
An Introduction to the Web Services Policy Language (WSPL)

Anne H. Anderson
Sun Microsystems Laboratories

Anne.Anderson@sun.com

Abstract

The Web Services Policy Language (WSPL) is
suitable for specifying a wide range of policies,
including authorization, quality-of-service, quality-of-
protection, reliable messaging, privacy, and
application-specific service options. WSPL is of
particular interest in several respects. It supports
merging two policies, resulting in a single policy that
satisfies the requirements of both, assuming such a
policy exists. Policies can be based on comparisons
other than equality, allowing policies to depend on
fine-grained attributes such as time of day, cost, or
network subnet address. By using standard data types
and functions for expressing policy parameters, a
standard policy engine can support any policy. The
syntax is a strict subset of the OASIS eXtensible
Access Control Markup Language (XACML)
Standard. WSPL has been implemented, and is under
consideration as a standard policy language for use
with web services.

1. Introduction

A web service has various aspects and features that
can be controlled or described using policy rules.
Examples of such aspects or features include authenti-
cation, authorization, quality-of-service, quality-of-pro-
tection, reliable messaging, privacy, and application-
specific service options. Interoperability, usability, and
reliability of web services will benefit from use of a
common policy language for expressing these types of
policies. The Web Services Policy Language (WSPL)
[1] is an excellent candidate for accomplishing this goal.

WSPL is of particular interest in several respects.
First, it allows policy negotiation by supporting the
merging of policies from two sources. The result is a
single policy that represents the intersection of the two
source policies, assuming such a policy exists. Second,
policies can be based on policy parameter comparisons

other than simple equality matching. This allows
policies to depend on fine-grained parameters such as
time of day, cost, or network subnet address. Third, by
using a set of standard data types and functions for
expressing policy parameters, a standard implementa-
tion of the language can support any policy.

The syntax of WSPL is a strict subset of the OASIS
eXtensible Access Control Markup Language
(XACML) Standard [2]. WSPL has been implemented,
and is under consideration as a standard policy language
for web services.

WSPL was developed based on use cases and re-
quirements [3] that were collected and reviewed in a
public forum.

The examples in this paper are shown in a general
form rather than in the XML [4] syntax actually used by
WSPL. Logically, the examples are equivalent to the
corresponding policy expressed in the exact XML syn-
tax, but the general form should be much easier for the
typical reader to understand.

2. WSPL overview

A WSPL policy is a sequence of one or more rules,
where each rule represents an acceptable choice for
satisfying the policy. Rules are listed in order of
preference, with the most preferred choice listed first.

A WSPL rule is a sequence of predicates. Each
predicate places a constraint on the value of an attribute.
The constraint operators are: equals, greater than,
greater than or equal to, less than, less than or equal to,
set-equals, and subset. A predicate may specify a
constraint based on a literal value, as in “A > 3”, or it
may place a constraint based on the value of another
attribute, as in “A > B”. All of the predicates in a rule
must be satisfied in order for the rule to be satisfied.

Each policy also states the target aspect of the web
service that is covered by that policy.

An example WSPL policy, expressed in a general
form, is shown in Figure 1.

To appear in 5th IEEE International Workshop on Policies for Distributed Systems and Networks, Yorktown Heights,
New York, 7-9 June 2004; Copyright © 2004 Sun Microsystems, Inc. and The Institute of Electrical and Electronic
Engineers, Inc. All rights reserved.

 Policy (Aspect = “Quality of Protection”) {
 Rule {
 Signature-Algorithm = “RSA-SHA1”,
 Key-Length >= 2048 }
 Rule {
 Signature-Algorithm = “RSA-SHA1”,
 Key-Length >= 1024,
 Source-Domain = “EXAMPLE.COM” }
 Rule {
 Source-Domain = “MY.EXAMPLE.COM” }
 }

 Figure 1. QoP policy example

The target aspect of this policy is the web service's
quality of protection (QoP) requirements and offerings.
There are three rules, indicating that there are three
choices for satisfying the QoP requirements of this web
service. The first rule, the most preferred choice, says
that the Signature-Algorithm attribute must have the
value “RSA-SHA1” and the Key-Length attribute value
must be at least 2048 (bits). The second rule states that,
if the Source-Domain attribute is “EXAMPLE.COM”
(presumably a somewhat trusted domain), then the
Signature-Algorithm must still be “RSA-SHA1”, but
the Key-Length may be shorter, but at least 1024 (bits).
The third rule states that, where the Source-Domain
attribute is “MY.EXAMPLE.COM” (presumably the
service's local domain), digital signatures are not
required at all.

A policy may state offerings or options rather than
requirements. An example is shown in Figure 2. This
policy might be published by a service that is selling
access to a database.

 Policy (Aspect = “Service Levels”) {
 Rule {
 Member-level = “Gold”,
 Transaction-Fee = 5 }
 Rule {
 Member-level = “Gold”,
 Time >= 9pm,
 Time <= 6am }
 Rule {
 Member-level = “Tin”,
 Transaction-Fee = 25 }
 }

Figure 2. Service options policy example

This policy specifies that a “Gold” level member
pays a fee of 5 (cents) per transaction normally, but be-
tween the hours of 9pm and 6am, transactions are free.
A “Tin” level member pays a fee of 25 (cents) per trans-
action.

The policies for all aspects of a web service are col-
lected into a “PolicySet”. A PolicySet, like a Policy,
has a target, but in this case the target specifies the ser-
vice identifier and the service port type. In the case
where a service needs different policies for different op-
erations or messages supported by the service, there may
be a second level of PolicySets nested inside the top,
service level, PolicySet. The target for each second
level PolicySet specifies the operation, and optionally
the message, to which the policies within the PolicySet
apply.

The policy model for a web service policy is shown
in Figure 3.

PolicySet (target=<port type>) {
 PolicySet (target=<operation/message>) {
 Policy (target=<aspect>) {
 Rule {
 <predicate>, ...
 } ...
 } ...
 } ...
 Policy (target=<aspect>) {
 Rule {
 <predicate>, ...
 } ...
 } ...
}

 Figure 3: WSPL policy model

There may be any number of operation/message
PolicySets, Policies, Rules, and predicates. The use of
the operation/message PolicySet level is optional.
Where they are used, the Policies within an opera-
tion/message PolicySet all apply to the operation and
message specified in the target of that PolicySet.

3. Policy negotiation

One of WSPL's strengths as a web service policy
language is its ability to support the negotiation of
mutually acceptable policies between two services or
between a service consumer and the service itself. For
example, a user may wish to use a service. Both the
user and the service may have policies for the Quality of
Protection parameters they are able to support. In order

To appear in 5th IEEE International Workshop on Policies for Distributed Systems and Networks, Yorktown Heights,
New York, 7-9 June 2004; Copyright © 2004 Sun Microsystems, Inc. and The Institute of Electrical and Electronic
Engineers, Inc. All rights reserved.

for the user to interact successfully with the service, the
user's application must determine whether it can satisfy
the provider's requirements, and, if there are multiple
acceptable choices, which one is preferred by the user.
This negotiation is accomplished by having the user's
application merge the user's policy with the policy of
the service.

In order to merge two WSPL policies, several steps
are performed. First, the targets of the two policies
must match. If they do not match, then the two policies
are not compatible. Second, rules from the two policies
are paired in all possible combinations, sorted first by
the preference order of the party doing the merging, and
second by the preference order of the other party (other
algorithms could be used). Third, each rule pairing is
combined to produce a single new rule. If the two rules
in the pairing can not be combined, then the pairing is
eliminated. The resulting set of rules represents the
combined policy. If this set is empty, then the two
policies are not compatible.

The step of combining a rule pairing is done by com-
bining the predicates in the two rules. Predicates that
constrain the same attribute must be combined in such a
way that the resulting predicate represents the
intersection of the original predicates. As an example, a
rule stating “A >= 200” would be combined with a rule
stating “A >= 300” to produce a result of “A >= 300”.
If predicates that constrain the same attribute from the
two rules in the pair can not be combined, then the rule
pairing is incompatible and is eliminated. WSPL speci-
fies in detail how to combine all standard predicate
types.

 Once two policies have been merged, service-
defined descriptions of attributes are used to select one
rule from the merged policy and to apply its attributes
appropriately. For example, one rule might specify
“time of day” attribute values that are not compatible
with the time at which this particular service request is
being made, so that rule would be eliminated from
consideration. Another rule might specify a “role” attri-
bute value that this particular requester is unable to
supply, so that rule would also be eliminated. Once
inapplicable rules have been eliminated, the first
remaining rule is typically selected. This rule might
specify a “hash algorithm” attribute value to be used as
input to the digital signature operation applied to the
service request message. A “member status” attribute
value might be obtained from a trusted authority as an
attribute certificate and supplied as part of the service
request. The specification and application of such
attribute descriptions is outside the scope of WSPL.

In cases where all policies in a service's PolicySet are
to be negotiated, all policies must be merged. In this

case, the merging algorithm will first attempt to pair up
operator/message PolicySets and Policies by their
targets. If both PolicySets do not contain
operator/message PolicySets and Policies that have
matching Target values, then the two PolicySets are not
compatible. In other cases, such as where the user's
application is already coordinated with some aspects of
a service's policy, it will be necessary to merge only
specific policies. The choice of which policies must be
merged depends on the service definition.

Policy negotiation may be either static or dynamic.
That is, it may be done once for two parties that have
static policies, with the result re-used for each commun-
ication between them. Alternatively, it may be done at
runtime, based on policies that may represent dynamic
constraints relevant to a particular service request.
Specification of when policy negotiation must occur is
outside the scope of WSP, and would be defined by a
particular web service.

4. WSPL policy attributes

Very simple policy languages may support only
named attributes that are “true” if present, and “false” if
missing. WSPL uses XACML attributes, which are
always name-value pairs. This allows the use of fine-
grained attributes such as cost or time-of-day, where it
would not be feasible to specify a policy for each
possible value of the attribute, but where it is quite
feasible to specify that an attribute must be greater than
or equal to a certain value. An attribute that merely
needs to be present, but has no other value, is defined as
a named attribute with a Boolean value “true”.

The definition of the attributes used by a particular
service is outside the scope of WSPL. The semantic
description of the attribute, while important in creating
services and applications, is irrelevant to the WSPL
policy and its evaluation. WSPL also does not specify
how a policy user obtains values for attributes.

Each attribute must have a name and a data type.
The name must be chosen by the service designer in
such a way that it will not conflict with names of other
attributes that may have different semantics (URLs can
be used as attribute names in order to achieve such
uniqueness).

Attributes may also be specified by using XPath [5]
expressions. In this case, the policy user would be
expected to present an XML instance containing values
for the attributes when interacting with the service.

WSPL supports the rich set of data types used in
XACML: string, integer, floating point number
(double), date, time, Boolean, URI, hexBinary, base64-

To appear in 5th IEEE International Workshop on Policies for Distributed Systems and Networks, Yorktown Heights,
New York, 7-9 June 2004; Copyright © 2004 Sun Microsystems, Inc. and The Institute of Electrical and Electronic
Engineers, Inc. All rights reserved.

Binary, dayTimeDuration, yearMonthDuration, x500-
Name, and rfc822Name. These data types are all taken
from the XML Schema, with the exception of the two
duration types taken from XQuery Operators [6], and
the two name types taken from XACML. Each data
type has a corresponding set of supported functions:
equal, greater-than, greater-than-or-equal, less-than,
less-than-or-equal, set-equals, and subset. This set of
data types and functions is powerful enough to allow
the expression of rich policies, yet is constrained
enough to allow a precise definition of the rules for
merging predicates in policies.

5. Design decisions and conclusions

Any language design must make a number of
decisions about the underlying data and use models and
also about the level of complexity to be supported. This
section discusses some of the particular choices that
were made in designing WSPL.

First of all, the WSPL language was developed to sa-
tisfy a set of use cases and requirements that were col-
lected, reviewed, and published in an open, public
forum. The functionality of the language was tailored
to satisfy actual use case requirements.

Rather than starting from scratch, the WSPL lan-
guage was defined as a strict subset of the OASIS eX-
tensible Access Control Markup Language (XACML)
Standard. XACML has been used in a number of
projects to date, is available in an open source imple-
mentation, has undergone a formal semantic analysis,
and is an open standard. By using XACML as the base,
WSPL inherits the considerable design work, public
scrutiny, and implementation experience that XACML
has undergone. Most of the design decisions involved
in WSPL were actually made as part of the devel-
opment of XACML.

One major design decision inherited from XACML is
the use of name-value pairs and standard primitive data
types for attributes, rather than depending on XML
schema extensions. Using attributes defined via XML
schema extensions would make merging policies
difficult or impossible except where the values of the
attributes are exactly equal, since there can be no stan-
dard merge algorithms. Use of non-standard algorithms
would mean that the policies could not be supported
using a base standard policy engine. Note that XACML
supports extensibility of data types and functions,
although the rich built-in set minimizes the need for
such extensions.

Logically, a WSPL Policy is an “or” of “and” predi-
cates, so is in Disjunctive Normal Form. This form

makes it feasible to support the policy negotiation
feature of the WSPL language. XACML supports full
trees of logical expressions, which allows more compact
policies. The value of being able to merge policies out-
weighed the compactness factor, especially considering
that most web services will probably use fairly simple
policies in their service definitions. Services may use
more complex policies internally, and here the full
XACML syntax may be used.

The WSPL specification includes bindings to WSDL
1.1 [7], WSDL 1.2, and to SOAP 1.1 [8]. These
bindings may need to change as other standards evolve.
The core WSPL language would be valuable as part of a
number of protocols and standards, and should be
considered whenever a “policy” component is being
defined.

6. Acknowledgments

Tim Moses (Entrust) conceived of WSPL as a subset
of the XACML syntax, and has continued to be the
driving force in producing the definition of WSPL.
Danfeng Yao (Brown University) implemented WSPL
and provided valuable feedback on the language. Seth
Proctor (Sun Microsystems Laboratories) and other
members of the OASIS XACML TC contributed to the
definition of the syntax and semantics of the language.

7. References

[1] T. Moses, ed., “XACML profile for Web-services”,
http://www.oasis-open.org/committees/download.php/3661/
draft-xacml-wspl-04.pdf, Working draft 04, 29 Sept 2003
(also known as “Web Services Policy Language (WSPL)”).

[2] S. Godik, T. Moses, eds., “OASIS eXtensible Access
Control Markup Language (XACML) Version 1.1”, OASIS
Committee Specification, http://www.oasis-open.org/
committees/ download.php/4103/ cs -xacml-specification-
1.1.doc, 24 July 2003.

[3]T. Moses, ed., “Web-services policy language use-cases
and requirements”, http://www.oasis-open.org/committees/
download.php/1608/wd-xacml-wspl-use-cases-04.pdf

[4] “XML Schema Part 2: Datatypes”, W3C
Recommendation, http://www.w3.org/TR/ xmlschema -2/ , 2
May 2001.

[5] “XML Path Language (XPath), Version 1.0”, W3C
Recommendation, http://www.w3.org/TR/ xpath , 16 Novem-
ber 1999.

To appear in 5th IEEE International Workshop on Policies for Distributed Systems and Networks, Yorktown Heights,
New York, 7-9 June 2004; Copyright © 2004 Sun Microsystems, Inc. and The Institute of Electrical and Electronic
Engineers, Inc. All rights reserved.

[6] “XQuery 1.0 and XPath 2.0 Functions and Operators”,
W3C Working Draft 2002,
http://www.w3.org/TR/2002/WD- xquery -operators-
20020816, 16 August 2002.

[7] “WSDL Services Description Language (WSDL) 1.1”,
W3C Note, http://www.w3.org/TR /wsdl , 15 March 2001.

[8] “Simple Object Access Protocol (SOAP 1.1”, W3C Note,
http://www.w3.org/TR/SOAP, 8 May 2000.

To appear in 5th IEEE International Workshop on Policies for Distributed Systems and Networks, Yorktown Heights,
New York, 7-9 June 2004; Copyright © 2004 Sun Microsystems, Inc. and The Institute of Electrical and Electronic
Engineers, Inc. All rights reserved.

