm starts with type definitions (1) which lead to the types STS and ActivityDiagram. In block
(2), an empty STS is created and an activity diagram is read as input. The algorithm will eventually add
nodes and edges to the empty STS thereby creating a different representation of the input activity
diagram. The first step is to create a start node in the STS. This start node is processed by calling the
recursive procedure process (3). If a node is processed, the procedure first checks what states are
reachable in the activity diagram from the node it processes by calling the procedure successor.
Dependent on the outcome of this procedure, the algorithm chooses one out of three options (3A, 3B or
3C)

If the successor function returns an and-value or a join-value (block 3A and 3B), the algorithm creates one
new node that is to be added to the STS. In case of an or-value, the algorithm creates several nodes that
are potentially added to the STS. Each node represents a state of the system represented by the activity
diagram. If a new node is created, the function addAndProcess is called (4). This function first checks if
the new node already exists and, if so, if there is exists a transition between the node it is currently
processing and the newly created node.

If both the node and the transition exist, the algorithm does nothing with the new node and does not call
itself recursively (4A). If the new node already exists, but there is no transition between the currently
processed node and the new node, this transition is added. As in the previous case, the algorithm does not
call itself (4B). If both the transition and the node do not exist in the STS, they are both added and the
algorithm continues by processing the new node (4C)

When comparing two activity diagrams, the step is to transform both diagrams into a STS using algorithm
1. Then all Wait states have to be removed (for reasons mentioned earlier). Once this is done, the two
newly formed (non deterministic) STS diagrams can be transformed into deterministic STS diagrams. This
can be done by using algorithm 2.

Algorithm 2

Stap 1
Stap 2

For the purpose of business process matching, this match does not have to be an exact match. The
intended result of the algorithm is to check whether or not there is a trace that exists in both diagrams. In
order to detect this, a third STS is created representing the intersection of two deterministic STS diagrams.

Algorithm 3

Stap 1
Stap 2

Algorithm 3 creates a STS (C) that is simulated by both original STS diagrams. According to the definition
of simulation, every trace possible in STS C is also possible in both STS A and B. We speak of a
successful match if STS C contains a trace that leads to an End-node. A third algorithm can be used to

monica.martin
When comparing two activity diagrams, the step is to transform both diagrams into a STS using algorithm
1.

monica.martin
For the purpose of business process matching, this match does not have to be an exact match. The
intended result of the algorithm is to check whether or not there is a trace that exists in both diagrams. In
order to detect this, a third STS is created representing the intersection of two deterministic STS diagrams.

 Report

IST 2001-28548 openXchange 28

convert the STS back into an activity diagram. The algorithm that is described below is a simplistic one
that does not introduce parallelism. Although it is usable, a new algorithm should be designed that can
reintroduce parallelism. The example in the following chapter assumes that such an algorithm is used.

Stap 1
Stap 2

4.4.4 Example
In the following example, two activity diagrams, A and B are being
compared. This comparison will lead to a third activity diagram C
that represents the matching of A and B. Both diagrams are
shown in figure 4.8 and contain the same activities (or nodes), but
have a different choreography. All activities in both A and B are
atomic. The first step is to translate the activity diagrams into STS,
according to algorithm 1. The result of the transformation is shown
as STS A and B in figure 4.9. Removing the wait states results in
STS A’ and STS B’. Once the two graphs are created, the second
algorithm can be used to create the third graph. Figure 4.10 shows
STS C that is simulated by both STS A and STS B, and the activity
diagram that is created after converting the STS back into an
activity diagram. No formal proof shall be given here for the fact
that this is a corrected simulation relation. A graphical
representation of the simulation relation is shown in appendix B.

[d]

Start

Wait_1D

CD

B

A

[a]

[b]

CWait_2

CE

Wait_1E

F

Wait_1Wait_2

End

[d][c]

[e]

[e] [c]

[f]

[e]

[e]

[c]

Start

FE

CE

B

A

[a]

FWait2

C

Wait_1E

D

Wait_1Wait_2

End

[e][c]

[f] [c]

[e] [f]

[b]

[d]

[e]

Start

D

CD

B

A

[a]

[b]

C

CE

E

F

End

[d][c]

[d] [e]

[e] [c]

[f]

[e]

[e]

[c]

Start

FE

CE

B

A

[a]

F

C

E

D

End

[e][c]

[f] [c]

[e] [f]

[b]

[d]

[e]

STS A STS B STS A* STS B*

Figure 4.9: Resulting STS

A

B

C D

E

F

Activity diagram A

Wait_2Wait_1

A

B

C

D

E

F

Activity diagram B

Wait_2Wait_1

Figure 4.8: Example activity diagram

monica.martin
In the following example, two activity diagrams, A and B are being
compared. This comparison will lead to a third activity diagram C
that represents the matching of A and B.
B
B

monica.martin
and B. Both diagrams are
shown in figure 4.8 and contain the same activities (or nodes), but
have a different choreography. All activities in both A and B are
atomic. The first step is to translate the activity diagrams into STS,
according to algorithm 1. The result of the transformation is shown
as STS A and B in figure 4.9. Removing the wait states results in
STS A’ and STS B’. Once the two graphs are created, the second
algorithm can be used to create the third graph. Figure 4.10 shows
STS C that is simulated by both STS A and STS B, and the activity
diagram that is created after converting the STS back into an
activity diagram. No formal proof shall be given here for the fact
that this is a corrected simulation relation. A graphical
representation of the simulation relation is shown in appendix B.
C D
E
F
Activity diagram A
Wait_2 Wait_1
C
D
E
F
Activity diagram B
Wait_2 Wait_1

 Report

IST 2001-28548 openXchange 29

Start

E

CE

B

A
[a]

F

C

D

End

[e][c]

[c]

[f]

[b]

[d]

[e]

E

B

A

F

C

D

STS C Activity diagram C

Figure 4.10: Result of matching

4.4.5 Transformation to ebXML
In ebXML, binary collaborations expressed in UML activity diagrams. The algorithm designed for
matching activity diagrams can therefore be used to match binary collaboration. The solution described in
this chapter can be used to match to structure of collaborations, but in order to come to an useful match,
more has to be taken into consideration.

In ebXML, activities in a Binary collaboration are either nested collaborations or Business Transaction
Activities. Neither of these two are atomic, so in order to use the algorithm, the following conversions
have to be done:

• For each activity A that contains a nested collaboration, the nesting must be removed. This is
done by connection the all incoming transitions of A to the first normal node in the nested
diagram. Each transition in the nested diagram that leads to an end state should be connected to
all outgoing transitions of A.

• If a Business Transaction Activity (BTA) consists of the exchange of more than one document,
that BTA must be replace by a sequence of BTA’s, each consisting of the exchange of exactly
one document. If the replace BTA contains pre conditions, these pre conditions are added to the
first BTA in the sequence. If the BTA contains post conditions, these post conditions are added
to the last BTA in the sequence.

Besides the matching of structure, also content has to be matched. The following chapter treats the
matching of content in ebXML.

monica.martin
· For each activity A that contains a nested collaboration, the nesting must be removed. This is
done by connection the all incoming transitions of A to the first normal node in the nested
diagram. Each transition in the nested diagram that leads to an end state should be connected to
all outgoing transitions of A.
· If a Business Transaction Activity (BTA) consists of the exchange of more than one document,
that BTA must be replace by a sequence of BTA’s, each consisting of the exchange of exactly
one document. If the replace BTA contains pre conditions, these pre conditions are added to the
first BTA in the sequence. If the BTA contains post conditions, these post conditions are added
to the last BTA in the sequence.

 Report

IST 2001-28548 openXchange 30

5 MATCHING OF CONTENT

5.1 Introduction
In order to come to a successful match of business processes, not only structure but also content needs to
be matched. The matching of content consists Several parts. This chapter will start with explaining the
role of documents within ebXML. Once this is clear, the matching of documents is treated. EbXML uses
small building blocks (Core Components and Business Information Entities) to construct the documents.
The matching does not only match syntax, buy also the context in which these blocks are being used. This
chapter ends with treating the problem matching conditions.

5.2 Documents in ebXML

5.2.1 The purpose of document exchange
Within ebXML, a collaboration describes a number of activities in which your company is collaboration
with another company. In this collaboration both companies have to take some actions. When your
company e.g. is going to order something from a supplier, the supplier needs to be informed about this.
This seems trivial but it describes the essence of document exchange, since documents (and signals) are
the only way to communicate between business partners. So, the purpose of document exchange is to
synchronise the view both parties have on the collaboration. Of course, this synchronisation may have
legal consequences so the document has a legal status as well.

There are a lot of initiatives involving electronic document exchange, going way back to the 80’s with
EDI, but also recent XML based messaging standards like hrXML (Human Resource XML [Hrxml]) and
UBL (Universal Business Language [Ubl03]) describe electronic document formats. So, what is so
different about ebXML? One of the mayor drawback of e.g. EDI is that agreements have to be made
with each of the business partners on what document format is going to be used. Once agreed upon, this
format is fixed. Other initiatives, like UBL, describe standard documents (e.g. invoice) that offer little
flexibility. In UBL, users are not able to create their own document definition.

In ebXML, small, standardised building blocks are used to construct documents. If a user needs a building
block that does not yet exist, the user is left free to design his building block and submit it for
standardisation. In the ideal case, branch organisations specify standard building blocks for their specific
industry, and members may use (or alter) these documents. This way, the users have maximum flexibility
and standard components can be defined once and used many times.

There is only one drawback on this flexibility. It could very well happen that two potential business
partners both use different business documents. In such a case it is not always clear whether or not these
companies are able to do business. Every time a company sends a document, that company’s view on the
status of the collaboration has changed. The purpose of sending a document is to update the view the
other company has on the collaboration. So, in order to check whether two companies can do business,
the algorithm must check if the information need of the receiving party is satisfied by the senders
document, for each time a document is exchanged.

 Report

IST 2001-28548 openXchange 31

5.2.2 Core Components and Business Information Entities
Core components (CC’s) and Business Information Entities (BIE’s) are the building blocks used for
creating documents. Essential for all these building blocks is that, besides syntax, they have semantics.
This definition may be a little vague but it will become clear later on. Just to give an illustration: a date
does not have semantics, it just specifies a certain point in time. Your birth date does have semantics, it
means something to you, its more than just a date. An invoice date is also a date, just like a birth date, but
it means something completely different. The difference between these two dates is in the fact that they
have different semantics and therefore comparing an invoice date with a birth date usually makes no
sense.

There are three variants of building blocks: Basic, aggregated and associated. Basic building blocks are
elementary parts that cannot be split up into smaller parts. An example of a basic building block is e.g.
street name. An aggregated building block consists of one or more properties. Each property is either a
basic building block or an associated building block. An association building block is a reference to another
aggregated building block. By using these associated building blocks, relations can be created. Figure 5.1
shows an example to illustrate the relation between these three variants.

-Name (Text)
-Birth Date (Date)

Person
-Street (Text)
-Zip Code (Text)
-Town (Text)

Address

Official Address

Figure 5.1: Core Components

The example in figure 5.1 shows the following core components:

• Person (Aggregated)
• Name (Basic)
• Birth Date (Basic)
• Official Address (Association)
• Address (Aggregated)
• Street (Basic)
• ZIP Code (Basic)
• Town (Basic)

Even though the specifications [Cct02] have a clear definition of the difference between a CC and a BIE,
in practice it is sometimes hard to use this definition. According to the specification, the difference
between a BIE and a CC is that the latter does not have a context and the first does (see also figure 5.2).
A number of context categories are specified, including regional and industry context. A BIE is always
based on a CC and has some context added. Context is specified by using one (or more) context
categories. The concept of using context is a very powerful mechanism that turns out to be the key to the
matching of documents, but more on that later on.

Every basic building block (both BCC, Basic Core Component and BBIE, Basis Business Information
Entity) has a certain data type. This data type specifies the range of possible values valid for that specific
component. Typical data types are integer and string. Every data type is based on a core component type
(CCT). There are 10 CCT’s which are the basic types of ebXML. Examples are amount, text and Date

 Report

IST 2001-28548 openXchange 32

Time. A BCC or BBIE can never be based directly on a CCT, only on a data type. Figure 5.2 describes
the relation between the different parts of ebXML1 used in message assembly.

Core Component Type

Data Type Data Type

Basic Core Component

Aggregated Core
Component

Association
Core

Component

1
*1

*

Basic Business
Information Entity

Aggregated Core
Component

Association
Business

Information Entity

1
* 1

*

Message assembly

Assembly
Component

*

*

*

*

No semantics
Specifies

restrictions on

Further restricts

Defines set
of values of

Defines set
of values of

Is based on

Is based on

Qualifies the
Object Class

of

Adds extra
information

Core Business

Figure 5.2: Semantics and Context (adapted from [ccts])

5.2.3 Use of qualifiers
A Business Information Entity contains a lot of meta data on that particular piece of information it
describes. This information contains a lot of written text like description, all context area’s, etc. For the
standardization process, a worksheet has been created in which all this information can be filled and
submitted to the standardization organisation. All this information would cause a enormous overhead if it
were sent with every business transaction. Obviously, this is not desirable. An example of such a
worksheet is given in appendix C.

The name of each Core Component is unique. If a mechanism would exists in which the name of every
BIE is unique, this name could be send across the wire and still the trading partner could uniquely identify
this BIE. EbXML uses qualifiers to do this. A qualifier identifies the context of the BIE and must be
unique for each BIE based on the same CC. Suppose we need a BIE to identify addresses in the

1 This picture is a corrected version from figure 4-2 in [ccts]

 Report

IST 2001-28548 openXchange 33

Netherlands. A CC address already exists, and some geographical context has to be added. The qualifier
that can be used here is NL, so the name of the BIE will be NL_ Address.

Context parameters like geographical location are hierarchical ordered. This ordering is necessary to
determine whether or not a context is a subset of another context, and is usually described in a ISO
standard, or some other public available list. The format of these hierarchies is not specified in a uniform
way, and therefore these lists cannot be used. In order to come to an automated matching, this hierarchy
has to be embedded in the qualifiers. In case of an address in the Netherlands, this means the BIE should
be named: NL_ EUR_ Address. If this BIE is compared to a EUR_ Address, the subset relation can be
derived from the qualifiers. This embedding of qualifiers is currently not part of the specifications, but
should be added in order to come to an automated matching of documents.

5.2.4 Document assembly
In order to match activities, documents have to be matched. Figure 5.2 shows that documents are
assembled from multiple ABIE’s (Aggregated Business Information Entities) with some additional
assembly information. The specification does not describe how this assembly takes place and what this
extra information is, but refers to an old, outdated document. Core Components can never be used in
document assembly. Currently, discussion is going on within the Core Component working group (part of
the TMG working group of the UN/CEFACT) on how to assemble documents from BIE’s. After
consulting with a member of this group, the assumption is made that at top level, a document is an ABIE.

5.3 Using ebXML in the NUON - Manpower pilot
This section will treat the use of ebXML between NUON and Manpower, one of the pilots projects within
openXchange.

NUON is the largest utility supplier in the Netherlands and uses a lot of temporary workers. Manpower,
as a job agency, is supplier of temporary workers. NUON is large customer of Manpower. A large
number of documents is exchanged between NUON and Manpower every week, including timecards and
invoices. The pilot was intended to create a business case in which could be shown that automated
exchange of these documents could save both companies a lot of money. To give an impression: NUON
has a complete department correcting invoices send by Manpower. To reduce complexity of the pilot, the
business case was reduced to exchange of timecards.

If the pilot points out that automated exchange of the timecards reduces faults, both NUON and
Manpower plan to start using electronic document exchange with other companies as well. For this reason
ebXML was chosen. The use of Core Components and Business Information Entities creates flexibility
towards the future.

The first step in the project was to create a class diagram of the collaboration domain. In this project the
Resource – Event – Agent or REA ontology is used [Car82], but other diagram techniques are allowed as
well. The resulting diagram is shown in appendix D. Using REA diagram, Core Components and Business
Information Entities are discovered. Figure 5.3 shows the resulting Core Components (names are
simplified to improve reading). In this particular example, all Business Information Entities have the same
properties as their corresponding Core Components. This is because of the fact that the Core Components
were newly created according to the specific needs of NUON and Manpower.

monica.martin
Context parameters like geographical location are hierarchical ordered. This ordering is necessary to
determine whether or not a context is a subset of another context, and is usually described in a ISO
standard, or some other public available list. The format of these hierarchies is not specified in a uniform
way, and therefore these lists cannot be used. In order to come to an automated matching, this hierarchy
has to be embedded in the qualifiers. In case of an address in the Netherlands, this means the BIE should
be named: NL_ EUR_ Address. If this BIE is compared to a EUR_ Address, the subset relation can be
derived from the qualifiers. This embedding of qualifiers is currently not part of the specifications, but
should be added in order to come to an automated matching of documents.

 Report

IST 2001-28548 openXchange 34

-Period start
-Period end
-Contract Reference
-Costcenter

Delivery
-Start date
-End date
-Duration
-Product code
-Billable
-Rate
-Surcharge

Delivery Item

-ID

Employee

-ID
-Name

Company

1

-Item

* *

-Worker

1

-Seller

1 *

-Buyer1

*

Figure 5.3: Pilot Core Components

In the context of temporary staffing, the timecard message contains a delivery is represented at top-level.
A delivery is always between two companies, a buyer and a seller. In the context of temporary staffing,
the hiring company (NUON) is the buyer and the job agency (Manpower) is the seller. A delivery consists
of one or more items. In the context of temporary staffing, each delivery item is a period worked by an
employee. Appendix E shows an example Timecard message

If another company wants to create its own Business Information Entity based on an existing Core
Component, it may want to add (and remove) properties to the existing Core Component. A supplier of
nuts and bolts may e.g. want to add the property “weight”, while the property “rate” is of no value to him.
Adding properties to a Core Components does not affect the Business Information Entities that are
already based on the Core Component.

This reusability is one of the key features of ebXML. Within ebXML, a harmonization workgroup is
created to achieve this reusability of Core Components and Business Information Entities. Both Core
Components and Business Information Entities can be submitted to this workgroup using a special
worksheet. Appendix C shows the worksheet containing the Core Components and Business Information
Entities that was submitted to this workgroup as a result of the pilot. Eventually, all Core Components and
Business Information Entities are published in a public registry.

5.4 Matching of documents
Since the assumption is made that a document is an ABIE at top level, the matching of documents is equal
to the matching of two ABIE’s. This matching problem is twofold. The syntax and cardinality of the
ABIE’s have to be matched, as well as the context the ABIE are valid in. In paragraph 5.3.2, the relation
between a CC and a BIE was defined as ‘a BIE is based on a CC’. In order to come to a meaningful
matching, this “based on” will be described in more detail first. After this, the matching of context will be
treated, followed by the matching of syntax. If both documents are exactly the same (same ABIE at top
level), this document can be referenced to from the new formed bpss. If both documents differ, but the
document of the sending party fulfils the information need of the receiving party, the document of the
sender is referenced from the BPSS. To determine whether or not the information need is fulfilled,
documents have to be matched.

5.4.1 Relation between CC and BIE
The relation between a CC and a BIE is said to be a “based on” relation. This relation is defined quite
strict in the specification. For an ABIE, the relations means that an ABIE can only have properties that
are based on properties of the ACC. This means an ABIE has the same or less number of properties as

monica.martin
Since the assumption is made that a document is an ABIE at top level, the matching of documents is equal
to the matching of two ABIE’s. This matching problem is twofold. The syntax and cardinality of the
ABIE’s have to be matched, as well as the context the ABIE are valid in. In paragraph 5.3.2, the relation
between a CC and a BIE was defined as ‘a BIE is based on a CC’. In order to come to a meaningful
matching, this “based on” will be described in more detail first. After this, the matching of context will be
treated, followed by the matching of syntax. If both documents are exactly the same (same ABIE at top
level), this document can be referenced to from the new formed bpss. If both documents differ, but the
document of the sending party fulfils the information need of the receiving party, the document of the
sender is referenced from the BPSS. To determine whether or not the information need is fulfilled,
documents have to be matched.

 Report

IST 2001-28548 openXchange 35

the ACC. For a BBIE, as mentioned before, the relation means that its data type (or set of possible
values) is smaller than that of the BCC it is based on. The based on relation for an ASBIE means that the
ABIE it refers must be based on an ACC the ASCC refers.

The relation between an ABIE and an ACC has some resemblance with the inheritance construction in
the UML, but there are some significant differences. Suppose we want to model three different types of
products: medical, chemical and entertainment products. All products have in common that they have a
product code and a description. The chemical and the medical products have a usage description while the
entertainment products have an age indicator. Finally, the chemical products have chemical composition.
All products have to be one of these three types. There can not be a direct instantiation of “product”. This
simple scenario can be modelled using inheritance in a UML class diagram as shown in figure 5.3 (a). The
class “product” is an abstract class.

-Code
-Description

Product

-Usage description
-Chemical composition

Chemical product

-Usage description

Medical product

-Age indicator

Entertainment product

-Code
-Description
-Usage description
-Chemical composition
-Age indicator

Product

-Code
-Description
-Usage description

Med_ Product

-Code
-Description
-Usage description
-Chemical composition

Chem_ Product

-Code
-Description
-Age indicator

Ent_ Product

Figure 5.3(a): UML style Figure 5.3(b): ebXML style

Figure 5.3(b) shows the way this is modelled in ebXML using a Core Component and Business
Information Entities. The main difference between the ebXML diagram and the UML diagram is that the
ACC has all the properties that exist in the ABIE’s. Two reasons are often heard in favour of using this
approach, instead of the UML way. First of all, in the UML diagram, there is no link between the two
occurrences of “usage description”. Therefor you can never be certain that these two properties are the
same. A second reason is that, if there are a large number of ABIE’s inheriting from an ACC, it will often
happen that none of the properties exist in all ABIE’s so in standard UML, the superclass would have no
properties. The mayor drawback of this construction is that a specification has to be made that defines the
inheritance relation (since it differs from the UML inheritance structure). Another drawback is that
parameters in a ACC will tend to overlap each other if two ABIE’s have properties that are similar but
not equal.

If an ABIE “inherits” a property from an ACC, the data type may be changed (or “overwritten” in UML
terms). In UML the data type can be changed in anything using overwriting. The relation between BCC’s
and BBIE’s is must more stringent. The data type of a BBIE is always a restriction on the data type of
the BCC it is based on, never an extension. If a BCC has a data type integer (1..100), a BIE based on this
BCC may either have the same data type or a more restricted one e.g. integer (10..80). A data type
integer (1..200) is not valid for this particular BCC.

5.4.2 Context matching
At top level, a document is an ABIE and each BIE exists, or is valid, in a specific context. This context
must be described using context categories and gives meta data about the BIE. When a company is going
to describe the documents used in its business process, the context categories can be used to check
whether or not the necessary BIE’s already exists. The concept of context is also used in the matching

monica.martin
Figure 5.3(b) shows the way this is modelled in ebXML using a Core Component and Business
Information Entities. The main difference between the ebXML diagram and the UML diagram is that the
ACC has all the properties that exist in the ABIE’s. Two reasons are often heard in favour of using this
approach, instead of the UML way. First of all, in the UML diagram, there is no link between the two
occurrences of “usage description”. Therefor you can never be certain that these two properties are the
same. A second reason is that, if there are a large number of ABIE’s inheriting from an ACC, it will often
happen that none of the properties exist in all ABIE’s so in standard UML, the superclass would have no
properties. The mayor drawback of this construction is that a specification has to be made that defines the
inheritance relation (since it differs from the UML inheritance structure). Another drawback is that
parameters in a ACC will tend to overlap each other if two ABIE’s have properties that are similar but
not equal.

monica.martin
At top level, a document is an ABIE and each BIE exists, or is valid, in a specific context. This context
must be described using context categories and gives meta data about the BIE. When a company is going
to describe the documents used in its business process, the context categories can be used to check
whether or not the necessary BIE’s already exists.

 Report

IST 2001-28548 openXchange 36

process. When matching documents (or ABIE’s) there must be some relation in context in order to come
to a successful match.

But how is this context going to help in the matching of documents? Suppose somewhere in a business
process, a company specifies to receive some document. This means that this company is receiving an
ABIE that has a specific context, say A. The company that sends the documents also has a context
specified on that particular ABIE, say B. The question is: when do these two contexts match? If both
contexts are equal, A=B, than we could certainly speak of a match since all instantiations of these ABIE’s
are valid in both contexts. But what if the contexts are different? If both contexts are completely different,
the matching should fail since there is no possible instantiation of this ABIE that is valid in both contexts.
In case of an overlap in context, there are instantiation of the ABIE that are valid in both contexts, but not
all instantiations are.

To solve the question on when different contexts can match the problem must be viewed from receiving
party. This party specifies that it needs a particular piece of data in order to continue its business process.
When two documents match, every document instantiation of the sending party must be valid in the
context of the receiving party. This means the context of the document from the sending party must be
part of the context of the receiving party. If context of a particular ABIE is considered as the definition of
the set of all possible instantiations of that ABIE, the set of the sending party must be a subset of the set
of the receiving party (see figure 5.4)

Receiver Sender

Figure 5.4: Context matching

Only when this condition is valid, a correct match should be given. The agreement file (or ABIE) should
have the same context as the ABIE that is being send.

5.4.3 Matching syntax
Besides the context of all Business Information Entities, also the syntax has to be matched. The syntax of
an ABIE defines the cardinality of its properties. All mandatory properties of an ABIE should at least be
present (mandatory or optional) at the other ABIE. If a property is mandatory in one of the ABIE’s, it
should be mandatory in the agreement document. If a property is optional in one of both and mandatory in
the other, it must also be mandatory in the agreement ABIE. All possible combinations are described in
table 5.1.

Sender

 M O A
M M M N!
O M O A

R
ec

ei
v er

A N! A -
Table 5.1: Truth table context matching

On BBIE level, the data types of both BBIE’s need to be matched. This matching is similar to that of
context matching. If the set of possible values of the sender is a subset of the set of possible values of the

M: Mandatory
O: Optional
A: Absent
N! No Match!
-: Will not occur

monica.martin
To solve the question on when different contexts can match the problem must be viewed from receiving
party. This party specifies that it needs a particular piece of data in order to continue its business process.

 Report

IST 2001-28548 openXchange 37

receiver, the match should resolve to true. If not, human involvement is required and agreements have to
be made on if and how the data type should be translated.

5.5 Matching of conditions
EbXML offers the possibility to specify conditions on activities. These conditions include pre and post
conditions, “begins when” and “ends when”. Although matching conditions is essential for fully automated
matching, it is omitted from this assignment for the following reasons:

• The specifications are unclear about the use of these conditions. Sometimes they are used for
effect definition (if the pre condition is valid when the activity starts, then the post conditions will
also be valid), and sometimes they are used to influence the choreography (if a precondition is not
valid, the activity will not start).

• If pre and post conditions are to be matched, they have to be interpreted by a computer. Although

ebXML recommends the use of OCL, users may chose any language to specify their conditions.
This makes it nearly impossible to match these conditions in an automated way.

• Even if the intended use is clear and OCL is required, the matching of conditions is extremely

difficult. The most obvious way for matching is combining expressions, e.g. (x<5) combined with
(y> 7) results in (x<5 AND y>7). If conditions are about the same variable, the expression has to
be interpreted and rewritten, e.g. (x>3) combined with (x<7) results in (7<x<3). The matching
algorithm should detect if the resulting expression can never evaluate to true, e.g. (x<3 AND
x>7). If two different expressions restrict the same variable, this can still be done but if they
restrict different parameters that are somewhat related, it is nearly impossible to compare these in
an automated way.

For the time being, conditions will be ignored in the matching process. Until the mentioned problems are
solved, human involvement will be required when matching conditions.

monica.martin
EbXML offers the possibility to specify conditions on activities. These conditions include pre and post
conditions, “begins when” and “ends when”. Although matching conditions is essential for fully automated
matching, it is omitted from this assignment for the following reasons:
· The specifications are unclear about the use of these conditions. Sometimes they are used for
effect definition (if the pre condition is valid when the activity starts, then the post conditions will
also be valid), and sometimes they are used to influence the choreography (if a precondition is not
valid, the activity will not start).
· If pre and post conditions are to be matched, they have to be interpreted by a computer. Although
ebXML recommends the use of OCL, users may chose any language to specify their conditions.
This makes it nearly impossible to match these conditions in an automated way.
· Even if the intended use is clear and OCL is required, the matching of conditions is extremely
difficult. The most obvious way for matching is combining expressions, e.g. (x<5) combined with
(y> 7) results in (x<5 AND y>7). If conditions are about the same variable, the expression has to
be interpreted and rewritten, e.g. (x>3) combined with (x<7) results in (7<x<3). The matching
algorithm should detect if the resulting expression can never evaluate to true, e.g. (x<3 AND
x>7). If two different expressions restrict the same variable, this can still be done but if they
restrict different parameters that are somewhat related, it is nearly impossible to compare these in
an automated way.

 Report

IST 2001-28548 openXchange 38

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions
Since the late 80’s, EDI has proven the value of electronic business. Since EDI is not affordable by a
majority of the companies, a lot of research has been done on new electronic business standards that rely
on XML and the Internet. EbXML distinguishes itself from other standards like HrXML and UBL by
providing an entire framework for business to business ecommerce, rather than just a messaging standard.

Besides offering more functionality than other standards, ebXML tries to offer a standard that is very
flexible towards its users. The downside to this increase in functionality and flexibility is an increase in
complexity. Not only complex in the way that there are about 25 specifications to describe the entire
standard, but also the content of some of the specifications is very complex. Besides complexity there are
still a significant number of errors, inconsistencies in the specifications. Moreover, sometimes the content
of the a specification can be interpreted in multiple ways.

More and more companies start implementing and using ebXML, but because of reason mentioned earlier,
only a part of the framework is used. Most companies only use the messaging service. A few companies
use the BPSS, but the Core Components are almost never used. This of course is too bad, since both
BPSS and Core Components have an added value compared to other e-business standards.

Within the ebXML working groups that create the specifications, there are roughly two visions on how to
do business in an electronic way. One vision, often shared by people that have an extensive EDI
background, is document oriented. In this vision, two companies are strictly separated and documents are
the fundaments of doing business. In ebXML, documents are no more than electronic variants of paper
business documents like order, invoice, etc. The other vision is much more object oriented. In this vision,
the collaboration between two companies can be seen as an object model in which both companies
participate. Both companies have a view on the collaboration and documents are used to synchronize the
view both companies have on the collaboration. Both visions have to be brought together in order to create
clear and correct specifications.

In this research, a begin has been made on automated matching of business processes. In order to use the
BPSS on a large scale, automated matching is necessary. Although the first results are promising,
additional research is necessary to come to a system that can match business processes in a fully
automated way. Especially the matching of pre and post conditions is crucial for process matching.

6.2 Recommendations for future work
In order for ebXML to become the new standard for doing electronic business, the specification must be
accessible for a larger group of people. Currently, a lot of work is done in order to remove the errors and
inconsistencies. Once this is done, efforts should be made to make the specification easier to read.

The BPSS specification has a unclear semantics on certain concepts and therefore it can sometimes be
interpreted in several ways. In ebXML transition to another activity is sometimes forced while that activity
is not finished yet. According to the UML activity diagram specifications, this is not allowed. Another
issue is the use of pre and post conditions. The specification is unclear about the use of conditions and this
should be clarified.

monica.martin
In this research, a begin has been made on automated matching of business processes. In order to use the
BPSS on a large scale, automated matching is necessary. Although the first results are promising,
additional research is necessary to come to a system that can match business processes in a fully
automated way. Especially the matching of pre and post conditions is crucial for process matching.

monica.martin
The BPSS specification has a unclear semantics on certain concepts and therefore it can sometimes be
interpreted in several ways. In ebXML transition to another activity is sometimes forced while that activity
is not finished yet. According to the UML activity diagram specifications, this is not allowed. Another
issue is the use of pre and post conditions. The specification is unclear about the use of conditions and this
should be clarified.

 Report

IST 2001-28548 openXchange 39

The Core Components have reached the point in which the first set of standardised Core Components and
Business Information Entities are to be created from submitted proposals. For the purpose of matching, it
is very important to detect a hierarchy in context values. Qualifiers should be used to specify this
hierarchy, otherwise matching of Business Information Entities will become unnecessary complex.

Further research on the matching of business processes is needed. In particular the matching of pre and
post conditions is crucial to come to a successful matching algorithm, but this is also a difficult task. The
BPSS team should force the use of one specific language to specify conditions (preferably OCL) because
comparing conditions of different languages is nearly impossible. Besides matching of conditions, also
parameters on activities (like

Currently research is done on the matching of two CPP’s for automated generation of a CPA. The
matching of business processes should become a part of the matching of CPP’s since both CPP and CPA
reference business processes.

monica.martin
Further research on the matching of business processes is needed. In particular the matching of pre and
post conditions is crucial to come to a successful matching algorithm, but this is also a difficult task. The
BPSS team should force the use of one specific language to specify conditions (preferably OCL) because
comparing conditions of different languages is nearly impossible. Besides matching of conditions, also
parameters on activities (like

 Report

IST 2001-28548 openXchange 40

REFERENCES
[Blo92] Blommestein, F.B.E. van, Barcodes & EDI, Stenfert kroese uitgevers, 1992, 90-207-2251-4

[Bps02] EbXML business process specification schema version 1.05, July 2002

[Car82] McCarthy, W.E. The REA Accounting Model: A Generalized Framework for Accounting

Systems in a Shared Data Environment. In The Accounting Review, pages 554-78, July
1982

[Cct02] EbXML Core Components Technical Specification version 1.90, December 2002

[Ebx02] www.ebxml.org, ebXML project homepage, February 2003

[Esh02] Eshuis, R, Semantics and verification of UML activity diagrams for workflow modelling,

2002, 90-365-1820-2

[Hrxml] www.hr-xml.org, homepage of HR-XML consortium, August 2003

[Pra91] Pratt, V.R, Modeling concurrency with geometry. In Proc. 18th Ann. ACM Symposium on

Principles of Programming Languages, pages 311-322, January 1991.

[Ram99] Raman, D, XML/EDI: Cyber Assisted Business in Practice, 1999, 90-805233-2-1

[Sud97] Sudkamp, T.A, Languages and Machines: an introduction to the theory of computer

science - second edition, Addison Wesley Longman Inc, 1997, 0-201-82136-2

[Ubl03] http://www.oasis-open.org/committees/ubl, homepage of UBL Technical Committee, August

2003

[Whi00] Enabling electronic business with ebXML, December 2002, available at:

http://www.ebxml.org/white_papers/whitepaper.htm

 Report

IST 2001-28548 openXchange 41

APPENDIX A PROJECT DETAILS

This research is done as a thesis assignment part of the programme “technische informatica” (technical
computer science) at the University of Twente. It will be conducted at TNO (Netherlands Organization
for Applied Scientific Research), at the group E-Business in Enschede.

Description of TNO E-business

This group is part of the TNO Physics and Electronics Laboratory institute (TNO-FEL), division
Telecommunication and Security. TNO provides a link between fundamental research as a source of
knowledge and practical application as the use of this knowledge in real life situations like commercial
activities. The core activities of TNO are:
• development of knowledge;
• utilisation of knowledge for clients in industry and government;
• technology transfer, especially to small and medium-sized enterprises (SME's);

TNO-FEL is the largest independent ICT-lab of the Netherlands. TNO E-Business is a relatively young
part of this institute and is situated in Enschede, near the University of Twente and BSC (Business and
Science Park). The products of TNO E-Business can be divided in three groups: development, analysis,
and knowledge transfer. Under the authority of and in co-operation with companies, governments, and
other knowledge bodies, TNO E-Business develops:
• architectures and concepts for innovative e-business applications on the levels of business processes,

information, components and systems;
• architectures for ICT-support of innovative e-business models, covering the same levels - new

technologies for e-business;
• demonstrators and prototypes of innovative e-business applications;
• applications standards for e-business, whether or not within certain fields or application areas.

Furthermore TNO E-Business offers:
• requirements analysis for e-business applications;
• impact analysis of e-business applications and technologies;
• counterchecks, second opinions and verification of e-business applications, specifications and

architectures.

Besides, TNO E-Business occasionally offers knowledge transfer on a customized basis, by means of
seminars, courses and the like.

Project supervision
Supervision will be done by ir. Erwin Folmer of TNO E-Business and ir. Fred van Blommestein of
Berenschot. The supervision of the University of Twente will be performed by the group Information
Systems (IS) of the Faculty of Computer Science, in the persons of prof.dr. Roel Wieringa and dr. Pascal
van Eck.

Research plan

 Report

IST 2001-28548 openXchange 42

In order to answer the research questions, and come to a working algorithm, the following activities have
to be done:

• A literature search on activity diagrams and ebXML
• Interviewing experts on activity diagrams and ebXML
• Design the algorithm
• Implement the algorithm
• Test the algorithm

The following gantt chart will indicate when the activities will take place.

Project deliverables

In addition to the thesis assignment rapport and the colloquium, some other deliverables can be identified.
All of the deliverables are shown in following table:

Project deliverable Description
Report Thesis assignment report
Colloquium Academic lecture and discussion
Prototype An working implementation of the algorithm
Article Writing about encountered problems en found solution

Table A1: Project deliverables

ID Task Name Start Finish Duration
Dec 2002 Jan 2003 Feb 2003 Mar 2003 Apr 2003 May 2003 Jun 2003

1/12 8/12 15/12 22/12 29/12 5/1 12/1 19/1 26/1 2/2 9/2 16/2 23/2 2/3 9/3 16/3 23/3 30/3 6/4 13/4 20/4 27/4 4/5 11/5 18/5 25/5 1/6 8/6 15/6 22/6

1 15d12/20/200212/2/2002Preparation

2 18d1/10/200312/18/2002Project plan

3 20d1/31/20031/6/2003Library search on activity diagrams / bpss

4 20d2/14/20031/20/2003Design sollution for act. diagram

5 60d5/9/20032/17/2003Design solution for bpss

6 24d5/29/20034/28/2003Implementing solution (prototype)

7 20d6/20/20035/26/2003Writing article

8 20d7/1/20036/4/2003Finishing of report and colloquium
 Joint meeting

Figure A1: Time planning

R
eport

 IST 2001-28548 openX

change

43
 A

P
P

E
N

D
IX

 B
 E

X
A

M
PL

E
 O

F SIM
U

L
A

T
IO

N
The follow

ing pictures show
s a graphical representation of the sim

ulation relation betw
een the graphs in

figure 4.9 and figure 4.10

Start

D

CD

B

A

[a]

[b]

C

CE

E

F

End

[d][c]

[d]
[e]

[e] [c]

[f]

[e]

[e]

[c]

Start

FE

CE

B

A

[a]

F

C

E

D

End

[e][c]

[f] [c]

[e] [f]

[b]

[d]

[e]

Start

E

CE

B

A

[a]

F

C

D

End

[e][c]

[c]

[f]

[b]

[d]

[e]

STS C’

STS A’ STS B’

 Report

IST 2001-28548 openXchange 44

APPENDIX C HARMONISATION WORKSHEET

 Report

IST 2001-28548 openXchange 45

APPENDIX D NUON – MANPOWER REA MODEL

R
eport

 IST 2001-28548 openX

change

46
 A

P
P

E
N

D
IX

 E
 E

X
A

M
PL

E
 T

IM
E

C
A

R
D

 M
E

SSA
G

E

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 3 U (http://www.xmlspy.com) by Dennis Krukkert (TNO Fysisch en Elektronisch Laboratorium) -->
<!--Sample XML file generated by XMLSPY v5 rel. 3 U (http://www.xmlspy.com)-->
<Timesheet xmlns:ccts="urn:oasis:names:tc:ubl:CoreComponentParameters:1.0:0.70" xmlns:oxcc="urn:openXchange:CoreComponents:1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="TimeSheet.xsd">
 <TemporaryStaffing_Delivery.PeriodStart.DateTime>2003-03-01T08:00:00</TemporaryStaffing_Delivery.PeriodStart.DateTime>
 <TemporaryStaffing_Delivery.PeriodEnd.DateTime>2003-03-01T17:00:00</TemporaryStaffing_Delivery.PeriodEnd.DateTime>
 <TemporaryStaffing_Delivery.ContractReference.Identifier>85658945</TemporaryStaffing_Delivery.ContractReference.Identifier>
 <oxcc:TemporaryStaffingActual_DeliveryItem.Details>
 <TemporaryStaffingActual_DeliveryItem.StartDateTime.DateTime>2003-03-
01T08:00:00</TemporaryStaffingActual_DeliveryItem.StartDateTime.DateTime>
 <TemporaryStaffingActual_DeliveryItem.EndDateTime.DateTime>2003-03-
01T17:00:00</TemporaryStaffingActual_DeliveryItem.EndDateTime.DateTime>
 <TemporaryStaffingActual_DeliveryItem.Duration.Measure
unitCode="Hours">8</TemporaryStaffingActual_DeliveryItem.Duration.Measure>
 <TemporaryStaffingActual_DeliveryItem.ProductCode.Code>Regular</TemporaryStaffingActual_DeliveryItem.ProductCode.Code>
 <TemporaryStaffingActual_DeliveryItem.Billable.Indicator>true</TemporaryStaffingActual_DeliveryItem.Billable.Indicator>
 <TemporaryStaffingActual_DeliveryItem.Rate.Amount currencyID="EUR">30</TemporaryStaffingActual_DeliveryItem.Rate.Amount>
 <oxcc:Employee.Details>
 <Employee.Id.Numeric>100</Employee.Id.Numeric>
 </oxcc:Employee.Details>
 </oxcc:TemporaryStaffingActual_DeliveryItem.Details>
 <oxcc:TemporaryStaffingActual_DeliveryItem.Details>
 <TemporaryStaffingActual_DeliveryItem.StartDateTime.DateTime>2003-03-
15T08:00:00</TemporaryStaffingActual_DeliveryItem.StartDateTime.DateTime>
 <TemporaryStaffingActual_DeliveryItem.EndDateTime.DateTime>2003-03-
15T17:00:00</TemporaryStaffingActual_DeliveryItem.EndDateTime.DateTime>
 <TemporaryStaffingActual_DeliveryItem.Duration.Measure
unitCode="hours">8</TemporaryStaffingActual_DeliveryItem.Duration.Measure>
 <TemporaryStaffingActual_DeliveryItem.ProductCode.Code>Sickness</TemporaryStaffingActual_DeliveryItem.ProductCode.Code>
 <TemporaryStaffingActual_DeliveryItem.Billable.Indicator>true</TemporaryStaffingActual_DeliveryItem.Billable.Indicator>
 <TemporaryStaffingActual_DeliveryItem.Rate.Amount currencyID="EUR">30</TemporaryStaffingActual_DeliveryItem.Rate.Amount>
 <oxcc:Employee.Details>
 <Employee.Id.Numeric>100</Employee.Id.Numeric>
 </oxcc:Employee.Details>
 </oxcc:TemporaryStaffingActual_DeliveryItem.Details>
 <oxcc:Buyer_Company.Details>
 <Buyer_Company.Id.Numeric>100</Buyer_Company.Id.Numeric>
 <Buyer_Company.Name.Text>Nuon</Buyer_Company.Name.Text>
 </oxcc:Buyer_Company.Details>
 <oxcc:Seller_Company.Details>
 <Seller_Company.Id.Numeric>200</Seller_Company.Id.Numeric>
 <Seller_Company.Name.Text>Manpower</Seller_Company.Name.Text>
 </oxcc:Seller_Company.Details>

