OASIS ebXML CPP/A Technical Committee

09/23/2002

[image: image13.wmf]

Collaboration-Protocol Profile and Agreement Specification

Version 2.1
OASIS ebXML Collaboration Protocol Profile and Agreement Technical Committee
April, 2005
1 Status of this Document

This document specifies an ebXML SPECIFICATION for the eBusiness community.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version:

http://www.oasis-open.org/committees/ebxml-cppa/documents/ebCPP-2_1.pdf
Errata for this version:

http://www.oasis-open.org/committees/ebxml-cppa/documents/ebCPP-2_1-Errata.shtml
Previous version:

http://www.oasis-open.org/committees/ebxml-cppa/documents/ebCPP-2_0.pdf

2 Technical Committee Members

Neelakantan Kartha
Sterling Commerce

Monica Martin Sun Microsystems

Dale Moberg

Cyclone Commerce

Marty Sachs

IBM
Sacha Schlegel Cyclone Commerce
Pete Wenzel

SeeBeyond

3 ebXML Participants

The authors wish to recognize the following for their significant contributions and participation in developing previous versions of the Collaboration Protocol Profile and Agreement Specification.
Selim Aissi

Intel

David Burdett

CommerceOne

Arvola Chan

TIBCO

Tim Chiou

United World Chinese Commercial Bank
James Bryce Clark
Individual Member

David Fischer

Drummond Group

Tony Fletcher

Individual Member

Brian Hayes

Collaborative Domain

Scott Hinkelman
IBM

Maryann Hondo
IBM

Sam Hunting

ECOM XML

John Ibbotson

IBM

Kenji Itoh

JASTPRO
Ravi Kacker

eXcelon Corp.
Neelakantan Kartha
Sterling Commerce
Thomas Limanek
iPlanet

Daniel Ling

VCHEQ
Kevin Liu

SAP
Henry Lowe

OMG
Pallavi Malu

Intel

Dale Moberg

Cyclone Commerce

Himagiri Mukkamala
Sybase

Duane Nickull

XML Global Technologies
Peter Ogden

Cyclone Commerce

Stefano Pogliani,
Sun

Rebecca Reed

Mercator

Karsten Riemer
Sun
Marty Sachs

IBM

Yukinori Saito

Individual Member

David Smiley

Mercator

Chris Ferris

Sun
Tony Weida

Individual Member

Pete Wenzel

SeeBeyond

Jean Zheng

Vitria

4 Table of Contents

21 Status of this Document

32 Technical Committee Members

43 ebXML Participants

54 Table of Contents

95 Introduction

95.1 Summary of Contents of Document

95.2 Document Conventions

105.3 Versioning of the Specification and Schema

115.4 Definitions

115.5 Audience

115.6 Assumptions

115.7 Related Documents

126 Design Objectives

137 System Overview

137.1 What This Specification Does

157.2 Forming a CPA from Two CPPs

177.3 Forming a CPA from a CPA Template

177.4 How the CPA Works

187.5 Where the CPA May Be Implemented

197.6 Definition and Scope

208 CPP Definition

218.1 Globally-Unique Identifier of CPP Instance Document

218.2 CPP Structure

218.3 CollaborationProtocolProfile element

228.4 PartyInfo Element

248.4.1 PartyId element

258.4.2 PartyRef element

268.4.3 CollaborationRole element

288.4.4 ProcessSpecification element

328.4.5 Role element

338.4.6 ApplicationCertificateRef element

348.4.7 ApplicationSecurityDetailsRef element

348.4.8 ServiceBinding element

348.4.9 Service element

358.4.10 CanSend element

368.4.11 CanReceive element

368.4.12 ThisPartyActionBinding element

388.4.13 OtherPartyActionBinding

388.4.14 BusinessTransactionCharacteristics element

418.4.15 ChannelId element

428.4.16 ActionContext element

438.4.17 CollaborationActivity element

438.4.18 Certificate element

448.4.19 SecurityDetails element

458.4.20 TrustAnchors element

458.4.21 SecurityPolicy element

458.4.22 DeliveryChannel element

478.4.23 MessagingCharacteristics element

518.4.24 Transport element

528.4.25 TransportSender element

528.4.26 TransportProtocol element

528.4.27 AccessAuthentication element

538.4.28 TransportClientSecurity element

538.4.29 TransportSecurityProtocol element

538.4.30 ClientCertificateRef element

548.4.31 ServerSecurityDetailsRef element

548.4.32 Encryption Algorithm

558.4.33 TransportReceiver element

558.4.34 Endpoint element

558.4.35 TransportServerSecurity element

568.4.36 ServerCertificateRef element

568.4.37 ClientSecurityDetailsRef element

568.4.38 Transport protocols

588.4.39 DocExchange Element

608.4.40 ebXMLSenderBinding element

608.4.41 ReliableMessaging element

618.4.42 PersistDuration element

618.4.43 SenderNonRepudiation element

628.4.44 NonRepudiationProtocol element

628.4.45 HashFunction element

628.4.46 SignatureAlgorithm element

638.4.47 SigningCertificateRef element

638.4.48 SenderDigitalEnvelope element

648.4.49 DigitalEnvelopeProtocol element

648.4.50 EncryptionAlgorithm element

658.4.51 EncryptionSecurityDetailsRef element

658.4.52 NamespaceSupported element

658.4.53 ebXMLReceiverBinding element

668.4.54 ReceiverNonRepudiation element

668.4.55 SigningSecurityDetailsRef element

678.4.56 ReceiverDigitalEnvelope element

678.4.57 EncryptionCertificateRef element

678.4.58 OverrideMshActionBinding element

678.5 SimplePart element

688.6 Packaging element

698.6.1 ProcessingCapabilities element

698.6.2 Choice of CompositeList or Constituent element

718.7 Signature element

728.8 Comment element

749 CPA Definition

749.1 CPA Structure

759.2 CollaborationProtocolAgreement element

759.3 Status Element

769.4 CPA Lifetime

769.4.1 Start element

769.4.2 End element

779.5 ConversationConstraints Element

779.5.1 invocationLimit attribute

789.5.2 concurrentConversations attribute

789.6 PartyInfo Element

789.6.1 ProcessSpecification element

799.6.2 DocExchange Constraints for the CPA

799.7 SimplePart element

799.8 Packaging element

799.9 Signature element

809.9.1 Persistent Digital Signature

819.10 Comment element

829.11 Composing a CPA from Two CPPs

829.11.1 ID Attribute Duplication

829.12 Modifying Parameters of the Process-Specification Document Based on Information in the CPA

8410 Provisions for CPP and CPA Extensibility

8410.1 Goals for Extensibility Framework

8410.2 Illustration of CPP and CPA Extensibility: Alternative Messaging Framework

8510.2.1 EDIINT Configuration Requirements

8610.2.2 Mapping of Configuration Requirements to CPP and CPA Elements and Attributes

9010.3 DocExchange Extensions for Ediint Message Protocol Support

9010.3.1 EdiintReceiverBinding Element

9010.3.2 EdiintSenderBinding Element

9110.3.3 SenderCompression Element

9110.3.4 ReceiverCompression Element

9210.3.5 SenderRequestedMDNStyle Element

9310.3.6 ReceiverAcceptedMDNStyle Element

9310.4 Illustration of Alternative Document Exchange Definitions using WSDL

9510.5 Web Services Doc Exchange Elements

9510.5.1 WSSenderBinding element

9510.5.2 WSReceiverBinding element

9610.5.3 WSDLOperation Element

9710.6 Alternative Process Specification Definitions

9710.6.1 Service

9710.6.2 ServiceBinding

9710.6.3 Role

9810.6.4 ActionContext2

9810.6.5 timeToPerform

9911 References

10312 Conformance

10413 Disclaimer

10514 Contact Information

10715 Notices

10816 Example of CPP Document (Non-Normative)

12217 Example of CPA Document (Non-Normative)

13518 Business Process Specification Corresponding to Complete CPP and CPA Definition (Non-Normative)

13719 W3C XML Schema Document Corresponding to Complete CPP and CPA Definition (Normative)

14620 CPA Composition (Non-Normative)

14620.1 Suggestions for Design of Computational Procedures

14820.2 CPA Formation Component Tasks

14820.3 CPA Formation from CPPs: Context of Tasks

14920.4 Business Collaboration Process Matching Tasks

15020.5 Implementation Matching Tasks

16820.6 CPA Formation: Technical Details

17021 Correspondence Between CPA and ebXML Messaging Parameters (Normative)

17322 Correspondence Between ebBPSS and ebXML Messaging Parameters

17423 Glossary of Terms

17824 PartyID

17824.1 Summary of Contents of Appendix

17824.2 Audience

17824.3 Assumptions

17824.4 Party Identifier Domains

17924.5 Identifier Formats

17924.6 Domain Nomenclature

18024.7 Party ID URIs in ebXML CPPA [ebCPPA] and in ebXML Messaging [ebMS]

18124.8 Method to Generate Values for the “type” Attribute from Information Items in the [ISO6523] ICD List

18325 Alternative Collaboration Protocol Messaging Illustration

20926 Alternative Collaboration Protocol DocExchange Illustration for WSDL

21527 Alternative Collaboration Protocol Process Specification Illustration

5
Introduction

5.1 Summary of Contents of Document

As defined in the ebXML Business Process Specification Schema[ebBPSS], a Business Partner is an entity that engages in Business Transactions with another Business Partner(s). The Message-exchange capabilities of a Party MAY be described by a Collaboration-Protocol Profile (CPP). The Message-exchange agreement between two Parties MAY be described by a Collaboration-Protocol Agreement (CPA). A CPA MAY be created by computing the intersection of the two Partners' CPPs. Included in the CPP and CPA are details of transport, messaging, security constraints, and bindings to a Business-Process-Specification (or, for short, Process-Specification) document that contains the definition of the interactions between the two Parties while engaging in a specified electronic Business Collaboration.

This specification contains the detailed definitions of the Collaboration-Protocol Profile (CPP) and the Collaboration-Protocol Agreement (CPA).

This specification is a component of the suite of ebXML specifications.

The rest of this specification is organized as follows:

Section 6 defines the objectives of this specification.

Section 7 provides a system overview.

Section 8 contains the definition of the CPP, identifying the structure and all necessary fields.

Section 9 contains the definition of the CPA.

Section 11 lists all other documents referenced in this specification.

Section 12 provides a conformance statement.

Section 13 contains a disclaimer.

Section 14 lists contact information for the contributing authors and the coordinating editor for this version of the specification.

The appendices include examples of CPP and CPA documents (non-normative), an example XML Business Process Specification (non-normative), an XML Schema document (normative), a description of how to compose a CPA from two CPPs (non-normative), a summary of corresponding ebXML Messaging Service and CPA parameters (normative), and a Glossary of Terms.

5.2 Document Conventions

Terms in Italics are defined in Appendix G (Glossary of Terms). Terms listed in Bold Italics represent the element and/or attribute content of the XML CPP, CPA, or related definitions.

In this specification, indented paragraphs beginning with "NOTE:" provide non-normative explanations or suggestions that are not mandated by the specification.

References to external documents are represented with BLOCK text enclosed in brackets, e.g. [RFC2396]. The references are listed in Section 11, "References".

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC 2119].

NOTE: Vendors SHOULD carefully consider support of elements with cardinalities (0 or 1) or (0 or more). Support of such an element means that the element is processed appropriately for its defined function and not just recognized and ignored. A given Party might use these elements in some CPPs or CPAs and not in others. Some of these elements define parameters or operating modes and SHOULD be implemented by all vendors. It might be appropriate to implement elective elements that represent major run-time functions, such as various alternative communication protocols or security functions, by means of plug-ins so that a given Party MAY acquire only the needed functions rather than having to install all of them.

By convention, values of [XML] attributes are generally enclosed in quotation marks, however those quotation marks are not part of the values themselves.

5.3 Versioning of the Specification and Schema

Whenever this specification is modified, it SHALL be given a new version number.

It is anticipated that during the review period, errors and inconsistencies in the specification and in the schema may be detected and have to be corrected. All known errors in the specification as well as necessary changes to the schema will be summarized in an errata page found at

http://www.oasis-open.org/committees/ebxml-cppa/documents/ebCPP-2_0-Errata.shtml
The specification, when initially approved by the OASIS ebXML Collaboration Protocol Profile and Agreement Technical Committee for public review, SHALL carry a version number of “2_0”. At that time, the schema SHALL have a version number of “2_0b” and the suffix letter after “2_0” will be advanced as necessary when bug fixes to the schema have to be introduced. Such versions of the schema SHALL be found under the directory

http://www.oasis-open.org/committees/ebxml-cppa/schema/
In addition, the latest version of the schema SHALL always be found at

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd
since the latter is the namespace URI used for this specification and the corresponding schema is supposed to be directly resolvable from the namespace URI.

The value of the version attribute of the Schema element in a given version of the schema SHALL be equal to the version of the schema.

5.4 Definitions

Technical terms in this specification are defined in Appendix G.

5.5 Audience

One target audience for this specification is implementers of ebXML services and other designers and developers of middleware and application software that is to be used for conducting electronic Business. Another target audience is the people in each enterprise who are responsible for creating CPPs and CPAs.

5.6 Assumptions

It is expected that the reader has an understanding of XML and is familiar with the concepts of electronic Business (eBusiness).

5.7 Related Documents

Related documents include ebXML Specifications on the following topics:

ebXML Message Service Specification[ebMS]

ebXML Business Process Specification Schema[ebBPSS]

ebXML Core Component Overview[ccOVER]

ebXML Registry Services Specification[ebRS]

See Section 11 for the complete list of references.

6 Design Objectives

The objective of this specification is to ensure interoperability between two Parties even though they MAY procure application software and run-time support software from different vendors. The CPP defines a Party's Message-exchange capabilities and the Business Collaborations that it supports. The CPA defines the way two Parties will interact in performing the chosen Business Collaborations. Both Parties SHALL use identical copies of the CPA to configure their run-time systems. This assures that they are compatibly configured to exchange Messages whether or not they have obtained their run-time systems from the same vendor. The configuration process MAY be automated by means of a suitable tool that reads the CPA and performs the configuration process.

In addition to supporting direct interaction between two Parties, this specification MAY also be used to support interaction between two Parties through an intermediary such as a portal or broker.

It is an objective of this specification that a CPA SHALL be capable of being composed by intersecting the respective CPPs of the Parties involved. The resulting CPA SHALL contain only those elements that are in common, or compatible, between the two Parties. Variable quantities, such as number of retries of errors, are then negotiated between the two Parties. The design of the CPP and CPA schemata facilitates this composition/negotiation process. However, the composition and negotiation processes themselves are outside the scope of this specification. Appendix E contains a non-normative discussion of this subject.

It is a further objective of this specification to facilitate migration of both traditional EDI-based applications and other legacy applications to platforms based on the ebXML specifications. In particular, the CPP and CPA are components of the migration of applications based on the X12 838 Trading-Partner Profile[X12] to more automated means of setting up Business relationships and doing Business under them.

7 System Overview

7.1 What This Specification Does

The exchange of information between two Parties requires each Party to know the other Party's supported Business Collaborations, the other Party's role in the Business Collaboration, and the technology details about how the other Party sends and receives Messages. In some cases, it is necessary for the two Parties to reach agreement on some of the details.

The way each Party can exchange information, in the context of a Business Collaboration, can be described by a Collaboration-Protocol Profile (CPP). The agreement between the Parties can be expressed as a Collaboration-Protocol Agreement (CPA).

A Party MAY describe itself in a single CPP. A Party MAY create multiple CPPs that describe, for example, different Business Collaborations that it supports, its operations in different regions of the world, or different parts of its organization.

To enable Parties wishing to do Business to find other Parties that are suitable Business Partners, CPPs MAY be stored in a repository such as is provided by the ebXML Registry[ebRS]. Using a discovery process provided as part of the specifications of a repository, a Party MAY then use the facilities of the repository to find Business Partners.

The document that defines the interactions between two Parties is a Process-Specification document that MAY conform to the ebXML Business Process Specification Schema[ebBPSS]. The CPP and CPA include references to this Process-Specification document. The Process-Specification document MAY be stored in a repository such as the ebXML Registry. See NOTE about alternative Business-Collaboration descriptions in Section 8.4.4.

Figure 1 illustrates the relationships between a CPP and two Process-Specification documents, A1 and A2, in an ebXML Registry. On the left is a CPP, A, which includes information about two parts of an enterprise that are represented as different Parties. On the right are shown two Process-Specification documents. Each of the PartyInfo elements in the CPP contains a reference to one of the Process-Specification documents. This identifies the Business Collaborations that the Party can perform.

This specification defines the markup language vocabulary for creating electronic CPPs and CPAs. CPPs and CPAs are [XML] documents. In the appendices of this specification are two sample CPPs, a sample CPA formed from the CPPs, a sample Process-Specification referenced by the CPPs and the CPA, and the XML Schema governing the structures of CPPs and CPAs.

The CPP describes the capabilities of an individual Party. A CPA describes the capabilities that two Parties have agreed to use to perform particular Business Collaborations. These CPAs define the "information technology terms and conditions" that enable Business documents to be electronically interchanged between Parties. The information content of a CPA is similar to the information-technology specifications sometimes included in Electronic Data Interchange (EDI) Trading Partner Agreements (TPAs). However, these CPAs are not paper documents. Rather, they are electronic documents that can be processed by computers at the Parties' sites in order to set up and then execute the desired Business information exchanges. The "legal" terms and conditions of a Business agreement are outside the scope of this specification and therefore are not included in the CPP and CPA.

[image: image1.wmf]

An enterprise MAY choose to represent itself as multiple Parties. For example, it might represent a central office supply procurement organization and a manufacturing supplies procurement organization as separate Parties. The enterprise MAY then construct a CPP that includes all of its units that are represented as separate Parties. In the CPP, each of those units would be represented by a separate PartyInfo element.

The CPPA specification is concerned with software that conducts business on behalf of Parties by exchanging Messages[ebMS]. In particular, it is concerned with Client and Server software programs that engage in Business Transactions[ebBPSS] by sending and receiving Messages. Those Messages convey Business Documents and/or business signals[ebBPSS] in their payload. Under the terms of a CPA:

· A Client initiates a connection with a Server.
· A Requester initiates a Business Transaction with a Responder.

· A Sender sends a Message to a Receiver.

Thus, Client and Server are software counterparts, Requester and Responder are business counterparts, and Sender and Receiver are messaging counterparts. There is no fixed relationship between counterparts of different types. For example, consider a purchasing collaboration. Client software representing the buying party might connect to Server software representing the selling party, and then make a purchase request by sending a Message containing a purchase order over that connection. If the CPA specifies a synchronous business response, the Server might then respond by sending a Message containing an acceptance notice back to the Client over the same connection. Alternatively, if the CPA specifies an asynchronous business response, Client software representing the selling party might later respond by connecting to Server software representing the buying party and then sending a Message containing an acceptance notice.

In general, the Parties to a CPA can have both client and server characteristics. A client requests services and a server provides services to the Party requesting services. In some applications, one Party only requests services and one Party only provides services. These applications have some resemblance to traditional client-server applications. In other applications, each Party MAY request services of the other. In that case, the relationship between the two Parties can be described as a peer-peer relationship rather than a client-server relationship.

7.2 Forming a CPA from Two CPPs

This section summarizes the process of discovering a Party to do Business with and forming a CPA from the two Parties' CPPs. In general, this section is an overview of a possible procedure and is not to be considered a normative specification. See Appendix E "CPA Composition (Non-Normative)" for more information.

Figure 2 illustrates forming a CPP. Party A tabulates the information to be placed in a repository for the discovery process, constructs a CPP that contains this information, and enters it into an ebXML Registry or similar repository along with additional information about the Party. The additional information might include a description of the Businesses that the Party engages in. Once Party A's information is in the repository, other Parties can discover Party A by using the repository's discovery services.

[image: image2.wmf]

In Figure 3, Party A and Party B use their CPPs to jointly construct a single copy of a CPA by calculating the intersection of the information in their CPPs. The resulting CPA defines how the two Parties will behave in performing their Business Collaboration.

[image: image3.wmf]Figure 1: Structure of CPP & Business Process Specification in

an

ebXML

Registry

Repository

Business

Collaboration

<PartyInfo PartyId=“N01”>

 <

ProcessSpecification xlink

:href=“http://

<

PartyInfo

 PartyId=“N02”>

 <

ProcessSpecification xlink

:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business

Collaboration

[image: image4.wmf]Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What

Business

capabilities

it can perform

when conducting a

Business

Collaboration

 with

other parties

Party

 A

Party’s

 information

-

Party

 name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process-

Specification document

Time out/Retry

-etc.

CPP

Describe

Build

Figure 4 illustrates the entire process. The steps are listed at the left. The end of the process is that the two Parties configure their systems from identical copies of the agreed CPA and they are then ready to do Business.

7.3 Forming a CPA from a CPA Template

Alternatively, a CPA template might be used to create a CPA. A CPA template represents one party’s “fill in the blanks” proposal to a prospective trading partner for implementing one or more business processes. For example, such a template might contain placeholder values for identifying aspects of the other party. To form a CPA from a CPA template, the placeholder values would be replaced by the actual values for the other trading partner. Actual values might be obtained from the other party’s CPP, if available, or by data entry in an HTML form, among other possibilities. The current version of this specification does not address how placeholder values might be represented in a CPA. However, the process of filling out a CPA template MUST result in a valid CPA. Further discussion of CPA templates is provided in Appendix E.

7.4 How the CPA Works

A CPA describes all the valid visible, and hence enforceable, interactions between the Parties and the way these interactions are carried out. It is independent of the internal processes executed at each Party. Each Party executes its own internal processes and interfaces them with the Business Collaboration described by the CPA and Process-Specification document. The CPA does not expose details of a Party's internal processes to the other Party. The intent of the CPA is to provide a high-level specification that can be easily comprehended by humans and yet is precise enough for enforcement by computers.

The information in the CPA is used to configure the Parties' systems to enable exchange of Messages in the course of performing the selected Business Collaboration. Typically, the software that performs the Message exchanges and otherwise supports the interactions between the Parties is middleware that can support any selected Business Collaboration. One component of this middleware MAY be the ebXML Message Service Handler[ebMS]. In this specification, the term "run-time system" or "run-time software" is used to denote such middleware.

The CPA and the Process-Specification document that it references define a conversation between the two Parties. The conversation represents a single unit of Business as defined by the BinaryCollaboration component of the Process-Specification document. The conversation consists of one or more Business Transactions, each of which is a request Message from one Party and zero or one response Message from the other Party. The Process-Specification document defines, among other things, the request and response Messages for each Business Transaction and the order in which the Business Transactions are REQUIRED to occur. See [ebBPSS] for a detailed explanation.

The CPA MAY actually reference more than one Process-Specification document. When a CPA references more than one Process-Specification document, each Process-Specification document defines a distinct type of conversation. Any one conversation involves only a single Process-Specification document.
A new conversation is started each time a new unit of Business is started. The Business Collaboration also determines when the conversation ends. From the viewpoint of a CPA between Party A and Party B, the conversation starts at Party A when Party A sends the first request Message to Party B. At Party B, the conversation starts when it receives the first request of the unit of Business from Party A. A conversation ends when the Parties have completed the unit of Business.

NOTE: The run-time system SHOULD provide an interface by which the Business application can request initiation and ending of conversations.

7.5 Where the CPA May Be Implemented

Conceptually, a Business-to-Business (B2B) server at each Party's site implements the CPA and Process-Specification document. The B2B server includes the run-time software, i.e. the middleware that supports communication with the other Party, execution of the functions specified in the CPA, interfacing to each Party's back-end processes, and logging the interactions between the Parties for purposes such as audit and recovery. The middleware might support the concept of a long-running conversation as the embodiment of a single unit of Business between the Parties. To configure the two Parties' systems for Business-to-Business operations, the information in the copy of the CPA and Process-Specification documents at each Party's site is installed in the run-time system. The static information MAY be recorded in a local database and other information in the CPA and Process-Specification document MAY be used in generating or customizing the necessary code to support the CPA.

NOTE: It is possible to provide a graphical CPP/CPA-authoring tool that understands both the semantics of the CPP/CPA and the XML syntax. Equally important, the definitions in this specification make it feasible to automatically generate, at each Party's site, the code needed to execute the CPA, enforce its rules, and interface with the Party's back-end processes.

7.6 Definition and Scope

This specification defines and explains the contents of the CPP and CPA XML documents. Its scope is limited to these definitions. It does not define how to compose a CPA from two CPPs nor does it define anything related to run-time support for the CPP and CPA. It does include some non-normative suggestions and recommendations regarding CPA composition from two CPPs and run-time support where these notes serve to clarify the CPP and CPA definitions. See Section 12 for a discussion of conformance to this specification.

NOTE: This specification is limited to defining the contents of the CPP and CPA, and it is possible to be conformant with it merely by producing a CPP or CPA document that conforms to the XML Schema document defined herein. It is, however, important to understand that the value of this specification lies in its enabling a run-time system that supports electronic commerce between two Parties under the guidance of the information in the CPA.
8 CPP Definition

A CPP defines the capabilities of a Party to engage in electronic Business with other Parties. These capabilities include both technology capabilities, such as supported communication and messaging protocols, and Business capabilities in terms of what Business Collaborations it supports.

This section defines and discusses the details in the CPP in terms of the individual XML elements. The discussion is illustrated with some XML fragments. See Appendix D for the XML Schema, and Appendix A for sample CPP documents.

The ProcessSpecification, DeliveryChannel, DocExchange, and Transport elements of the CPP describe the processing of a unit of Business (conversation). These elements form a layered structure somewhat analogous to a layered communication model.

Process-Specification layer - The Process-Specification layer defines the heart of the Business agreement between the Parties: the services (Business Transactions) which Parties to the CPA can request of each other and transition rules that determine the order of requests. This layer is defined by the separate Process-Specification document that is referenced by the CPP and CPA.

Delivery Channels - A delivery channel describes a Party's Message-receiving and Message-sending characteristics. It consists of one document-exchange definition and one transport definition. Several delivery channels MAY be defined in one CPP.

Document-Exchange Layer - The Document-exchange layer specifies processing of the business documents by the Message-exchange function. Properties specified include encryption, digital signature, and reliable-messaging characteristics. The options selected for the Document-exchange layer are complementary to those selected for the transport layer. For example, if Message security is desired and the selected transport protocol does not provide Message encryption, then Message encryption MUST be specified in the Document-exchange layer. The protocol for exchanging Messages between two Parties is defined by the ebXML Message Service specification[ebMS] or other similar messaging services.

Transport layer - The transport layer identifies the transport protocol to be used in sending messages through the network and defines the endpoint addresses, along with various other properties of the transport protocol. Choices of properties in the transport layer are complementary to those in the document-exchange layer (see "Document-Exchange Layer" directly above.)

Note that the functional layers encompassed by the CPP are independent of the contents of the payload of the Business documents.

8.1 Globally-Unique Identifier of CPP Instance Document

When a CPP is placed in an ebXML or other Registry, the Registry assigns it a globally unique identifier (GUID) that is part of its metadata. That GUID MAY be used to distinguish among CPPs belonging to the same Party.

NOTE: A Registry cannot insert the GUID into the CPP. In general, a Registry does not alter the content of documents submitted to it. Furthermore, a CPP MAY be signed and alteration of a signed CPP would invalidate the signature.

8.2 CPP Structure

Following is the overall structure of the CPP. Unless otherwise noted, CPP elements MUST be in the order shown here. Subsequent sections describe each of the elements in greater detail.

<tp:CollaborationProtocolProfile

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 tp:cppid="uri:companyA-cpp"

 tp:version="2_0b">

 <tp:PartyInfo> <!-- one or more -->

 ...

 </tp:PartyInfo>

 <tp:SimplePart id="..."> <!-- one or more -->

 ...

 </tp:SimplePart>

 <tp:Packaging id="..."> <!-- one or more -->

 ...

 </tp:Packaging>

 <tp:Signature> <!-- zero or one -->

 ...

 </tp:Signature>

 <tp:Comment>text</tp:Comment> <!-- zero or more -->

</tp:CollaborationProtocolProfile>

8.3 CollaborationProtocolProfile element

The CollaborationProtocolProfile element is the root element of the CPP XML document.

The REQUIRED XML [XML] Namespace[XMLNS] declarations for the basic document are as follows:

The CPP/CPA namespace: xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd",

The XML Digital Signature namespace: xmlns:ds="http://www.w3.org/2000/09/xmldsig#",

and the XLink namespace: xmlns:xlink="http://www.w3.org/1999/xlink".

In addition, the CollaborationProtocolProfile element contains a REQUIRED cppid attribute that supplies a unique identifier for the document, plus a REQUIRED version attribute that indicates the version of the schema. Its purpose is to identify the version of the schema that the CPP conforms to. The value of the version attribute SHOULD be a string such as "2_0a", "2_0b", etc.

NOTE: The method of assigning unique cppid values is left to the implementation.

The CollaborationProtocolProfile element SHALL consist of the following child elements:

One or more REQUIRED PartyInfo elements that identify the organization (or parts of the organization) whose capabilities are described by the CPP,

One or more REQUIRED SimplePart elements that describe the constituents used to make up composite Messages,

One or more REQUIRED Packaging elements that describe how the Message Header and payload constituents are packaged for transmittal,

Zero or one Signature element that contains the digital signature that signs the CPP document,
Zero or more Comment elements.
A CPP document MAY be digitally signed so as to provide for a means of ensuring that the document has not been altered (integrity) and to provide for a means of authenticating the author of the document. A digitally signed CPP SHALL be signed using technology that conforms to the joint W3C/IETF XML Digital Signature specification[XMLDSIG].

8.4 PartyInfo Element

The PartyInfo element identifies the organization whose capabilities are described in this CPP and includes all the details about this Party. More than one PartyInfo element MAY be provided in a CPP if the organization chooses to represent itself as subdivisions with different characteristics. Each of the sub-elements of PartyInfo is discussed later. The overall structure of the PartyInfo element is as follows:

<tp:PartyInfo

 tp:partyName="..."

 tp:defaultMshChannelId="..."

 tp:defaultMshPackageId="...">

 <tp:PartyId tp:type="..."> <!-- one or more -->

 ...

 </tp:PartyId>

 <tp:PartyRef xlink:href="..."/>

 <tp:CollaborationRole> <!-- one or more -->

 ...

 </tp:CollaborationRole>

 <tp:Certificate> <!-- one or more -->

 ...

 </tp:Certificate>

 <tp:SecurityDetails> <!-- one or more -->

 ...

 </tp:SecurityDetails>

 <tp:DeliveryChannel> <!-- one or more -->

 ...

 </tp:DeliveryChannel>

 <tp:Transport> <!-- one or more -->

 ...

 </tp:Transport>

 <tp:DocExchange> <!-- one or more -->

 ...

 </tp:DocExchange>

 <tp:OverrideMshActionBinding> <!-- zero or more -->

 ...

 </tp:OverrideMshActionBinding>

</tp:PartyInfo>

The PartyInfo element contains a REQUIRED partyName attribute that indicates the common, human readable name of the organization. Unlike PartyID, partyName might not be unique; however, the value of each partyName attribute SHALL be meaningful enough to directly identify the organization or the subdivision of an organization described in the PartyInfo element.

The following example illustrates two possible party names.

<tp:PartyInfo tp:partyName="Example, Inc."...</tp:PartyInfo>

<tp:PartyInfo tp:partyName="Example, Inc. US Western Division">

...

</tp:PartyInfo>

The PartyInfo element also contains a REQUIRED defaultMshChannelId attribute and a REQUIRED defautMshPackageId attribute. The defaultMshChannelId attribute identifies the default DeliveryChannel to be used for sending standalone Message Service Handler[ebMS] level messages (i.e., Acknowledgment, Error, StatusRequest, StatusResponse, Ping, Pong) that are to be delivered asynchronously. When synchronous reply mode is in use, Message Service Handler level messages are by default returned synchronously. The default can be overridden through the use of OverrideMshActionBinding elements. The defaultMshPackageId attribute identifies the default Packaging to be used for sending standalone Message Service Handler[ebMS] level messages.

The PartyInfo element consists of the following child elements:

One or more REQUIRED PartyId elements that provide logical identifiers for the organization.

One or more REQUIRED PartyRef elements that provide pointers to more information about the Party.

One or more REQUIRED CollaborationRole elements that identify the roles that this Party can play in the context of a Process Specification.

One or more REQUIRED Certificate elements that identify the certificates used by this Party in security functions.

One or more REQUIRED SecurityDetails elements that identify trust anchors and specify security policy used by this Party in security functions.

One or more REQUIRED DeliveryChannel elements that define the characteristics that the Party can use to send and/or receive Messages. It includes both the transport protocol (e.g. HTTP) and the messaging protocol (e.g. ebXML Message Service).

One or more REQUIRED Transport elements that define the characteristics of the transport protocol(s) that the Party can support to send and/or receive Messages.

One or more REQUIRED DocExchange elements that define the Message-exchange characteristics, such as the signature and encryption protocols, that the Party can support.

Zero or more OverrideMshActionBinding elements that specify the DeliveryChannel to use for asynchronously delivered Message Service Handler level messages.

8.4.1 PartyId element

The REQUIRED PartyId element provides an identifier that SHALL be used to logically identify the Party. Additional PartyId elements MAY be present under the same PartyInfo element so as to provide for alternative logical identifiers for the Party. If the Party has preferences as to which logical identifier is used, the PartyId elements SHOULD be listed in order of preference starting with the most-preferred identifier.

In a CPP that contains multiple PartyInfo elements, different PartyInfo elements MAY contain PartyId elements that define different logical identifiers. This permits a large organization, for example, to have different identifiers for different purposes.

The value of the PartyId element is any string that provides a unique identifier. The identifier MAY be any identifier that is understood by both Parties to a CPA. Typically, the identifier would be listed in a well-known directory such as DUNS (Dun and Bradstreet) or in any naming system specified by [ISO6523].

The PartyId element has a single IMPLIED attribute: type that has an anyURI [XMLSCHEMA-2] value.

If the type attribute is present, then it provides a scope or namespace for the content of the PartyId element.

If the type attribute is not present, the content of the PartyId element MUST be a URI that conforms to [RFC2396]. It is RECOMMENDED that the value of the type attribute be a URN that defines a namespace for the value of the PartyId element. Typically, the URN would be registered in a well-known directory of organization identifiers.
The following example illustrates two URI references.

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

 <tp:PartyId>urn:icann:example.com</tp:PartyId>

The first example is the Party's DUNS number. The value is the DUNS number of the organization.

The second example shows an arbitrary URN. This might be a URN that the Party has registered with IANA, the Internet Assigned Numbers Authority (http://www.iana.org) to identify itself directly.

The following document discusses naming agencies and how they are identified via URI values of the type attribute:

http://www.oasis-open.org/committees/ebxml-cppa/documents/PartyID_Types.shtml
8.4.2 PartyRef element

The PartyRef element provides a link, in the form of a URI, to additional information about the Party. Typically, this would be the URL from which the information can be obtained. The information might be at the Party's web site or in a publicly accessible repository such as an ebXML Registry, a UDDI repository (www.uddi.org), or a Lightweight Directory Access Protocol[RFC2251] (LDAP) directory. Information available at that URI MAY include contact information like names, addresses, and phone numbers, or context information like geographical locales and industry segments, or perhaps more information about the Business Collaborations that the Party supports. This information MAY be in the form of an ebXML Core Component[ccOVER]. It is not within the scope of this specification to define the content or format of the information at that URI.

The PartyRef element is an [XLINK] simple link. It has the following attributes:

a FIXED xlink:type attribute,

a REQUIRED xlink:href attribute,

an IMPLIED type attribute,

an IMPLIED schemaLocation attribute.

The contents of the document referenced by the partyRef element are subject to change at any time. Therefore, it SHOULD NOT be cached for a long period of time. Rather, the value of the xlink:href SHOULD be dereferenced only when the contents of this document are needed.

8.4.2.1 xlink:type attribute

The FIXED xlink:type attribute SHALL have a value of "simple". This identifies the element as being an [XLINK] simple link.

8.4.2.2 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is a URI that conforms to [RFC2396] and identifies the location of the external information about the Party.

8.4.2.3 type attribute

The value of the IMPLIED type attribute identifies the document type of the external information about the Party. It MUST be a URI that defines the namespace associated with the information about the Party. If the type attribute is omitted, the external information about the Party MUST be an HTML web page.

8.4.2.4 schemaLocation attribute

The value of the IMPLIED schemaLocation attribute provides a URI for the schema that describes the structure of the external information.

An example of the PartyRef element is:

<tp:PartyRef xlink:type="simple"

 xlink:href="http://example2.com/ourInfo.xml"

 tp:type="urn:oasis:names:tc:ebxml-cppa:contact-info"

 tp:schemaLocation="http://example2.com/ourInfo.xsd"/>

8.4.3 CollaborationRole element

The CollaborationRole element associates a Party with a specific role in the Business Collaboration. Generally, the Process-Specification is defined in terms of roles such as "buyer" and "seller". The association between a specific Party and the role(s) it is capable of fulfilling within the context of a Process-Specification is defined in both the CPP and CPA documents. In a CPP, the CollaborationRole element identifies which role the Party is capable of playing in each Process Specification documents referenced by the CPP. An example of the CollaborationRole element, based on RosettaNet™ PIP 3A4 is:

<tp:CollaborationRole >

 <tp:ProcessSpecification

 tp:version="2.0a"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml"/>

 <tp:Role

 tp:name="Buyer"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml#BuyerId"/>

 <tp:ApplicationCertificateRef tp:certId="CompanyA_AppCert"/>

 <tp:ServiceBinding>

 <tp:Service tp:type="anyURI">urn::icann:rosettanet.org:bpid:3A4$2.0</tp:Service>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID1"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyA_RequestPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID2"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID3"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyA_ResponsePackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID4"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID5"

 tp:action="Exception"

 tp:packageId="CompanyA_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 </tp:ServiceBinding>

</tp:CollaborationRole>

To indicate that the Party can play roles in more than one Business Collaboration or more than one role in a given Business Collaboration, the PartyInfo element SHALL contain more than one CollaborationRole element. Each CollaborationRole element SHALL contain the appropriate combination of ProcessSpecification element and Role element.

The CollaborationRole element SHALL consist of the following child elements: a REQUIRED ProcessSpecification element, a REQUIRED Role element, zero or one ApplicationCertificateRef elements, zero or one ApplicationSecurityDetailsRef element, and one ServiceBinding element. The ProcessSpecification element identifies the Process-Specification document that defines such role. The Role element identifies which role the Party is capable of supporting. The ApplicationCertificateRef element identifies the certificate to be used for application level signature and encryption. The ApplicationSecurityDetailsRef element identifies the trust anchors and security policy that will be applied to any application-level certificate offered by the other Party. The ServiceBinding element SHALL consist of zero or more CanSend elements and zero or more CanReceive elements. The CanSend and CanReceive elements identify the DeliveryChannel elements that are to be used for sending and receiving business action messages by the Role in question. They MAY also be used for specifying DeliveryChannels for business signal messages.

Each Party SHALL have a default delivery channel for the delivery of standalone Message Service Handler level signals like (Reliable Messaging) Acknowledgments, Errors, StatusRequest, StatusResponse, etc.
8.4.4 ProcessSpecification element

The ProcessSpecification element provides the link to the Process-Specification document that defines the interactions between the two Parties. It is RECOMMENDED that this Business-Collaboration description be prepared in accordance with the ebXML Business Process Specification Schema[ebBPSS]. The Process-Specification document MAY be kept in an ebXML Registry.

NOTE: A Party can describe the Business Collaboration using any desired alternative to the ebXML Business Process Specification Schema. When an alternative Business-Collaboration description is used, the Parties to a CPA MUST agree on how to interpret the Business-Collaboration description and how to interpret the elements in the CPA that reference information in the Business-Collaboration description. The affected elements in the CPA are the Role element, the CanSend and CanReceive elements, the ActionContext element, and some attributes of the BusinessTransactionCharacteristics element.
The syntax of the ProcessSpecification element is:

<tp:ProcessSpecification

 tp:version="2.0a"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml"

 uuid="urn:icann:rosettanet.org:bpid:3A4$2.0">

 <ds:Reference ds:URI="http://www.rosettanet.org/processes/3A4.xml">

 <ds:Transforms>

 <ds:Transform

ds:Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod

 ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

</tp:ProcessSpecification>

The ProcessSpecification element has zero or more child ds:Reference elements, and the following attributes:

· a REQUIRED name attribute,

· a REQUIRED version attribute,

· a FIXED xlink:type attribute,

· a REQUIRED xlink:href attribute,

· an IMPLIED uuid attribute.

The ProcessSpecification element contains zero or more ds:Reference elements formulated according to the XML Digital Signature specification[XMLDSIG]. The first ds:Reference element, if present, relates to the xlink:type and xlink:href attributes as follows. Each ProcessSpecification element SHALL contain one xlink:href attribute and one xlink:type attribute with a value of "simple". In case the CPP (CPA) document is signed, the first ds:Reference element that is present MUST include a ds:URI attribute whose value is identical to that of the xlink:href attribute in the enclosing ProcessSpecification element. The ds:Reference element specifies a digest method and digest value to enable verification that the referenced Process-Specification document has not changed. Additional ds:Reference elements are needed if the referenced ProcessSpecification in turn includes (i.e., references) other ProcessSpecifications. Essentially, ds:Reference elements MUST be provided to correspond to the transitive closure of all ProcessSpecifications that are referenced directly or indirectly to ensure that none of them has been changed.

8.4.4.1 name attribute

The ProcessSpecification element MUST include a REQUIRED name attribute: a string that identifies the Business Process-Specification being performed. If the Process-Specification document is defined by the ebXML Business Process specification [ebBPSS], then this attribute MUST be set to the name for the corresponding ProcessSpecification element within the Business Process Specification instance.
NOTE: Both ebXML Business Process specifications major versions in the 1 and 2 range have name attributes.
8.4.4.2 version attribute

The ProcessSpecification element includes a REQUIRED version attribute to indicate the version of the Process-Specification document identified by the xlink:href attribute (and also identified by the ds:Reference element, if any).

NOTE: The ebXML Business Process specifications with a 1.* major version have a version indicating the version of the Process-Specification document; in major version 2, the specificationVersion attribute indicates the version of the Process-Specification document. An instanceVersion is added to track versioning of specific business process descriptions.
8.4.4.3 xlink:type attribute

The xlink:type attribute has a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

8.4.4.4 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that identifies the Process-Specification document and is a URI that conforms to [RFC2396].

8.4.4.5 uuid attribute

The IMPLIED uuid attribute uniquely identifies the ProcessSpecification. If the Process-Specification document is defined by the ebXML Business Process specification [ebBPSS], then this attribute MUST be set to the uuid for the corresponding ProcessSpecification element within the business process specification instance.

NOTE: Both ebXML Business Process specifications major versions in the 1 and 2 range have uuid attributes.
8.4.4.6 ds:Reference element

The ds:Reference element identifies the same Process-Specification document as the enclosing ProcessSpecification element's xlink:href attribute and additionally provides for verification that the Process-Specification document has not changed since the CPP was created, through the use of a digest method and digest value as described below.

NOTE: Parties MAY test the validity of the CPP or CPA at any time. The following validity tests MAY be of particular interest:

test of the validity of a CPP and the referenced Process-Specification documents at the time composition of a CPA begins in case they have changed since they were created,

test of the validity of a CPA and the referenced Process-Specification documents at the time a CPA is installed into a Party's system,

test of the validity of a CPA at intervals after the CPA has been installed into a Party's system. The CPA and the referenced Process-Specification documents MAY be processed by an installation tool into a form suited to the particular middleware. Therefore, alterations to the CPA and the referenced Process-Specification documents do not necessarily affect ongoing run-time operations. Such alterations might not be detected until it becomes necessary to reinstall the CPA and the referenced Process-Specification documents.
The syntax and semantics of the ds:Reference element and its child elements are defined in the XML Digital Signature specification[XMLDSIG]. In addition, to identify the Process-Specification document, the first ds:Reference element MUST include a ds:URI attribute whose value is identical to that of the xlink:href attribute in the enclosing ProcessSpecification element.

According to [XMLDSIG], a ds:Reference element can have a ds:Transforms child element, which in turn has an ordered list of one or more ds:Transform child elements to specify a sequence of transforms. However, this specification currently REQUIRES the Canonical XML[XMLC14N] transform and forbids other transforms. Therefore, the following additional requirements apply to a ds:Reference element within a ProcessSpecification element:

The ds:Reference element MUST have a ds:Transforms child element.

That ds:Transforms element MUST have exactly one ds:Transform child element.

That ds:Transform element MUST specify the Canonical XML[XMLC14N] transform via the following REQUIRED value for its REQUIRED ds:Algorithm attribute: http://www.w3.org/TR/2001/Rec-xml-c14n-20010315.
Note that implementation of Canonical XML is REQUIRED by the XML Digital Signature specification[XMLDSIG].

To enable verification that the identified and transformed Process-Specification document has not changed, the ds:DigestMethod element specifies the digest algorithm applied to the Process-Specification document, and the ds:DigestValue element specifies the expected value. The Process-Specification document is presumed to be unchanged if and only if the result of applying the digest algorithm to the Process-Specification document results in the expected value.
A ds:Reference element in a ProcessSpecification element has implications for CPP validity:

· A CPP MUST be considered invalid if any ds:Reference element within a ProcessSpecification element fails reference validation as defined by the XML Digital Signature specification[XMLDSIG].

· A CPP MUST be considered invalid if any ds:Reference element within it cannot be dereferenced.
Other validity implications of such ds:Reference elements are specified in the description of the Signature element in Section 9.9.
NOTE: The XML Digital Signature specification[XMLDSIG] states "The signature application MAY rely upon the identification (URI) and Transforms provided by the signer in the Reference element, or it MAY obtain the content through other means such as a local cache" (emphasis on MAY added). However, it is RECOMMENDED that ebXML CPP/CPA implementations not make use of such cached results when signing or validating.

NOTE: It is recognized that the XML Digital Signature specification[XMLDSIG] provides for signing an XML document together with externally referenced documents. In cases where a CPP or CPA document is in fact suitably signed, that facility could also be used to ensure that the referenced Process-Specification documents are unchanged. However, this specification does not currently mandate that a CPP or CPA be signed.

NOTE: If the Parties to a CPA wish to customize a previously existing Process-Specification document, they MAY copy the existing document, modify it, and cause their CPA to reference the modified copy. It is recognized that for reasons of clarity, brevity, or historical record, the Parties might prefer to reference a previously existing Process-Specification document in its original form and accompany that reference with a specification of the agreed modifications. Therefore, CPP usage of the ds:Reference element's ds:Transforms sub-element within a ProcessSpecification element might be expanded in the future to allow other transforms as specified in the XML Digital Signature specification[XMLDSIG]. For example, modifications to the original document could then be expressed as XSLT transforms. After applying any transforms, it would be necessary to validate the transformed document against the ebXML Business Process Specification Schema[ebBPSS].

8.4.5 Role element

The REQUIRED Role element identifies which role in the Process Specification the Party is capable of supporting via the ServiceBinding element(s) siblings within this CollaborationRole element.

The Role element has the following attributes:

a REQUIRED name attribute,

a FIXED xlink:type attribute,

a REQUIRED xlink:href attribute.

8.4.5.1 name attribute

The REQUIRED name attribute is a string that gives a name to the Role. For Process Specification[ebBPSS] with a 1.* major version, the value is taken from a name attribute of one of a BinaryCollaboration’s Role elements. For Process Specification[ebBPSS] with a 2.* major version, the value is taken from a name attribute of a toplevel BusinessCollaboration, MultiPartyCollaboration or BinaryCollaboration’s Role elements.

NOTE: A “toplevel” BusinessCollaboration, MultiPartyCollaboration or BinaryCollaboration element is one whose isInnerCollaboration attribute’s value is false. See section 10.6 for a description of the Role element that is used in Process Specifications conforming to [ebBPSS2].
See NOTE in Section 8.4.4 regarding alternative Business-Collaboration descriptions.

8.4.5.2 xlink:type attribute

The xlink:type attribute has a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

8.4.5.3 xlink:href attribute

The REQUIRED xlink:href attribute SHALL have a value that is a URI that conforms to [RFC2396]. It identifies the location of the element or attribute within the Process-Specification document that defines the role in the context of the Business Collaboration. An example is:

xlink:href="http://www.rosettanet.org/processes/3A4.xml#Buyer"

Where "Buyer" is the value of the ID attribute of the element in the Process-Specification document that defines the role name.

8.4.6 ApplicationCertificateRef element

The ApplicationCertificateRef element, if present, identifies a certificate for use by the business process/application layer. This certificate is not used by the ebXML messaging system, but it is included in the CPP so that it can be considered in the CPA negotiation process. The ApplicationCertificateRef element can occur zero or more times.

NOTE: It is up to the application software on both sides of a collaboration to determine the intended/allowed usage of an application certificate by inspecting the key usage extension within the certificate itself.

 NOTE: This element is included in the CPP/CPA to support interoperability with legacy systems that already perform cryptographic functions such as digital signature or encryption. Implementers should understand that use of ApplicationCertificateRef is necessary only in cases where interoperability with such legacy systems is required.

The ApplicationCertificateRef element has

A REQUIRED certId attribute.

8.4.6.1 certId attribute

The REQUIRED certId attribute is an [XML] IDREF that associates the CollaborationRole element with a certificate. It MUST have a value equal the value of the certId attribute of one of the Certificate elements under PartyInfo.

8.4.7 ApplicationSecurityDetailsRef element

The ApplicationSecurityDetailsRef element, if present, identifies the trust anchors and security policy that this Party will apply to any application-level certificate offered by the other Party. These trust anchors and policy are not used by the ebXML messaging system, but are included in the CPP so that they can be considered in the CPA negotiation process.

The ApplicationSecurityDetailsRef element has

A REQUIRED securityId attribute.

8.4.7.1 SecurityId attribute

The REQUIRED securityId attribute is an [XML] IDREF that associates the CollaborationRole with a SecurityDetails element that specifies a set of trust anchors and a security policy. It MUST have a value equal to the value of the securityId attribute of one of the SecurityDetails elements under PartyInfo.

8.4.8 ServiceBinding element

The ServiceBinding element identifies a DeliveryChannel element for all of the business Message traffic that is to be sent or received by the Party within the context of the identified Process-Specification document. It MUST contain at least one CanReceive or CanSend child element.
The ServiceBinding element has one child Service element, zero or more CanSend child elements, and zero or more CanReceive child elements.

8.4.9 Service element

The value of the Service element is a string that SHALL be used as the value of the Service element in the ebXML Message Header[ebMS] or a similar element in the Message Header of an alternative message service. The Service element has an IMPLIED type attribute.

If the Process-Specification document is defined by ebXML Business Process Specification Schema[ebBPSS] whose major version is 1.*, then the value of the Service element MUST be the uuid (URI) attribute specified for the ProcessSpecification element in the Business Process Specification Schema instance document.

NOTE: The purpose of the Service element is to provide application level routing information for the ebXML Message Header. The CollaborationRole element and its child elements identify the information in the ProcessSpecification document that is relevant to the CPP or CPA. The Service element MAY be used along with the CanSend and CanReceive elements (and their descendants) to provide routing of received messages to the correct application entry point.
If the Process-Specification document is defined by ebXML Business Process Specification Schema[ebBPSS2] whose major version is 2.*, then the value of the Service element MUST be a value of a name attribute of a toplevel BusinessCollaboration, MultiPartyCollaboration or BinaryCollaboration element.

NOTE: A “toplevel” BusinessCollaboration, MultiPartyCollaboration or BinaryCollaboration element is one whose isInnerCollaboration attribute’s value is false. The CPPA 2.1 schema also adds two Xlink attributes to the Service element to identify which toplevel BusinessCollaboration, MultiPartyCollaboration or BinaryCollaboration element is referenced. See 10.6 for details.
8.4.9.1 type attribute

If the type attribute is present, it indicates that the Parties sending and receiving the Message know, by some other means, how to interpret the value of the Service element. The two Parties MAY use the value of the type attribute to assist the interpretation.

If the type attribute is not present, the value of the Service element MUST be a URI[RFC2396]. If using the ebXML Business Process Specification[ebBPSS] for defining the Process-Specification document, the type attribute MUST be a URI[RFC2396].

8.4.10 CanSend element

The CanSend element identifies an action message that a Party is capable of sending. It has three sub-elements: ThisPartyActionBinding, OtherPartyActionBinding, and CanReceive. The ThisPartyActionBinding element is REQUIRED for both CPPs and CPAs. It identifies the DeliveryChannel and the Packaging the Party described by the encompassing PartyInfo element will use for sending the action invocation message in question. The OtherPartyActionBinding element is only used in the case of CPAs. Within a CPA and under the same CanSend element, the DeliveryChannels and Packaging used/expected by the two Parties MUST be compatible. The CanReceive element can occur zero or more times. When present, it indicates that one or more synchronous response actions are expected.

This is illustrated in the CPP and CPA examples in the appendices.

NOTE: While the schema permits arbitrary nesting levels under the CanSend element, use cases for nesting beyond two levels have not yet been presented. Two levels could be needed for a Request with a synchronously returned Response that additionally specified a synchronously returned Acknowledgment for that Response.

8.4.11 CanReceive element

The CanReceive element identifies an action invocation message that a Party is capable of receiving. It has three sub-elements: ThisPartyActionBinding, OtherPartyActionBinding, and CanSend. The ThisPartyActionBinding element is REQUIRED for both CPPs and CPAs. It identifies the DeliveryChannel the Party described by the encompassing PartyInfo element will use for receiving the action message in question and the Packaging it is expecting. The OtherPartyActionBinding element is only used in the case of CPAs. Within a CPA and under the same CanReceive element, the DeliveryChannels and Packaging used/expected by the two Parties MUST be compatible. The CanSend element can occur zero or more times. When present, it indicates that one or more synchronous response actions are expected. This is illustrated in the CPP and CPA examples in the appendices.

NOTE: While the schema permits arbitrary nesting levels under the CanReceive element, use cases for nesting beyond two levels have not yet been presented. Two levels could be needed for a Request with a synchronously returned Response that additionally specified a synchronously returned Acknowledgment for that Response.

8.4.12 ThisPartyActionBinding element

The ThisPartyActionBinding specifies one or more DeliveryChannel elements for Messages for a selected action and the Packaging for those Messages that are to be sent or received by the Party in the context of the Process Specification that is associated with the parent ServiceBinding element.

The ThisPartyActionBinding element has a REQUIRED child BusinessTransactionCharacteristics element, zero or one child ActionContext element and one or more ChannelID child elements.

The ThisPartyActionBinding element has the following attributes:

a REQUIRED action attribute,

a REQUIRED packageId attribute,

an IMPLIED xlink:href attribute,

a FIXED xlink:type attribute.

Under a given ServiceBinding element, there MAY be multiple CanSend or CanReceive child elements with the same action to allow different software entry points and Transport options. In such a scenario, the DeliveryChannels referred by the ChannelID child elements of ThisPartyActionBinding SHALL point to distinct EndPoints for the receiving MSH to uniquely identify the DeliveryChannel being used for this particular message exchange.

NOTE: An implementation MAY provide the capability of dynamically assigning delivery channels on a per Message basis during performance of the BinaryCollaboration. The delivery channel selected would be chosen, based on present conditions, from those identified by CanSend elements that refer to the BinaryCollaboration that is sending the Message. On the receiving side, the MSH can use the distinct EndPoints to identify the DeliveryChannel used for this message exchange.
Within a CanSend element or a CanReceive element, when both the ThisPartyActionBinding and OtherPartyActionBinding elements are present (i.e., in a CPA), they MUST have identical action values or equivalent ActionContext elements. In addition, the DeliveryChannel and Packaging that that they reference MUST be compatible.

8.4.12.1 action attribute

The value of the REQUIRED action attribute is a string that identifies the business document exchange to be associated with the DeliveryChannel identified by the ChannelId sub-elements. The value of the action attribute SHALL be used as the value of the Action element in the ebXML Message Header[ebMS] or a similar element in the Message Header of an alternative message service. The purpose of the action attribute is to link the hierarchical naming associated with a Business Process/Application and the Action element in the ebXML Message Header[ebMS]. The details of this mapping MAY be implemented by using the ActionContext element. See NOTE in Section 8.4.4 regarding alternative Business Collaboration descriptions.

If the Process-Specification document is defined by ebXML Business Process Specification Schema[ebBPSS] whose major version is either 1.* or 2.*, then when business transactions are not reused in different contexts, it is recommended that RequestingBusinessActivity element’s name attribute value and the RespondingBusinessActivity element’s name attribute’s value be used as action names. When business transactions are reused, implementations need to provide ActionContext elements, and may use the name values of RespondingBusinessActivity or RequestingBusinessActivity elements or create distinct names, possibly reflecting information about their collaboration hierarchy.
Business signals, when sent individually (i.e., not bundled with response documents in synchronous reply mode), SHALL use the values ReceiptAcknowledgment, AcceptanceAcknowledgment, or Exception as the value of their action attribute. In addition, they SHOULD specify a Service that is the same as the Service used for the original message.

NOTE: In general, the action name chosen by the two Parties to represent a particular requesting business activity or responding business activity in the context of a Binary Collaboration that makes use of nested BinaryCollaborations MAY not be identical. Therefore, when composing two CPPs to form a CPA, it is necessary to make use of information from the associated ActionContext (see Section 8.4.16) in order to determine if two different action names from the two CPPs actually represent the same ActionContext. When business transactions are not reused in different contexts, it is recommended that the names of the requesting business activity and responding business activity be used as action names.

8.4.12.2 packageId attribute

The REQUIRED packageId attribute is an [XML] IDREF that identifies the Packaging element to be associated with the Message identified by the action attribute.

8.4.12.3 xlink:href attribute

The IMPLIED xlink:href attribute, if present, SHALL provide an absolute [XPOINTER] URI expression that specifically identifies the RequestingBusinessActivity or RespondingBusinessActivity element within the associated Process-Specification document[ebBPSS] that is identified by the ProcessSpecification element.

8.4.12.4 xlink:type attribute

The IMPLIED xlink:type attribute has a FIXED value of "simple". This identifies the element as being an [XLINK] simple link.

8.4.13 OtherPartyActionBinding

The OtherPartyActionBinding element is REQUIRED in CPAs and CPA templates and SHALL NOT be used in a CPP. It is of type IDREF and identifies a matching ThisPartyActionBinding element that is found under the collaboration partner’s PartyInfo. It indirectly identifies the DeliveryChannel the other Party will use for sending or receiving the action message in question and the expected Packaging. Within a CPA and under the same CanSend or CanReceive element, the DeliveryChannels and Packaging used/expected by the two Parties, as indicated by the ThisPartyActionBinding and OtherPartyActionBinding elements, MUST be compatible.

8.4.14 BusinessTransactionCharacteristics element

The BusinessTransactionCharacteristics element describes the security characteristics and other attributes of the delivery channel, as derived from the ProcessSpecification(s) whose messages are transported using the delivery channel. The attributes of the BusinessTransactionCharacteristics element, MAY be used to override the values of the corresponding attributes in the Process-Specification document.

See NOTE in Section 8.4.4 regarding alternative Business-Collaboration descriptions.

CPP and CPA composition tools and CPA deployment tools SHALL check the delivery channel definitions for the sender and receiver (transport and document-exchange) for internal consistency as well as compatibility between the two partners. Typically, when an attribute has a particular value, sub-elements under the corresponding Transport and DocExchange elements would exist to further describe the implied implementation parameters.

The BusinessTransactionCharacteristics element has the following attributes:

an IMPLIED isNonRepudiationRequired attribute,

an IMPLIED isNonRepudiationReceiptRequired attribute,

an IMPLIED isConfidential attribute,

an IMPLIED isAuthenticated attribute,

an IMPLIED isAuthorizationRequired attribute,

an IMPLIED isTamperProof attribute,

an IMPLIED isIntelligibleCheckRequired attribute,

an IMPLIED timeToAcknowledgeReceipt attribute,

an IMPLIED timeToAcknowledgeAcceptance attribute,

an IMPLIED timeToPerform attribute,

an IMPLIED retryCount attribute.

These attributes allow parameters specified at the Process-Specification level to be overridden. If one of these attributes is not specified, the corresponding default value should be obtained from the Process-Specification document.

8.4.14.1 isNonRepudiationRequired attribute

The isNonRepudiationRequired attribute is a Boolean with possible values of "true" and "false". If the value is "true" then the delivery channel MUST specify that the Message is to be digitally signed using the certificate of the Party sending the Message, and archived by both Parties. The SenderNonRepudiation element under DocExchange/ebXMLSenderBinding (see Section 8.4.43) and the ReceiverNonRepudiation element under DocExchange/ebXMLReceiverBinding (see Section 0) further describe various parameters related to the implementation of non-repudiation of origin, such as the hashing algorithm, the signature algorithm, the signing certificate, the trust anchor, etc.

8.4.14.2 isNonRepudiationReceiptRequired attribute

The isNonRepudiationReceiptRequired attribute is a Boolean with possible values of "true" and "false". If the value is "true" then the delivery channel MUST specify that the Message is to be acknowledged by a digitally signed Receipt Acknowledgment signal Message, signed using the certificate of the Party that received the Message, that includes the digest(s) of the payload(s) of the Message being acknowledged. The SenderNonRepudiation element under DocExchange/ebXMLSenderBinding (see Section 8.4.43) and the ReceiverNonRepudiation element under DocExchange/ebXMLReceiverBinding (see Section 0) further describe various parameters related to the implementation of non-repudiation of receipt.

8.4.14.3 isConfidential attribute

The isConfidential attribute has the possible values of "none", "transient", "persistent", and "transient-and-persistent". These values MUST be interpreted as defined by the ebXML Business Process Specification Schema[ebBPSS]. In general, transient confidentiality can be implemented using a secure transport protocol like SSL; persistent confidentiality can be implemented using a digital envelope mechanism like S/MIME. Secure transport information is further provided in the TransportSender (see Section 8.4.25) and TransportReceiver (see Section 8.4.32) elements under the Transport element. Persistent encryption information is further provided in the SenderDigitalEnvelope element under DocExchange/ebXMLSenderBinding (see Section 8.4.48) and the ReceiverDigitalEnvelope element under DocExchange/ebXMLReceiverBinding (see Section 8.4.56).

8.4.14.4 isAuthenticated attribute

The isAuthenticated attribute has the possible values of "none", "transient", "persistent", and "persistent-and-transient”. If this attribute is set to any value other than "none", then the receiver MUST be able to verify the identity of the sender. In general, transient authentication can be implemented using a secure transport protocol like SSL (with or without the use of basic or digest authentication); persistent authentication can be implemented using a digital signature mechanism. Secure transport information is further provided in the TransportSender (see Section 8.4.25) and TransportReceiver (see Section 8.4.33) elements under the Transport element. Persistent authentication information is further provided in the SenderNonRepudiation element under DocExchange/ebXMLSenderBinding (see Section 8.4.43) and the ReceiverNonRepudiation element (under DocExchange/ebXMLReceiverBinding (see Section 0).

8.4.14.5 isAuthorizationRequired attribute

The isAuthorizationRequired attribute is a Boolean with possible of values of "true" and "false". If the value is "true" then it indicates that the delivery channel MUST specify that the sender of the Message is to be authorized before delivery to the application.

8.4.14.6 isTamperProof attribute

The isTamperProof attribute has the possible values of "none", "transient", "persistent", and "persistent-and-transient". If this attribute is set to a value other than "none", then it must be possible for the receiver to detect if the received message has been corrupted or tampered with. In general, transient tamper detection can be implemented using a secure transport like SSL; persistent tamper detection can be implemented using a digital signature mechanism. Secure transport information is further provided in the TransportSender (see Section 8.4.25) and TransportReceiver (see Section 8.4.48) elements under the Transport element. Digital signature information is further provided in the SenderNonRepudiation element under DocExchange/ebXMLSenderBinding (see Section 8.4.43) and the ReceiverNonRepudiation element under DocExchange/ebXMLReceiverBinding (see Section 0).
8.4.14.7 isIntelligibleCheckRequired attribute

The isIntelligibleCheckRequired attribute is a Boolean with possible values of "true" and "false". If the value is "true", then the receiver MUST verify that a business document is not garbled (i.e., passes schema validation) before returning a Receipt Acknowledgment signal.

8.4.14.8 timeToAcknowledgeReceipt attribute

The timeToAcknowledgeReceipt attribute is of type duration [XMLSCHEMA-2]. It specifies the time period within which the receiving Party has to acknowledge receipt of a business document.

If this attribute is specified, then the Receipt Acknowledgment signal MUST be used.

8.4.14.9 timeToAcknowledgeAcceptance attribute

The timeToAcknowledgeAcceptance attribute is of type duration [XMLSCHEMA-2]. It specifies the time period within which the receiving Party has to non-substantively acknowledge acceptance of a business document (i.e., after it has passed business rules validation).

If this attribute is specified, then the Acceptance Acknowledgment signal MUST be used.

8.4.14.10 timeToPerform attribute

The timeToPerform attribute is of type duration [XMLSCHEMA-2]. It specifies the time period, starting from the initiation of the RequestingBusinessActivity, within which the initiator of the transaction MUST have received the response, i.e., the business document associated with the RespondingBusinessActivity.

NOTE: The timeToPerform attribute associated with a BinaryCollaboration in BPSS is currently not modeled in this specification. Therefore, it cannot be overridden. In other words, the value specified at the BPSS level MUST be used.

When synchronous reply mode is in use (see Section 8.4.23.1), the TimeToPerform value SHOULD be used as the connection timeout.

NOTE: See section 10.6 for a description of changes in the CPPA 2.1 schema made to the data type of the timeToPerform attribute to align with Process Specifications conforming to [ebBPSS2].
8.4.14.11 retryCount attribute

The retryCount attribute is of type integer. It specifies the maximum number of times the Business Transaction MAY be retried should certain error conditions (e.g., time out waiting for the Receipt Acknowledgment signal) arise during its execution. Such retries MUST not be used when ebXML Reliable Messaging is employed to transport messages in the Business Transaction. In the latter case, retries are governed by the Retry, RetryInterval elements under the ReliableMessaging element.

8.4.15 ChannelId element

The ChannelId element identifies one or more DeliveryChannel elements that can be used for sending or receiving the corresponding action messages. Multiple ChannelId elements can be used to associate DeliveryChannel elements with different characteristics with the same CanSend or CanReceive element. For example, a Party that supports both HTTP and SMTP for sending the same action can specify different ChannelId attribute values for the corresponding channels. If using multiple DeliveryChannel elements, different EndPoint elements MUST be used, so that the receiving MSH can uniquely determine the DeliveryChannel element being used for this message exchange.

8.4.16 ActionContext element

The ActionContext element provides a mapping from the action attribute in the ThisPartyActionBinding element to the corresponding Business Process implementation-specific naming strategy, if any. If the Process-Specification document is defined by the ebXML Business Process Specification Schema[ebBPSS], the ActionContext element MUST be present.

Any business process/application implementation can use a combination of information in the action attribute and the ActionContext elements to make message routing decisions. If using alternative Business-Collaboration description schemas, the action attribute of the parent ThisPartyActionBinding element and/or the [XMLSCHEMA-1] wildcard element within the ActionContext element MAY be used to make routing decisions above the level of the Message Service Handler.

The ActionContext element has the following elements:

zero or one CollaborationActivity element,

zero or more [XML SCHEMA-1] wildcard elements.

The ActionContext element also has the following attributes:

a REQUIRED binaryCollaboration attribute,

a REQUIRED businessTransactionActivity attribute,

a REQUIRED requestOrResponseAction attribute.

NOTE: See section 10.6 for a description of the ActionContext2 element that is used for Process Specifications conforming to [ebBPSS2].
8.4.16.1 binaryCollaboration attribute

The REQUIRED binaryCollaboration attribute is a string that identifies the BinaryCollaboration for which the parent ThisPartyActionBinding is defined. If the Process-Specification document is defined by the ebXML Business Process Specification Schema[ebBPSS], then the value of the binaryCollaboration attribute MUST match the value of the name attribute of the BinaryCollaboration element as defined in the ebXML Business Process Specification Schema[ebBPSS].
8.4.16.2 businessTransactionActivity attribute

The REQUIRED businessTransactionActivity attribute is a string that identifies the Business Transaction for which the parent ThisPartyActionBinding is defined. If the Process-Specification document is defined by the ebXML Business Process Specification Schema[ebBPSS], the value of the businessTransactionActivity attribute MUST match the value of the name attribute of the BusinessTransactionActivity element, whose parent is the

 BinaryCollaboration referred to by the binaryCollaboration attribute.
8.4.16.3 requestOrResponseAction attribute

The REQUIRED requestOrResponseAction attribute is a string that identifies either the Requesting or Responding Business Activity for which the parent ThisPartyActionBinding is defined. For a ThisPartyActionBinding defined for the request side of a message exchange, if the Process-Specification document is defined by the ebXML Business Process Specification Schema [ebBPSS], the value of the requestOrResponseAction attribute MUST match the value of the name attribute of the RequestingBusinessActivity element corresponding to the Business Transaction specified in the businessTransactionActivity attribute. Similarly, for the response side of a message exchange, the value of the requestOrResponseAction attribute MUST match the value of the name attribute of the RespondingBusinessActivity element corresponding to the Business Transaction specified in the businessTransactionActivity attribute, as defined in the ebXML Business Process Specification Schema[ebBPSS].

8.4.17 CollaborationActivity element

The CollaborationActivity element supports the ActionContext element by providing the ability to map any nested BinaryCollaborations as defined in the ebXML Business Process Specification Schema[ebBPSS] to the action attribute. The CollaborationActivity element MUST be present when the BinaryCollaboration referred to by the binaryCollaboration attribute has a CollaborationActivity defined in the business process definition.

An example of the CollaborationActivity element is:

<tp:CollaborationActivity

 tp:name="Credit Check"/>

The CollaborationActivity element has zero or one child CollaborationActivity element to indicate further nesting of BinaryCollaborations.
The CollaborationActivity element also has one attribute:

a REQUIRED name attribute.

8.4.17.1 name attribute
The REQUIRED name attribute is a string that identifies the CollaborationActivity included in the BinaryCollaboration. If the Process-Specification document is defined by the ebXML Business Process Specification Schema[ebBPSS], the value of the name attribute MUST match the value of the name attribute of the CollaborationActivity within the BinaryCollaboration, as defined in the ebXML Business Process Specification Schema[ebBPSS].
8.4.18 Certificate element

The Certificate element defines certificate information for use in this CPP. One or more Certificate elements can be provided for use in the various security functions in the CPP. An example of the Certificate element is:

<tp:Certificate tp:certId="CompanyA_SigningCert">

 <ds:KeyInfo>. . .</ds:KeyInfo>

</tp:Certificate>
The Certificate element has a single REQUIRED attribute: certId. The Certificate element has a single child element: ds:KeyInfo.

The ds:KeyInfo element may contain a complete chain of certificates, but the leaf certificate is the Certificate element containing the key used in various asymmetric cryptographic operations. (The leaf certificate will be one that has been issued but has not been used to issue certificates.) If the leaf certificate has been issued by an intermediate certificate authority, the complete chain to the root certificate authority SHOULD be included because it aids in testing certificate validity with respect to a set of trust anchors.

8.4.18.1 certId attribute

The REQUIRED certId attribute is an [XML] ID that is referred to by a CertificateRef element elsewhere in the CPP. Here is an example of how a CertificateRef would refer to the Certificate element shown in the previous section:

<tp:SigningCertificateRef tp:certId="CompanyA_SigningCert"/>

8.4.18.2 ds:KeyInfo element

The ds:KeyInfo element defines the certificate information. The content of this element and any sub-elements are defined by the XML Digital Signature specification[XMLDSIG].

NOTE: Software for creation of CPPs and CPAs MUST recognize the ds:KeyInfo element and insert the sub-element structure necessary to define the certificate.

8.4.19 SecurityDetails element

The SecurityDetails element defines a set of TrustAnchors and an associated SecurityPolicy for use in this CPP. One or more SecurityDetails elements can be provided for use in the various security functions in the CPP. An example of the SecurityDetails element is:

<tp:SecurityDetails tp:securityId="CompanyA_MessageSecurity">
<tp:TrustAnchors tp:trustId="MessageTrustAnchors">

<tp:AnchorCertificateRef tp:certId="TrustedRootCertA3"/>

<tp:AnchorCertificateRef tp:certId="TrustedRootCertA5"/>

</tp:TrustAnchors>

<tp:SecurityPolicy> ... </tp:SecurityPolicy>

</tp:SecurityDetails>

The SecurityDetails element has zero or one TrustAnchors element that identifies a set of certificates that are trusted by the Party. It also has zero or one SecurityPolicy element.

The SecurityDetails element allows agreement to be reached on what root certificates will be used in checking the validity of the other Party’s certificates. It can also specify policy regarding operation of the public key infrastructure.

The SecurityDetails element has one attribute:

A REQUIRED securityId attribute.

8.4.19.1 securityId attribute

The REQUIRED securityId attribute is an [XML] ID that is referred to by an element elsewhere in the CPP. Here is an example of how a SigningSecurityDetailsRef would refer to the SecurityDetails element shown in the previous section:

<tp:SigningSecurityDetailsRef tp:securityId="CompanyA_MessageSecurity"/>

8.4.20 TrustAnchors element

The TrustAnchors element contains one or more AnchorCertificateRef elements, each of which refers to a Certificate element (under PartyInfo) that represents a certificate trusted by this Party. These trusted certificates are used in the process of certificate path validation. If a certificate in question does not “chain” to one of this Party’s trust anchors, it is considered invalid.

The TrustAnchors element eventually resolves into XMLDsig KeyInfo elements. These elements may contain several certificates (a chain), and may refer to those certificates using the RetrievalMethod element. When there is a chain, the trust anchor is the “leaf” certificate with respect to the “root” issuing certificate authority (CA) certificate. The root CA will be a self-issued and self-signed certificate, and using the Issuer information and perhaps key usage attributes, the leaf certificate (“issued but not issuing” within the chain) can be determined. The chain is included for convenience in that validity checks typically will chain to a “root” CA. Please note that the inclusion of a root CA in a chain does not mean that the root CA is being announced as a trust anchor. It is possible for there to be a PKI policy in which some, but not all, intermediate CAs are trusted. If a root CA were accepted as a trust anchor, all of its intermediate CAs, and all the certificates they issue, would be validated. That might not be what was intended.

8.4.21 SecurityPolicy element

The SecurityPolicy element is a placeholder for future apparatus that will enable the Party to specify its policy and compliance regarding specific components of its public key infrastructure. For example, it might stipulate revocation checking procedures or constraints related to name, usage, or path length.

8.4.22 DeliveryChannel element

A delivery channel is a combination of a Transport element and a DocExchange element that describes the Party's Message communication characteristics. The CPP SHALL contain one or more DeliveryChannel elements, one or more Transport elements, and one or more DocExchange elements. Each delivery channel SHALL refer to any combination of a DocExchange element and a Transport element. The same DocExchange element or the same Transport element can be referred to by more than one delivery channel. Two delivery channels can use the same transport protocol and the same document-exchange protocol and differ only in details such as communication addresses or security definitions. Figure 5 illustrates three delivery channels.

[image: image5.wmf]Figure 3: Overview of

Collaboration-Protocol Agreements

 (

CPA

)

CPA

 ID

Party’s

 information

-

 Party

 A

-

Party

 B

Transport Protocol

Transport Security

DocExchange

 Protocol

Link to Process-

Specification Doc.

Retry

-etc.

CPP

For

Party

 A

CPP

For

Party

 B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-

ment

 on

CPA

 has

arrived.

3

Agree-

ment

 on

CPA

 has

arrived.

4 Start Business activities with each other

The delivery channels have ID attributes with values "DC1", "DC2", and "DC3". Each delivery channel contains one transport definition and one document-exchange definition. Each transport definition and each document-exchange definition also has an ID attribute whose value is shown in the figure. Note that delivery channel DC3 illustrates that a delivery channel can refer to the same transport definition and document-exchange definition used by other delivery channels but a different combination. In this case delivery channel DC3 is a combination of transport definition T2 (also referred to by delivery channel DC2) and document-exchange definition X1 (also referred to by delivery channel DC1).

Following is the delivery-channel syntax.

<tp:DeliveryChannel

 tp:channelId="channel1"

 tp:transportId="transport1"

 tp:docExchangeId="docExchange1"

 <tp:MessagingCharacteristics

 tp:syncReplyMode="none"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"

 tp:actor="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"/>

</tp:DeliveryChannel>
Each DeliveryChannel element identifies one Transport element and one DocExchange element that together make up a single delivery channel definition.

The DeliveryChannel element has the following attributes:

a REQUIRED channelId attribute,

a REQUIRED transportId attribute,

a REQUIRED docExchangeId attribute.

The DeliveryChannel element has one REQUIRED child element, MessagingCharacteristics.

8.4.22.1 channelId attribute

The channelId attribute is an [XML] ID attribute that uniquely identifies the DeliveryChannel element for reference, using IDREF attributes, from other parts of the CPP or CPA.

8.4.22.2 transportId attribute

The transportId attribute is an [XML] IDREF that identifies the Transport element that defines the transport characteristics of the delivery channel. It MUST have a value that is equal to the value of a transportId attribute of a Transport element elsewhere within the CPP document.

8.4.22.3 docExchangeId attribute

The docExchangeId attribute is an [XML] IDREF that identifies the DocExchange element that defines the document-exchange characteristics of the delivery channel. It MUST have a value that is equal to the value of a docExchangeId attribute of a DocExchange element elsewhere within the CPP document.

8.4.23 MessagingCharacteristics element

The MessagingCharacteristics element describes the attributes associated with messages delivered over a given delivery channel. The collaborating Parties can stipulate that these attributes be fixed for all messages sent through the delivery channel, or they can agree that these attributes be variable on a “per message” basis.

CPP and CPA composition tools and CPA deployment tools SHALL check the delivery channel definition (transport and document-exchange) for consistency with these attributes.

The MessagingCharacteristics element has the following attributes:

An IMPLIED syncReplyMode attribute,

an IMPLIED ackRequested attribute,

an IMPLIED ackSignatureRequested attribute,

an IMPLIED duplicateElimination attribute,

an IMPLIED actor attribute.

8.4.23.1 syncReplyMode attribute

The syncReplyMode attribute is an enumeration comprised of the following possible values:

"mshSignalsOnly"

"signalsOnly"

"responseOnly"

"signalsAndResponse"

"none"

This attribute, when present, indicates what the sending application expects in a synchronous response (the delivery channel MUST be bound to a synchronous communication protocol such as HTTP when syncReplyMode is not "none").

The value of "mshSignalsOnly" indicates that the response returned (on the HTTP 200 response in the case of HTTP) will only contain standalone Message Service Handler (MSH) level messages like Acknowledgment (for Reliable Messaging) and Error messages. All other application level responses are to be returned asynchronously (using a DeliveryChannel element determined by the service and action in question).

The value of "signalsOnly" indicates that the response returned (on the HTTP 200 response in the case of HTTP) will only include one or more Business signals as defined in the Process-Specification document[ebBPSS], plus any piggybacked MSH level signals, but not a Business-response Message. If the Process-Specification calls for the use of a Business-response Message, then the latter MUST be returned asynchronously. If the Business Process does not call for the use of an Acceptance Acknowledgment signal, then the Action element in the synchronously returned ebXML Message MUST be set to "ReceiptAcknowledgment". Otherwise, the Action element in the synchronously returned ebXML Message (which includes both a Receipt Acknowledgment signal and an Acceptance Acknowledgment signal) MUST be set to "AcceptanceAcknowledgment".

The value of "responseOnly" indicates that any Business signals, even if they are indicated in the Process Specification, are to be omitted and only the Business-response Message will be returned synchronously, plus any piggybacked MSH level signals. To be consistent, the timeToAcknowledgeReceipt and timeToAcknowledgeAcceptance attributes under the corresponding BusinessTransactionCharacteristics element SHOULD be set to zero to indicate that these signals are not to be used at all. The Action element in the synchronously returned ebXML Message is determined by the name of the action in the CPA that corresponds to the appropriate RespondingBusinessActivity in the Business Process.

The value of "signalsAndResponse" indicates that the application will synchronously return the Business-response Message in addition to one or more Business signals, plus any piggybacked MSH level signals. In this case, each signal and response that is bundled into the same ebXML message must appear as a separate MIME part (i.e., be placed in a separate payload container). To be consistent, the timeToAcknowledgeReceipt and timeToPerform attributes under the corresponding BusinessTransactionCharacteristics element SHOULD have identical values. The timeToAcknowledgeAcceptance attribute, if specified, SHOULD also have the same value as the above two timing attributes. The Action element in the synchronously returned ebXML Message is determined by the name of the action in the CPA that corresponds to the appropriate RespondingBusinessActivity in the Business Process.

The Receipt Acknowledgment signal for the Business-response Message, sent from the request initiator back to the responder, if called for by the Process-Specification, MUST also be delivered over the same synchronous connection.

NOTE: For HTTP 1.1 clients and servers, two HTTP requests and replies will have to be sent and received on the same connection. Implementations that implicitly assume that a HTTP connection will be closed after a single synchronous request reply interchange will not be able to support the "signalsAndResponse" synchronous reply mode.

The value of "none", which is the implied default value in the absence of the syncReplyMode attribute, indicates that neither the Business-response Message nor any Business signal(s) will be returned synchronously. In this case, all Message Service Handler level and Business level messages will be returned as separate asynchronous messages.

The ebXML Message Service's SyncReply element is included in the SOAP Header whenever the syncReplyMode attribute has a value other than "none". If the delivery channel identifies a transport protocol that has no synchronous capabilities (such as SMTP), the BusinessTransactionCharacteristics element SHALL NOT have a syncReplyMode attribute with a value other than "none".

When the value of the syncReplyMode attribute is other than "none", a synchronous delivery channel SHALL be used to exchange all messages necessary for conducting a business transaction. If the Process Specification calls for the use of non-repudiation of receipt for the response message, then the initiator is expected to return a signed ReceiptAcknowledgment signal for the responder’s response message.

8.4.23.2 ackRequested attribute

The IMPLIED ackRequested attribute is an enumeration comprised of the following possible values:

"always"

"never"

"perMessage"

This attribute has the default value "perMessage" meaning whether the AckRequested element in the SOAP Header is present or absent can be varied on a "per message" basis. If this attribute is set to "always", then every message sent over the delivery channel MUST have an AckRequested element in the SOAP Header. If this attribute is set to "never", then every message sent over the delivery channel MUST NOT have an AckRequested element in the SOAP Header.

If the ackRequested attribute is not set to "never", then the ReliableMessaging element must be present under the corresponding DocExchange element to provide the necessary Reliable Messaging parameters.

8.4.23.3 ackSignatureRequested attribute

The IMPLIED ackSignatureRequested attribute is an enumeration comprised of the following possible values:

"always"

"never"

"perMessage"

This attribute determines how the signed attribute within the AckRequested element in the SOAP Header is to be set. It has the default value "perMessage" meaning that the signed attribute in the AckRequested element within the SOAP Header can be set to "true" or "false" on a "per message" basis. If this attribute is set to "always", then every message sent over the delivery channel that has an AckRequested element in the SOAP Header MUST have its signed attribute set to "true". If this attribute is set to "never", then every message sent over the delivery channel that has an AckRequested element in the SOAP Header MUST have its signed attribute set to "false". If the ackRequested attribute is set to "never", the setting of the ackSignatureRequested attribute has no effect.

NOTE: By enabling the use of signed Acknowledgment for reliably delivered messages, a weak form of non-repudiation of receipt can be supported. This is considered weaker than the Receipt Acknowledgment signal because no schema check can be performed on the payload prior to the return of the Acknowledgment. The ackSignatureRequested attribute can be set independent of the value for the isNonRepudiationReceiptRequired attribute under the BusinessTransactionCharacteristics element. Thus, even if the original Process-Specification specifies that non-repudiation of receipt is to be performed, the CPP and/or CPA can override this requirement, set isNonRepudiationReceiptRequired to "false" and ackSignatureRequested to "always" and thereby achieve the weak form of non-repudiation of receipt.

8.4.23.4 duplicateElimination attribute

The IMPLIED duplicateElimination attribute is an enumeration comprised of the following possible values:

"always"

"never"

"perMessage"

This attribute determines whether the DuplicateElimination element within the MessageHeader element in the SOAP Header is to be present. It has the default value "perMessage" meaning that the DuplicateElimination element within the SOAP Header can be present or absent on a "per message" basis. If this attribute is set to "always", then every message sent over the delivery channel MUST have a DuplicateElimination element in the SOAP Header. If this attribute is set to "never", then every message sent over the delivery channel MUST NOT have a DuplicateElimination element in the SOAP Header. If the duplicateElimination attribute is not set to "never", then the PersistDuration element must be present under the corresponding DocExchange element to provide the necessary persistent storage parameter.

8.4.23.5 actor attribute

The IMPLIED actor attribute is an enumeration of the following possible values:

"urn:oasis:names:tc:ebxml-msg:actor:nextMSH"

"urn:oasis:names:tc:ebxml-msg:actor:toPartyMSH"

This is a URI that will be used as the value for the actor attribute in the AckRequested element (see [ebMS]) in case the latter is present in the SOAP Header, as governed by the ackRequested attribute within the MessagingCharacteristics element in the CPA. If the ackRequested attribute is set to "never", the setting of the actor attribute has no effect.

8.4.24 Transport element

The Transport element defines the Party's network communication capabilities. One or more Transport elements MUST be present in a CPP, each of which describes a mechanism the Party uses to send messages, a mechanism it uses to receive messages, or both. The following example illustrates the structure of a typical Transport element:

<tp:Transport tp:transportId="transportA1">

 <tp:TransportSender> <!-- 0 or 1 time -->

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:Protocol>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">

 SSL

 </tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyA_ClientCert"/>

 <tp:ServerSecurityDetailsRef

 tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver> <!-- 0 or 1 time -->

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:Protocol>

 <tp:Endpoint

 tp:uri="https://www.CompanyA.com/servlets/ebxmlhandler"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">

 SSL

 </tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyA_ServerCert"/>

 <tp:ClientSecurityDetailsRef

 tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

</tp:Transport>

The Transport element consists of zero or one TransportSender element and zero or one TransportReceiver element.

A Transport that contains both TransportSender and TransportReceiver elements is said to be bi-directional in that it can be used for send and receiving messages. If the Party prefers to communicate in synchronous mode (where replies are returned over the same TCP connections messages are sent on; see Section 8.4.23.1), its CPP MUST provide a ServiceBinding that contains ActionBindings that are bound to a DeliveryChannel that uses a bi-directional Transport.

A Transport that contains either a TransportSender or a TransportReceiver element, but not both, is said to be unidirectional. A unidirectional Transport can only be used for sending or receiving messages (not both) depending on which element it includes.

A CPP contains as many Transport elements as are needed to fully express the Party’s inbound and outbound communication capabilities. If, for example, the Party can send and receive messages via HTTP and SMTP, its CPP would contain a Transport element containing its HTTP properties and another Transport element containing its SMTP properties.

The Transport element has

a REQUIRED transportId attribute.

8.4.24.1 transportId attribute

The REQUIRED transportId attribute is an [XML] ID that is refers to a Transport element elsewhere in the CPP. Here is an example of a DeliveryChannel that refers to the Transport element shown in the previous section:

<tp:DeliveryChannel tp:channelId="channelA1"

 tp:transportId="transportA1"

 tp:docExchangeId="docExchangeA1">

 <tp:MessagingCharacteristics . . . />

</tp:DeliveryChannel>

8.4.25 TransportSender element

The TransportSender element contains properties related to the sending side of a DeliveryChannel. Its REQUIRED TransportProtocol element specifies the transport protocol that will be used for sending messages. The AccessAuthentication element(s), if present, specifies the type(s) of access authentication supported by the client. The TransportClientSecurity element, if present, defines the Party’s provisions for client-side transport layer security.

The TransportSender element has no attributes.

8.4.26 TransportProtocol element

The TransportProtocol element identifies a transport protocol that the Party is capable of using to send or receive Business data. The IMPLIED version attribute identifies the specific version of the protocol.

NOTE: It is the aim of this specification to enable support for any transport capable of carrying MIME content using the vocabulary defined herein.

8.4.27 AccessAuthentication element

The AccessAuthentication element, if present, indicates the authentication mechanism that MAY be used by a transport server to challenge a client request and by a client to provide authentication information to a server. For example, [RFC2617] specifies two access authentication schemes for HTTP: "basic" and "digest". A client that supports both would have two AccessAuthentication elements, as shown below. When multiple schemes are supported, the order in which they are specified in the CPP indicates the order of preference.

<tp:TransportSender>
 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>
 <tp:AccessAuthentication>digest</tp:AccessAuthentication>
 <tp:AccessAuthentication>basic</tp:AccessAuthentication>
 <tp:TransportClientSecurity>
 ...
 </tp:TransportClientSecurity>
</tp:TransportSender>
 NOTE: A CPA will contain, for each TransportSender or TransportReceiver, only the agreed-upon AccessAuthentication elements.

NOTE: For basic authentication, the userid and password values are configured through means outside of this specification.
8.4.28 TransportClientSecurity element

The TransportClientSecurity element provides information about this Party’s transport client needed by the other Party’s transport server to enable a secure connection to be established between the two. It contains a REQUIRED TransportSecurityProtocol element, zero or one ClientCertificateRef element, zero or one ServerSecurityDetailsRef element, and zero or more EncryptionAlgorithm elements.

In asynchronous messaging mode, the sender will always be a client to the receiver’s server. In synchronous messaging mode, the MSH-level reply (and maybe a bundled business signal and/or business response) is sent back over the same connection the initial business message arrived on. In such cases, where the sender is the server and the receiver is the client and the connection already exists, the sender’s TransportClientSecurity and the receiver’s TransportServerSecurity elements SHALL be ignored.

8.4.29 TransportSecurityProtocol element

The TransportSecurityProtocol element identifies the transport layer security protocol that is supported by the parent Transport. The IMPLIED version attribute identifies the specific version of the protocol.

For encryption, the protocol is TLS Version 1.0[RFC2246], which uses public-key encryption. Appendix E of the TLS Version 1.0 specification[RFC2246] covers backward compatibility with SSL [SSL].

8.4.30 ClientCertificateRef element

The ClientCertificateRef element identifies the certificate to be used by the client’s transport security module. The REQUIRED IDREF attribute certId identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that has the matching ID attribute value. A TLS-capable HTTP client, for example, uses this certificate to authenticate itself with receiver’s secure HTTP server.

The ClientCertificateRef element, if present, indicates that mutual authentication between client and server (i.e., initiator and responder of the HTTP connection) MUST be performed.

The ClientCertificateRef element has

A REQUIRED certId attribute.

8.4.31 ServerSecurityDetailsRef element

The ServerSecurityDetailsRef element identifies the trust anchors and security policy that this Party will apply to the other Party’s server authentication certificate.

The ServerSecurityDetailsRef element has

A REQUIRED securityId attribute.

8.4.32 Encryption Algorithm

Zero or more EncryptionAlgorithm elements may be included under the TransportClientSecurity or TransportServerSecurity element. Multiple elements are of more use in a CPP context, to announce capabilities or preferences; normally, a CPA will contain the agreed upon context. When zero or more than one element is present in a CPA, the Parties agree to allow the automatic negotiation capability of the TransportSecurityProtocol element to determine the actual algorithm used.
The elements' ordering will reflect the preference for algorithms. A primary reason for including this element is to permit use of the minimumStrength attribute; a large value for this attribute can indicate that high encryption strength is desired or has been agreed upon for the TransportSecurityProtocol.

See section 8.4.50 for the full description of this element.

For SSL and TLS, it is customary to specify cipher suite values as text values for the EncryptionAlgorithm element. These values include, but are not limited to:

· SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA,

· TLS_RSA_WITH_3DES_EDE_CBC_SHA,

· SSL_RSA_WITH_3DES_EDE_CBC_SHA,

· SSL_RSA_WITH_RC4_128_MD5,

· SSL_RSA_WITH_RC4_128_SHA,

· SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA,

· SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA.

Consult the original specifications for enumerations and discussions of these values.

8.4.33 TransportReceiver element

The TransportReceiver element contains properties related to the receiving side of a DeliveryChannel. Its REQUIRED TransportProtocol element specifies the transport protocol that will be used for receiving messages. One or more REQUIRED Endpoint elements specify logical addresses where messages can be received. The AccessAuthentication element(s), if present, indicates the type(s) of access authentication supported by the server. Zero or one TransportServerSecurity element defines the Party’s provisions for server-side transport layer security.

The TransportReceiver element has no attributes.

8.4.34 Endpoint element

One or more Endpoint elements SHALL be provided for each TransportReceiver element. Each Endpoint specifies a logical address and an indication of what kinds of messages can be received at that location.

Each Endpoint has the following attributes:

a REQUIRED uri attribute,

an IMPLIED type attribute.

8.4.34.1 uri attribute

The REQUIRED uri attribute specifies a URI identifying the address of a resource. The value of the uri attribute SHALL conform to the syntax for expressing URIs as defined in [RFC2396].

8.4.34.2 type attribute

The type attribute identifies the purpose of this endpoint. The value of type is an enumeration; permissible values are "login", "request", "response", "error", and "allPurpose". There can be, at most, one of each. If the type attribute is omitted, its value defaults to "allPurpose". The "login" endpoint is used for the address for the initial Message between the two Parties. The "request" and "response" endpoints are used for request and response Messages, respectively. To enable error Messages to be received, each Transport element SHALL contain at least one endpoint of type "error", "response", or "allPurpose".

The types of Endpoint element within a TransportReceiver element MUST not be overlapping. Thus, it would be erroneous to include both an "allPurpose" Endpoint element along with another Endpoint element of any type.

8.4.35 TransportServerSecurity element

The TransportServerSecurity element provides information about this Party’s transport server needed by the other Party’s transport client to enable a secure connection to be established between the two. It contains a REQUIRED TransportSecurityProtocol element, a REQUIRED ServerCertificateRef element, zero or one ClientSecurityDetailsRef element, and zero or more EncryptionAlgorithm elements. See Section 8.4.32 for a description of the EncryptionAlgorithm element.

NOTE: See the note in Section 8.4.27 regarding the relevance of the TransportServerSecurity element when synchronous replies are in use.

8.4.36 ServerCertificateRef element

The ServerCertificateRef element, if present, identifies the certificate to be used by the server’s transport security module. The REQUIRED IDREF attribute certId identifies the certificate to be used by referring to the Certificate element (under PartyInfo) that has the matching ID attribute value. A TLS-enabled HTTP server, for example, uses this certificate to authenticate itself with the sender’s TLS client.

The ServerCertificateRef element MUST be present if the transport security protocol uses certificates. It MAY be omitted otherwise (e.g. if authentication is by password).

The ServerCertificateRef element has

A REQUIRED certId attribute.

8.4.37 ClientSecurityDetailsRef element

The ClientSecurityDetailsRef element, if present, identifies the trust anchors and security policy that this Party will apply to the other Party’s client authentication certificate.

The ClientSecurityDetailsRef element has

A REQUIRED securityId attribute.

8.4.38 Transport protocols

In the following sections, we discuss the specific details of each supported transport protocol.

8.4.38.1 HTTP

HTTP is Hypertext Transfer Protocol[HTTP]. For HTTP, the endpoint is a URI that SHALL conform to [RFC2396]. Depending on the application, there MAY be one or more endpoints, whose use is determined by the application.

Following is an example of an HTTP endpoint:

<tp:Endpoint tp:uri="http://example.com/servlet/ebxmlhandler"

 tp:type="request"/>

The "request" and "response" endpoints can be dynamically overridden for a particular request or asynchronous response by application-specified URIs in Business documents exchanged under the CPA.

For a synchronous response, the "response" endpoint is ignored if present. A synchronous response is always returned on the existing connection, i.e. to the URI that is identified as the source of the connection.

8.4.38.2 SMTP

SMTP is Simple Mail Transfer Protocol[SMTP]. For use with this standard, Multipurpose Internet Mail Extensions[MIME] MUST be supported. For SMTP, the communication address is the fully qualified mail address of the destination Party as defined by [RFC2822]. Following is an example of an SMTP endpoint:

<tp:Endpoint tp:uri="mailto:ebxmlhandler@example.com"

 tp:type="request"/>
NOTE: The SMTP Mail Transfer Agent (MTA) can encode binary data when the receiving MTA does not support binary transfer. In general, SMTP transfer may involve coding and recoding of Content-Transfer-Encodings as a message moves along a sequence of MTAs. Such changes can in some circumstances invalidate some kinds of signatures even though no malicious actions or transmission errors have occurred.

NOTE: SMTP by itself (without any authentication or encryption) is subject to denial of service and masquerading by unknown Parties. It is strongly suggested that those Parties who choose SMTP as their transport layer also choose a suitable means of encryption and authentication either in the document-exchange layer or in the transport layer such as [S/MIME].

NOTE: SMTP is an asynchronous protocol that does not guarantee a particular quality of service. A transport-layer acknowledgment (i.e. an SMTP acknowledgment) to the receipt of a mail Message constitutes an assertion on the part of the SMTP server that it knows how to deliver the mail Message and will attempt to do so at some point in the future. However, the Message is not hardened and might never be delivered to the recipient. Furthermore, the sender will see a transport-layer acknowledgment only from the nearest node. If the Message passes through intermediate nodes, SMTP does not provide an end-to-end acknowledgment. Therefore receipt of an SMTP acknowledgment does not guarantee that the Message will be delivered to the application and failure to receive an SMTP acknowledgment is not evidence that the Message was not delivered. It is RECOMMENDED that the reliable-messaging protocol in the ebXML Message Service be used with SMTP.

8.4.38.3 FTP

FTP is File Transfer Protocol[RFC959].

Each Party sends a Message using FTP PUT. The endpoint specifies the user id and input directory path (for PUTs to this Party). An example of an FTP endpoint is:

<tp:Endpoint uri="ftp://userid@server.foo.com"

 tp:type="request"/>
Since FTP needs to be compatible across all implementations, the FTP for ebXML will use the minimum sets of commands and parameters available for FTP as specified in [RFC959], Section 5.1, and modified in [RFC1123], Section 4.1.2.13. The mode SHALL be stream only and the type MUST be ASCII Non-print (AN), Image (I) (binary), or Local 8 (L 8) (binary between 8-bit machines and machines with 36 bit words – for an 8-bit machine Local 8 is the same as Image).

Stream mode closes the data connection upon end of file. The server side FTP MUST set control to "PASV" before each transfer command to obtain a unique port pair if there are multiple third party sessions.

NOTE: [RFC 959] states that User-FTP SHOULD send a PORT command to assign a non-default data port before each transfer command is issued to allow multiple transfers during a single FTP because of the long delay after a TCP connection is closed until its socket pair can be reused.

NOTE: The format of the 227 reply to a PASV command is not well standardized and an FTP client might assume that the parentheses indicated in [RFC959] will be present when in some cases they are not. If the User-FTP program doesn’t scan the reply for the first digit of host and port numbers, the result will be that the User-FTP might point at the wrong host. In the response, the h1, h2, h3, h4 is the IP address of the server host and the p1, p2 is a non-default data transfer port that PASV has assigned.

NOTE: As a recommendation for firewall transparency, [RFC1579] proposes that the client sends a PASV command, allowing the server to do a passive TCP open on some random port, and inform the client of the port number. The client can then do an active open to establish the connection.

NOTE: Since STREAM mode closes the data connection upon end of file, the receiving FTP might assume abnormal disconnect if a 226 or 250 control code hasn’t been received from the sending machine.

NOTE: [RFC1579] also makes the observation that it might be worthwhile to enhance the FTP protocol to have the client send a new command APSV (all passive) at startup that would allow a server that implements this option to always perform a passive open. A new reply code 151 would be issued in response to all file transfer requests not preceded by a PORT or PASV command; this Message would contain the port number to use for that transfer. A PORT command could still be sent to a server that had previously received APSV; that would override the default behavior for the next transfer operation, thus permitting third-party transfers.

8.4.39 DocExchange Element

The DocExchange element provides information that the Parties MUST agree on regarding exchange of documents between them. This information includes the messaging service properties (e.g. ebXML Message Service[ebMS]).

Following is the structure of the DocExchange element of the CPP. Subsequent sections describe each child element in greater detail.

<tp:DocExchange tp:docExchangeId="docExchangeB1">

 <tp:ebXMLSenderBinding tp:version="2.0">
<!-- 0 or 1 -->

 <tp:ReliableMessaging>

<!-- 0 or 1 -->

 . . .

 </tp:ReliableMessaging>

 <tp:PersistDuration> <!-- 0 or 1 -->

 . . .

 </tp:PersistDuration>

 <tp:SenderNonRepudiation>

<!-- 0 or 1 -->

 . . .

 </tp:SenderNonRepudiation>

 <tp:SenderDigitalEnvelope>

<!-- 0 or 1 -->

 . . .

 </tp:SenderDigitalEnvelope>

 <tp:NamespaceSupported>

<!-- 0 or more -->

 . . .

 </tp:NamespaceSupported>

 </tp:ebXMLSenderBinding>

 <tp:ebXMLReceiverBinding tp:version="2.0">
<!-- 0 or 1 -->

 <tp:ReliableMessaging>

<!-- 0 or 1 -->

 . . .

 </tp:ReliableMessaging>

 <tp:PersistDuration> <!-- 0 or 1 -->

 . . .

 </tp:PersistDuration>

 <tp:ReceiverNonRepudiation>

<!-- 0 or 1 -->

 . . .

 </tp:ReceiverNonRepudiation>

 <tp:ReceiverDigitalEnvelope>

<!-- 0 or 1 -->

 . . .

 </tp:ReceiverDigitalEnvelope>

 <tp:NamespaceSupported>

<!-- 0 or more -->

 . . .

 </tp:NamespaceSupported>

 </tp:ebXMLReceiverBinding>

</tp:DocExchange>

The DocExchange element is comprised of zero or one ebXMLSenderBinding child element and zero or one ebXMLReceiverBinding child element. It MUST have at least one child element. CPP and CPA composition tools and CPA deployment tools SHALL verify the presence of a child element.
NOTE: The document-exchange section can be extended to messaging services other than the ebXML Message service by adding additional xxxSenderBinding and xxxReceiverBinding elements and their child elements that describe the other services, where xxx is replaced by the name of the additional binding. An example is XMLPSenderBinding/XMLPReceiverBinding, which might define support for the future XML Protocol specification.

8.4.39.1 docExchangeId attribute

The DocExchange element has a single REQUIRED docExchangeId attribute that is an [XML] ID that provides a unique identifier that can be referenced from elsewhere within the CPP document.
8.4.40 ebXMLSenderBinding element

The ebXMLSenderBinding element describes properties related to sending messages with the ebXML Message Service[ebMS]. The ebXMLSenderBinding element is comprised of the following child elements:

zero or one ReliableMessaging element which specifies the characteristics of reliable messaging,

zero or one PersistDuration element which specifies the duration for which certain messages have to be stored persistently for the purpose of duplicate elimination,

zero or one SenderNonRepudiation element which specifies the sender’s requirements and certificate for message signing,

zero or one SenderDigitalEnvelope element which specifies the sender’s requirements for encryption by the digital-envelope[DIGENV] method,

zero or more NamespaceSupported elements that identify any namespace extensions supported by the messaging service implementation.

The ebXMLSenderBinding element has one attribute:

a REQUIRED version attribute.

8.4.40.1 version attribute

The REQUIRED version attribute identifies the version of the ebXML Message Service specification being used.

8.4.41 ReliableMessaging element

The ReliableMessaging element specifies the properties of reliable ebXML Message exchange. The default that applies if the ReliableMessaging element is omitted is "BestEffort". The following is the element structure:

<tp:ReliableMessaging>

 <tp:Retries>5</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

Semantics of reliable messaging are explained in the ebXML Message Service specification[ebMS] chapter on Reliable Messaging Combinations.

The ReliableMessaging element is comprised of the following child elements.

zero or one Retries element,

zero or one RetryInterval element,

a REQUIRED MessageOrderSemantics element.

8.4.41.1 Retries and RetryInterval elements

The Retries and RetryInterval elements specify the permitted number of retries and the interval, expressed as an XML Schema[XMLSCHEMA-2] duration, between retries of sending a reliably delivered Message following a timeout waiting for the Acknowledgment. The purpose of the RetryInterval element is to improve the likelihood of success on retry by deferring the retry until any temporary conditions that caused the error might be corrected. The RetryInterval applies to the time between sending of the original message and the first retry, as well as the time between all subsequent retries.

The Retries and RetryInterval elements MUST either be included together or be omitted together. If they are omitted, the values of the corresponding quantities (number of retries and retry interval) are a local matter at each Party.

8.4.41.2 MessageOrderSemantics element

The MessageOrderSemantics element is an enumeration comprised of the following possible values:

"Guaranteed"

"NotGuaranteed"

The presence of a MessageOrderSemantics element in the SOAP Header for ebXML messages determines if the ordering of messages sent from the From Party needs to be preserved so that the To Party receives those messages in the order in which they were sent. If the MessageOrderSemantics element is set to "Guaranteed", then the ebXML message MUST contain a MessageOrder element in the SOAP Header. If the MessageOrderSemantics element is set to "NotGuaranteed", then the ebXML message MUST NOT contain a MessageOrder element in the SOAP Header. Guaranteed message ordering implies the use of duplicate elimination. Therefore, the PersistDuration element MUST also appear if MessageOrderSemantics is set to "Guaranteed".

8.4.42 PersistDuration element

The value of the PersistDuration element is the minimum length of time, expressed as an XML Schema[XMLSCHEMA-2] duration, that data from a Message that is sent reliably is kept in Persistent Storage by an ebXML Message-Service implementation that receives that Message to facilitate the elimination of duplicates. This duration also applies to response messages that are kept persistently to allow automatic replies to duplicate messages without their repeated processing by the application. For rules that govern the PersistDuration element, refer to Sections 8.4.23.4 and 8.4.41.2.

8.4.43 SenderNonRepudiation element

The SenderNonRepudiation element conveys the message sender’s requirements and certificate for non-repudiation. Non-repudiation both proves who sent a Message and prevents later repudiation of the contents of the Message. Non-repudiation is based on signing the Message using XML Digital Signature[XMLDSIG]. The element structure is as follows:

<tp:SenderNonRepudiation>

 <tp:NonRepudiationProtocol>

 http://www.w3.org/2000/09/xmldsig#

 </tp:NonRepudiationProtocol>

 <tp:HashFunction>

 http://www.w3.org/2000/09/xmldsig#sha1

 </tp:HashFunction>

 <tp:SignatureAlgorithm>

 http://www.w3.org/2000/09/xmldsig#dsa-sha1

 </tp:SignatureAlgorithm>

 <tp:SigningCertificateRef tp:certId="CompanyA_SigningCert"/>

</tp:SenderNonRepudiation>

If the SenderNonRepudiation element is omitted, the Messages are not digitally signed.

The SenderNonRepudiation element is comprised of the following child elements:

a REQUIRED NonRepudiationProtocol element,

a REQUIRED HashFunction (e.g. SHA1, MD5) element,

one or more REQUIRED SignatureAlgorithm element,

a REQUIRED SigningCertificateRef element

When used within a CPP, the SignatureAlgorithm element can be repeated to indicate supported capabilities. The order within a repeated list of elements indicates comparative preference, from most to least preferred. When used within a CPA, the SignatureAlgorithm value is the agreed upon signature algorithm. See section 9.6.2.
8.4.44 NonRepudiationProtocol element

The REQUIRED NonRepudiationProtocol element identifies the technology that will be used to digitally sign a Message. It has a single IMPLIED version attribute whose value is a string that identifies the version of the specified technology.

8.4.45 HashFunction element

The REQUIRED HashFunction element identifies the algorithm that is used to compute the digest of the Message being signed.

8.4.46 SignatureAlgorithm element

The REQUIRED SignatureAlgorithm element identifies the algorithm that is used to compute the value of the digital signature. Expected values include: RSA-MD5, RSA-SHA1, DSA-MD5, DSA-SHA1, SHA1withRSA, MD5withRSA, and so on.

NOTE: Implementations should be prepared for values in upper and/or lower case and with varying usage of hyphens and conjunctions.

The SignatureAlgorithm element has three attributes:

an IMPLIED oid attribute,

an IMPLIED w3c attribute,

an IMPLIED enumeratedType attribute.

8.4.46.1 oid attribute

The oid attribute serves as a way to supply an object identifier for the signature algorithm. The formal definition of OIDs comes from ITU-T recommendation X.208 (ASN.1), chapter 28; the assignment of the "top of the tree" is given in Appendix B, Appendix C and Appendix D of X.208 (http://www.itu.int/POD/). Commonly used values (in the IETF dotted integer format) for signature algorithms include:

· 1.2.840.113549.1.1.4 - MD5 with RSA encryption,

· 1.2.840.113549.1.1.5 - SHA-1 with RSA Encryption.

8.4.46.2 w3c attribute

The w3c attribute serves as a way to supply an object identifier for the signature algorithm. The definitions of these values are found in the [XMLDSIG] or [XMLENC] specifications. Expected values for signature algorithms include:

· http://www.w3.org/2000/09/xmldsig#dsa-sha1,

· http://www.w3.org/2000/09/xmldsig#rsa-sha1.

8.4.46.3 enumeratedType attribute

The enumeratedType attribute specifies a different way of interpreting the text value of the SignatureAlgorithm element. This attribute is for identifying future signature algorithm identification schemes and formats.

8.4.47 SigningCertificateRef element

The REQUIRED SigningCertificateRef element identifies the certificate the sender uses for signing messages. Its REQUIRED IDREF attribute, certId refers to the Certificate element (under PartyInfo) that has the matching ID attribute value.

8.4.48 SenderDigitalEnvelope element

The SenderDigitalEnvelope element provides the sender’s requirements for message encryption using the [DIGENV] digital-envelope method. Digital-envelope is a procedure in which the Message is encrypted by symmetric encryption (shared secret key) and the secret key is sent to the Message recipient encrypted with the recipient's public key. The element structure is:

<tp:SenderDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">

 S/MIME

 </tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionSecurityDetailsRef

 tp:securityId="CompanyA_MessageSecurity"/>

</tp:SenderDigitalEnvelope>
The SenderDigitalEnvelope element contains

a REQUIRED DigitalEnvelopeProtocol element,

a REQUIRED EncryptionAlgorithm element

zero or one EncryptionSecurityDetailsRef element.

8.4.49 DigitalEnvelopeProtocol element

The REQUIRED DigitalEnvelopeProtocol element identifies the message encryption protocol to be used. The REQUIRED version attribute identifies the version of the protocol.

8.4.50 EncryptionAlgorithm element

The REQUIRED EncryptionAlgorithm element identifies the encryption algorithm to be used. See also Section 8.4.32.

The EncryptionAlgorithm element has four attributes:

an IMPLIED minimumStrength attribute,

an IMPLIED oid attribute,

an IMPLIED w3c attribute,

an IMPLIED enumeratedType attribute.

8.4.50.1 minimumStrength attribute

The minimumStrength attribute describes the effective strength the encryption algorithm MUST provide in terms of “effective” or random bits. This value is less than the key length in bits when check bits are used in the key. So, for example, the 8 check bits of a 64-bit DES key would not be included in the count, and to require a minimum strength the same as that supplied by DES would be reported by setting minimumStrength to 56.

8.4.50.2 oid attribute

The oid attribute serves as a way to supply an object identifier for the encryption algorithm. The formal definition of OIDs comes from ITU-T recommendation X.208 (ASN.1), chapter 28; the assignment of the "top of the tree" is given in Appendix B, Appendix C and Appendix D of X.208 (http://www.itu.int/POD/). Commonly used values (in the IETF dotted integer format) for encryption algorithms include:

· 1.2.840.113549.3.2 (RC2-CBC),1.2.840.113549.3.4 (RC4 Encryption Algorithm),

· 1.2.840.113549.3.7 (DES-EDE3-CBC), 1.2.840.113549.3.9 (RC5 CBC Pad),

· 1.2.840.113549.3.10 (DES CDMF), 1.2.840, 1.3.14.3.2.7 (DES-CBC).

8.4.50.3 w3c attribute

The w3c attribute serves as a way to supply an object identifier for the encryption algorithm. The definitions of these values are in the [XMLENC] specification. Expected values include:

· http://www.w3.org/2001/04/xmlenc#3des-cbc,

· http://www.w3.org/2001/04/xmlenc#aes128-cbc,

· http://www.w3.org/2001/04/xmlenc#aes256-cbc.

8.4.50.4 enumeratedTypeAttribute

The enumeratedType attribute specifies a way of interpreting the text value of the EncryptionAlgorithm element. This attribute is for identifying future algorithm identification schemes and formats.

8.4.51 EncryptionSecurityDetailsRef element

The EncryptionSecurityDetailsRef element identifies the trust anchors and security policy that this (sending) Party will apply to the other (receiving) Party’s encryption certificate. Its REQUIRED IDREF attribute, securityId, refers to the SecurityDetails element (under PartyInfo) that has the matching ID attribute value.

8.4.52 NamespaceSupported element

The NamespaceSupported element may be included zero or more times. Each occurrence of the NamespaceSupported element identifies one namespace supported by the messaging service implementation. It has a REQUIRED location attribute and an IMPLIED version attribute. The location attribute supplies a URI for retrieval of the schema associated with the namespace. The version attribute provides a version value, when one exists, for the namespace. While the NamespaceSupported element can be used to list the namespaces that could be expected to be used during document exchange, the motivation is primarily for extensions, version variants, and other enhancements that might not be expected, or have only recently emerged into use.

For example, support for Security Assertion Markup Language[SAML] would be defined as follows:

<tp:NamespaceSupported
tp:location="http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-27.xsd" tp:version="1.0">
http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-27.xsd</tp:NamespaceSupported>

In addition, the NamespaceSupported element can be used to identify the namespaces associated with the message body parts (see Section 8.5), and especially when these namespaces are not implicitly indicated through parts of the ProcessSpecification or when they indicate extensions of namespaces for payload body parts.

8.4.53 ebXMLReceiverBinding element

The ebXMLReceiverBinding element describes properties related to receiving messages with the ebXML Message Service[ebMS]. The ebXMLReceiverBinding element is comprised of the following child elements:

zero or one ReliableMessaging element (see Section 8.4.41),

zero or one ReceiverNonRepudiation element which specifies the receiver’s requirements for message signing,

zero or one ReceiverDigitalEnvelope element which specifies the receiver’s requirements and certificate for encryption by the digital-envelope[DIGENV] method,

zero or more NamespaceSupported elements (see Section 8.4.52).

The ebXMLReceiverBinding element has one attribute:

a REQUIRED version attribute (see Section 8.4.40.1)

NOTE: A CPA could be valid even when omitting all children under ebXMLReceiverBinding.

8.4.54 ReceiverNonRepudiation element

The ReceiverNonRepudiation element conveys the message receiver’s requirements for non-repudiation. Non-repudiation both proves who sent a Message and prevents later repudiation of the contents of the Message. Non-repudiation is based on signing the Message using XML Digital Signature[XMLDSIG]. The element structure is as follows:

<tp:ReceiverNonRepudiation>

 <tp:NonRepudiationProtocol>

 http://www.w3.org/2000/09/xmldsig#

 </tp:NonRepudiationProtocol>

 <tp:HashFunction>

 http://www.w3.org/2000/09/xmldsig#sha1

 </tp:HashFunction>

 <tp:SignatureAlgorithm>

 http://www.w3.org/2000/09/xmldsig#dsa-sha1

 </tp:SignatureAlgorithm>

 <tp:SigningSecurityDetailsRef tp:securityId="CompanyA_MessageSecurity"/>

</tp:ReceiverNonRepudiation>

If the ReceiverNonRepudiation element is omitted, the Messages are not digitally signed.

The ReceiverNonRepudiation element is comprised of the following child elements:

a REQUIRED NonRepudiationProtocol element (see Section 8.4.44),

a REQUIRED HashFunction (e.g. SHA1, MD5) element (see Section 8.4.45),

one or more REQUIRED SignatureAlgorithm element (see Section 8.4.46),

zero or one SigningSecurityDetailsRef element

When used within a CPP, the SignatureAlgorithm element can be repeated to indicate supported capabilities. The order within a repeated list of elements indicates comparative preference, from most to least preferred. When used within a CPA, the SignatureAlgorithm value is the agreed upon signature algorithm. See section 9.6.2.

8.4.55 SigningSecurityDetailsRef element

The SigningSecurityDetailsRef element identifies the trust anchors and security policy that this (receiving) Party will apply to the other (sending) Party’s signing certificate. Its REQUIRED IDREF attribute, securityId, refers to the SecurityDetails element (under PartyInfo) that has the matching ID attribute value.

8.4.56 ReceiverDigitalEnvelope element

The ReceiverDigitalEnvelope element provides the receiver’s requirements for message encryption using the [DIGENV] digital-envelope method. Digital-envelope is a procedure in which the Message is encrypted by symmetric encryption (shared secret key) and the secret key is sent to the Message recipient encrypted with the recipient's public key. The element structure is:

<tp:ReceiverDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">

 S/MIME

 </tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionCertificateRef

 tp:certId="CompanyA_EncryptionCert"/>

</tp:ReceiverDigitalEnvelope>
The ReceiverDigitalEnvelope element contains

a REQUIRED DigitalEnvelopeProtocol element (see Section 8.4.49),

a REQUIRED EncryptionAlgorithm element (see Section 8.4.50),

a REQUIRED EncryptionCertificateRef element.

8.4.57 EncryptionCertificateRef element

The REQUIRED EncryptionCertificateRef element identifies the certificate the sender uses for encrypting messages. Its REQUIRED IDREF attribute, certId refers to the Certificate element (under PartyInfo) that has the matching ID attribute value.

.

8.4.58 OverrideMshActionBinding element

The OverrideMshActionBinding element can occur zero or more times. It has two REQUIRED attributes. The action attribute identifies the Message Service Handler level action whose delivery is not to use the default DeliveryChannel for Message Service Handler actions. The channelId attribute specifies the DeliveryChannel to be used instead.

8.5 SimplePart element

The SimplePart element provides a repeatable list of the constituent parts, primarily identified by the MIME content-type value. The SimplePart element has two REQUIRED attributes: id and mimetype. The id attribute, of type ID, provides the value that will be used later to reference this Message part when specifying how the parts are packaged into composites, if composite packaging is present. The mimetype attribute can provide actual values of content-type for the simple Message part being specified. The attribute’s values may also make use of an asterisk wildcard, “*”, to indicate either an arbitrary top-level type, an arbitrary sub-type, or a completely arbitrary type, “*/*”. SimpleParts with wildcards in types can be used in indicating more open packaging processing capabilities.

SimplePart has an IMPLIED mimparameters attribute, whose use is described in section 8.6.2. SimplePart also has an IMPLIED xlink:role attribute which identifies some resource that describes the mime part or its purpose; see Appendix F for a discussion of the use of this value within [ebMS]. If present, then it SHALL have a value that is a valid URI in accordance with the [XLINK] specification.

The following are examples of SimplePart elements:

<tp:SimplePart tp:id="I001" tp:mimetype="text/xml"/>
<tp:SimplePart tp:id="I002" tp:mimetype="application/xml"/>
<tp:SimplePart tp:id="I002" tp:mimetype="*/xml"/>
The SimplePart element can have zero or more NamespaceSupported elements. Each of these identifies any namespace supported for the XML that is packaged in the parent simple body part.

The context of Packaging can very easily render it pointless to list all the namespaces used in a SimplePart. For example, when defining the SimplePart for a SOAP envelope, as part of an ebXML Message, it is not necessary to list all the namespaces. If, however, any unusual extensions, new versions, or unusual security extensions are present, it is useful to announce these departures explicitly in the packaging. It is not, however, incorrect to list all namespaces used in a SimplePart, even where these namespaces have been mandated by a given messaging protocol. By convention, when a full listing of namespaces is supplied within a SimplePart element, the first NamespaceSupported element identifies the schema for the SimplePart while subsequent NamespaceSupported elements represent namespaces that are imported by that schema. Any additional NamespaceSupported elements indicate extensions.

NOTE: The explicit identification of imported namespaces is discretionary. Thus, the CPP and CPA examples in Appendix A and Appendix B explicitly identify the ebXML Messaging Service namespace but omit the SOAP envelope and XML Digital Signature namespaces that are imported into the schema for the ebXML Messaging Service namespace.

The same SimplePart element can be referenced from (i.e., reused in) multiple Packaging elements.

8.6 Packaging element
The subtree of the Packaging element provides specific information about how the Message Header and payload constituent(s) are packaged for transmittal over the transport, including the crucial information about what document-level security packaging is used and the way in which security features have been applied. Typically the subtree under the Packaging element indicates the specific way in which constituent parts of the Message are organized. MIME processing capabilities are typically the capabilities or agreements described in this subtree. The Packaging element provides information about MIME content types, XML namespaces, security parameters, and MIME structure of the data that is exchanged between Parties.

The following is an example of a Packaging element which references the example SimplePart elements given in Section 8.5:

<!-- Simple ebXML S/MIME Packaging for application-based payload

 encryption -->

<tp:Packaging>

 <tp:ProcessingCapabilities tp:generate="true" tp:parse="true"/>

 <tp:CompositeList>

 <tp:Encapsulation

 <!-- I002 is the payload being encrypted -->

 tp:id="I003"

 tp:mimetype="application/pkcs7-mime"

 tp:mimeparameters="smime-type="enveloped-data"">

 <Constituent tp:idref="I002"/>

 </tp:Encapsulation>

 <tp:Composite tp:id="I004"

 <!-- I001 is the SOAP envelope. The ebXML message is made

 up of the SOAP envelope and the encrypted payload. -->

 tp:mimetype="multipart/related"

 tp:mimeparameters="type="text/xml" version="1.0"">

 <tp:Constituent tp:idref="I001"/>

 <tp:Constituent tp:idref="I003"/>

 </tp:Composite>

 </tp:CompositeList>

</tp:Packaging>

The Packaging element has one attribute; the REQUIRED id attribute, with type ID. It is referred to in the ThisPartyActionBinding element, by using the IDREF attribute, packageId.
The child elements of the Packaging element are ProcessingCapabilities, CompositeList, and Constituent. The ProcessingCapabilities is found in each Packaging element, and a choice of either a sequence of CompositeList elements or a Constituent element follows.
8.6.1 ProcessingCapabilities element

The ProcessingCapabilities element has two REQUIRED attributes with Boolean values of either "true" or "false". The attributes are parse and generate. Normally, these attributes will both have values of "true" to indicate that the packaging constructs specified in the other child elements can be both produced as well as processed at the software Message service layer.

At least one of the generate or parse attributes MUST be true.

8.6.2 Choice of CompositeList or Constituent element

The second child element of Packaging is a choice that can be a CompositeList, which is a container for the specific way in which the simple parts are combined into groups (MIME multiparts) or encapsulated within security-related MIME content-types, or a choice that can be simply a Constitutent. When one Constituent element occurs, the Packaging consists of just the SimplePart to which the Constituent refers.

NOTE: In previous versions, a convention for indicating Packaging that consisted of one SimplePart was as follows: The mimetype value for the Composite and the mimetype value of the SimplePart referred to by the Constitutent were identical. In that case, there will be only one Constituent element in the Composite, and only one Composite in the CompositeList. The mimeparameters attribute on the Composite element would typically then be omitted.
The CompositeList element SHALL be omitted from Packaging when no security encapsulations or composite multiparts are used, and the Constituent used instead.

When the CompositeList element is present, the content model for the CompositeList element is a repeatable sequence of choices of Composite or Encapsulation elements. The Composite and Encapsulation elements can appear intermixed as desired. The sequence in which the choices are presented is important because, given the recursive character of MIME packaging, composites or encapsulations can include previously mentioned composites (or rarely, encapsulations) in addition to the Message parts characterized within the SimplePart subtree. Therefore, the "top-level" packaging will be described last in the sequence.

The Composite element has the following attributes:

a REQUIRED mimetype attribute,

a REQUIRED id attribute,

an IMPLIED mimeparameters attribute.

The mimetype attribute provides the value of the MIME content-type for this Message part, and this will be some MIME composite type, such as "multipart/related" or "multipart/signed". The id attribute, type ID, provides a way to refer to this composite if it needs to be mentioned as a constituent of some later element in the sequence. The mimeparameters attribute provides the values of any significant MIME parameter (such as "type=application/xml") that is needed to understand the processing demands of the content-type.

NOTE: When the preceding convention for indicating Packaging of a single SimplePart was used, the Composite mimetype attribute could have simple mime types, such as "text/xml," "application/xml," and others as appropriate. For version 2.1, this convention is deprecated, and the choice of a Constituent element is used instead.
The Composite element has one child element, Constituent.
The Constituent element has one REQUIRED attribute, idref of type IDREF, an IMPLIED boolean attribute excludeFromSignature, and two IMPLIED nonNegativeInteger attributes, minOccurs and maxOccurs.

The idref attribute has as its value the value of the id attribute of a previous Composite, Encapsulation, or SimplePart element. The purpose of this sequence of Constituents is to indicate both the contents and the order of what is packaged within the current Composite or Encapsulation.

The excludeFromSignature attribute indicates that this Constituent is not to be included as part of the ebXML message [XMLDSIG] signature. In other words, the signature generated by the Message Service Handler should not include a ds:Reference element to provide a digest for this Constituent of the Message. This attribute is applicable only if the Constituent is part of the top-level Composite that corresponds to the entire ebXML Message.

The minOccurs and maxOccurs attributes serve to specify the value or range of values that the referred to item may occur within Composite. When unused, it is understood that the item is used exactly once.

The Encapsulation element is typically employed to indicate the use of MIME security mechanisms, such as [S/MIME] or Open-PGP[RFC2015]. A security body part can encapsulate a MIME part that has been previously characterized. For convenience, all such security structures are under the Encapsulation element, even when technically speaking the data is not "inside" the body part. (In other words, the so-called clear-signed or detached signature structures possible with MIME multipart/signed are for simplicity found under the Encapsulation element.)

Another possible use of the Encapsulation element is to represent the application of a compression algorithm such as gzip [ZLIB] to some part of the payload, prior to its being encrypted and or signed.

The Encapsulation element has the following attributes:

a REQUIRED mimetype attribute,

a REQUIRED id attribute,

an IMPLIED mimeparameters attribute.

The mimetype attribute provides the value of the MIME content-type for this Message part, such as "application/pkcs7-mime". The id attribute, type ID, provides a way to refer to this encapsulation if it needs to be mentioned as a constituent of some later element in the sequence. The mimeparameters attribute provides the values of any significant MIME parameter(s) needed to understand the processing demands of the content-type.

Both the Encapsulation element and the Composite element have child elements consisting of a Constituent element or of a repeatable sequence of Constituent elements, respectively.

The Constituent element also has zero or one SignatureTransform child element and zero or one EncryptionTransform child element. The SignatureTransform element is intended for use with XML Digital Signature [XMLDSIG]. When present, it identifies the transforms that must be applied to the source data before a digest is computed. The EncryptionTransform element is intended for use with XML Encryption [XMLENC]. When present, it identifies the transforms that must be applied to a CipherReference before decryption can be performed. The SignatureTransforms element and the EncryptionTransforms element each contains one or more ds:Transform [XMLDSIG] elements.

8.7 Signature element

The Signature element (cardinality zero or one) enables the CPA to be digitally signed using technology that conforms with the XML Digital Signature specification[XMLDSIG]. The Signature element is the root of a subtree of elements used for signing the CPP. The syntax is:

<tp:Signature>...</tp:Signature>

The Signature element contains one or more ds:Signature elements. The content of the ds:Signature element and any sub-elements are defined by the XML Digital Signature specification. See Section 9.9 for a detailed discussion.

NOTE: It is necessary to wrap the ds:Signature elements with a Signature element in the target namespace to allow for the possibility of having wildcard elements (with namespace="##other") within the CollaborationProtocolProfile and CollaborationProtocolAgreement elements. The content model would be ambiguous without the wrapping.

The following additional constraints on ds:Signature are imposed:

· A CPP MUST be considered invalid if any ds:Signature element fails core validation as defined by the XML Digital Signature specification[XMLDSIG].

· Whenever a CPP is signed, each ds:Reference element within a ProcessSpecification element MUST pass reference validation and each ds:Signature element MUST pass core validation.

NOTE: In case a CPP is unsigned, software might nonetheless validate the ds:Reference elements within ProcessSpecification elements and report any exceptions.

NOTE: Software for creation of CPPs and CPAs MAY recognize ds:Signature and automatically insert the element structure necessary to define signing of the CPP and CPA. Signature generation is outlined in Section 9.9.1.1; details of the cryptographic process are outside the scope of this specification.

NOTE: See non-normative note in Section 8.4.4.5 for a discussion of times at which validity tests MAY be made.

8.8 Comment element

The CollaborationProtocolProfile element contains zero or more Comment elements. The Comment element is a textual note that can be added to serve any purpose the author desires. The language of the Comment is identified by a REQUIRED xml:lang attribute. The xml:lang attribute MUST comply with the rules for identifying languages specified in [XML]. If multiple Comment elements are present, each can have a different xml:lang attribute value. An example of a Comment element follows:

<tp:Comment xml:lang="en-US">This is a CPA between A and B</tp:Comment>

When a CPA is composed from two CPPs, all Comment elements from both CPPs SHALL be included in the CPA unless the two Parties agree otherwise.

9 CPA Definition

A Collaboration-Protocol Agreement (CPA) defines the capabilities that two Parties need to agree upon to enable them to engage in electronic Business for the purposes of the particular CPA. This section defines and discusses the details of the CPA. The discussion is illustrated with some XML fragments.

Most of the XML elements in this section are described in detail in Section 8, "CPP Definition". In general, this section does not repeat that information. The discussions in this section are limited to those elements that are not in the CPP or for which additional discussion is needed in the CPA context. See also Appendix D for the XML Schema, and Appendix B for an example of a CPA document.

9.1 CPA Structure

Following is the overall structure of the CPA:

<CollaborationProtocolAgreement

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 tp:cpaid="YoursAndMyCPA"

 tp:version="2.0a">

 <tp:Status tp:value="proposed"/>

 <tp:Start>1988-04-07T18:39:09</Start>

 <tp:End>1990-04-07T18:40:00</End>

 <!-- ConversationConstraints MAY appear 0 or 1 time -->

 <tp:ConversationConstraints

 tp:invocationLimit="100"

 tp:concurrentConversations="4"/>

 <tp:PartyInfo>

 ...

 </tp:PartyInfo>

 <tp:PartyInfo>

 ...

 </tp:PartyInfo>

 <tp:SimplePart tp:id="..."> <!-- one or more -->

 ...

 </tp:SimplePart>

 <tp:Packaging tp:id="..."> <!-- one or more -->

 ...

 </tp:Packaging>

 <tp:Signature> <!-- zero or one time -->

 ...

 </tp:Signature>

 <tp:Comment xml:lang="en-GB">any text</Comment> <!-- zero or more -->

</tp:CollaborationProtocolAgreement>

9.2 CollaborationProtocolAgreement element

The CollaborationProtocolAgreement element is the root element of a CPA. It has a REQUIRED cpaid attribute that supplies a unique identifier for the document. The value of the cpaid attribute SHALL be assigned by one Party and used by both. It is RECOMMENDED that the value of the cpaid attribute be a URI. The value of the cpaid attribute SHALL be used as the value of the CPAId element in the ebXML Message Header[ebMS] or of a similar element in a Message Header of an alternative messaging service.

NOTE: Each Party might associate a local identifier with the cpaid attribute.
In addition, the CollaborationProtocolAgreement element has a REQUIRED version attribute. This attribute indicates the version of the schema to which the CPA conforms. The value of the version attribute SHOULD be a string such as "2_0a", "2_0b", etc.

NOTE: The method of assigning unique cpaid values is left to the implementation.

The CollaborationProtocolAgreement element has REQUIRED [XML] Namespace[XMLNS] declarations that are defined in Section 8, "CPP Definition".

The CollaborationProtocolAgreement element is comprised of the following child elements, most of which are described in greater detail in subsequent sections:

a REQUIRED Status element that identifies the state of the process that creates the CPA,
a REQUIRED Start element that records the date and time that the CPA goes into effect,

a REQUIRED End element that records the date and time after which the CPA MUST be renegotiated by the Parties,
zero or one ConversationConstraints element that documents certain agreements about conversation processing,

two REQUIRED PartyInfo elements, one for each Party to the CPA,
one or more SimplePart elements,

one or more Packaging elements,

zero or one Signature element that provides for signing of the CPA using the XML Digital Signature[XMLDSIG] standard,

zero or more Comment elements.

9.3 Status Element

The Status element records the state of the composition/negotiation process that creates the CPA. An example of the Status element follows:

<tp:Status tp:value="proposed"/>

The Status element has a REQUIRED value attribute that records the current state of composition of the CPA. This attribute is an enumeration comprised of the following possible values:

"proposed", meaning that the CPA is still being negotiated by the Parties,
"agreed", meaning that the contents of the CPA have been agreed to by both Parties,
"signed", meaning that the CPA has been "signed" by one or more of the Parties. This "signing" takes the form of a digital signature that is described in Section 9.7 below.

NOTE: The Status element MAY be used by a CPA composition and negotiation tool to assist it in the process of building a CPA.

NOTE: The value of the Status element’s value attribute is set to “signed” before the first Party signs. Even though excluding value attribute from a signature might be technically feasible, it is preferable to change the attribute’s value to “signed” prior to the first signature, and maintain it as “signed” for any subsequent signatures.

9.4 CPA Lifetime

The lifetime of the CPA is given by the Start and End elements. The syntax is:

<tp:Start>1988-04-07T18:39:09Z</tp:Start>

<tp:End>1990-04-07T18:40:00Z</tp:End>

9.4.1 Start element

The Start element specifies the starting date and time of the CPA. The Start element SHALL be a string value that conforms to the content model of a canonical dateTime type as defined in the XML Schema Datatypes Specification[XMLSCHEMA-2]. For example, to indicate 1:20 pm UTC (Coordinated Universal Time) on May 31, 1999, a Start element would have the following value:

1999-05-31T13:20:00Z

The Start element SHALL be represented as Coordinated Universal Time (UTC).

9.4.2 End element

The End element specifies the ending date and time of the CPA. The End element SHALL be a string value that conforms to the content model of a canonical dateTime type as defined in the XML Schema Datatypes Specification[XMLSCHEMA-2]. For example, to indicate 1:20 pm UTC (Coordinated Universal Time) on May 31, 1999, an End element would have the following value:

1999-05-31T13:20:00Z

The End element SHALL be represented as Coordinated Universal Time (UTC).

When the end of the CPA's lifetime is reached, any Business Transactions that are still in progress SHALL be allowed to complete and no new Business Transactions SHALL be started. When all in-progress Business Transactions on each conversation are completed, the Conversation SHALL be terminated whether or not it was completed.

When a CPA is signed, software for signing the agreements SHALL warn if any signing certificate’s validity expires prior to the proposed time for ending the CPA. The opportunity to renegotiate a CPA End value or to in some other way align certificate validity periods with CPA validity periods SHALL be made available. (Other ways to align these validity periods would include reissuing the signing certificates for a longer period or obtaining new certificates for this purpose.)

Signing software SHOULD also attempt to align the validity periods of certificates referred to within the CPA that perform security functions so as to not expire before the CPA expires. This alignment can occur in several ways including making use of ds:KeyInfo’s content model ds:RetrievalMethod so that a new certificate can be installed and still be retrieved in accordance with the information in ds:RetrievalMethod. If no alignment can be attained, signing software MUST warn the user of the situation that the CPA validity exceeds the validity of some of the certificates referred to within the CPA.
NOTE: If a Business application defines a conversation as consisting of multiple Business Transactions, such a conversation MAY be terminated with no error indication when the end of the lifetime is reached. The run-time system could provide an error indication to the application.

NOTE: It might not be feasible to wait for outstanding conversations to terminate before ending the CPA since there is no limit on how long a conversation can last.

NOTE: The run-time system SHOULD return an error indication to both Parties when a new Business Transaction is started under this CPA after the date and time specified in the End element.

9.5 ConversationConstraints Element

The ConversationConstraints element places limits on the number of conversations under the CPA. An example of this element follows:

<tp:ConversationConstraints tp:invocationLimit="100"

 tp:concurrentConversations="4"/>

The ConversationConstraints element has the following attributes:

an IMPLIED invocationLimit attribute,

an IMPLIED concurrentConversations attribute.

9.5.1 invocationLimit attribute

The invocationLimit attribute defines the maximum number of conversations that can be processed under the CPA. When this number has been reached, the CPA is terminated and MUST be renegotiated. If no value is specified, there is no upper limit on the number of conversations and the lifetime of the CPA is controlled solely by the End element.

NOTE: The invocationLimit attribute sets a limit on the number of units of Business that can be performed under the CPA. It is a Business parameter, not a performance parameter. A CPA expires whichever terminating condition (End or invocationLimit) is first reached.

9.5.2 concurrentConversations attribute

The concurrentConversations attribute defines the maximum number of conversations that can be in process under this CPA at the same time. If no value is specified, processing of concurrent conversations is strictly a local matter.

NOTE: The concurrentConversations attribute provides a parameter for the Parties to use when it is necessary to limit the number of conversations that can be concurrently processed under a particular CPA. For example, the back-end process might only support a limited number of concurrent conversations. If a request for a new conversation is received when the maximum number of conversations allowed under this CPA is already in process, an implementation MAY reject the new conversation or MAY enqueue the request until an existing conversation ends. If no value is given for concurrentConversations, how to handle a request for a new conversation for which there is no capacity is a local implementation matter.

9.6 PartyInfo Element

The general characteristics of the PartyInfo element are discussed in Section 8.4.

The CPA SHALL have one PartyInfo element for each Party to the CPA. The PartyInfo element specifies the Parties' agreed terms for engaging in the Business Collaborations defined by the Process-Specification documents referenced by the CPA. If a CPP has more than one PartyInfo element, the appropriate PartyInfo element SHALL be selected from each CPP when composing a CPA.

In the CPA, there SHALL be one or more PartyId elements under each PartyInfo element. The values of these elements are the same as the values of the PartyId elements in the ebXML Message Service specification[ebMS] or similar messaging service specification. These PartyId elements SHALL be used within a To or From Header element of an ebXML Message.

9.6.1 ProcessSpecification element

The ProcessSpecification element identifies the Business Collaboration that the two Parties have agreed to perform. There can be one or more ProcessSpecification elements in a CPA. Each SHALL be a child element of a separate CollaborationRole element. See the discussion in Section 8.4.3.

9.6.2 DocExchange Constraints for the CPA
Within a CPA, the SenderNonRepudiation and ReceiverNonRepudiation elements shall have exactly one SignatureAlgorithm element whose value is the agreed upon signature algorithm. See sections 8.4.43 and 8.4.54.
9.7 SimplePart element

The CollaborationProtocolAgreement element SHALL contain one or more SimplePart elements. See Section 8.5 for details of the syntax of the SimplePart element.

9.8 Packaging element

The CollaborationProtocolAgreement element SHALL contain one or more Packaging elements. See Section 8.6 for details of the syntax of the Packaging element.

9.9 Signature element

A CPA document can be digitally signed by one or more of the Parties as a means of ensuring its integrity as well as a means of expressing the agreement just as a corporate officer's signature would do for a paper document. If signatures are being used to digitally sign an ebXML CPA or CPP document, then [XMLDSIG] SHALL be used to digitally sign the document.

The Signature element, if present, is made up of one to three ds:Signature elements. The CPA can be signed by one or both Parties. It is RECOMMENDED that both Parties sign the CPA. For signing by both Parties, one Party initially signs. The other Party then signs over the first Party’s signature. The resulting CPA MAY then be signed by a notary.

The ds:Signature element is the root of a subtree of elements used for signing the CPP.
The content of this element and any sub-elements are defined by the XML Digital Signature specification[XMLDSIG]. The following additional constraints on ds:Signature are imposed:

· A CPA MUST be considered invalid if any ds:Signature fails core validation as defined by the XML Digital Signature specification.

· Whenever a CPA is signed, each ds:Reference within a ProcessSpecification MUST pass reference validation and each ds:Signature MUST pass core validation.

NOTE: In case a CPA is unsigned, software MAY nonetheless validate the ds:Reference elements within ProcessSpecification elements and report any exceptions.

Software for creation of CPPs and CPAs SHALL recognize ds:Signature and automatically insert the element structure necessary to define signing of the CPP and CPA. Signature creation itself is a cryptographic process that is outside the scope of this specification.

NOTE: See non-normative note in Section 8.4.4.5 for a discussion of times at which a CPA MAY be validated.

9.9.1 Persistent Digital Signature

If [XMLDSIG] is used to sign an ebXML CPP or CPA, the process defined in this section of the specification SHALL be used.

9.9.1.1 Signature Generation

Following are the steps to create a digital signature:

1. Create a SignedInfo element, a child element of ds:Signature. SignedInfo SHALL have child elements SignatureMethod, CanonicalizationMethod, and Reference as prescribed by [XMLDSIG].

2. Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms specified in SignedInfo as specified in [XMLDSIG].

3. Construct the Signature element that includes the SignedInfo, KeyInfo (RECOMMENDED), and SignatureValue elements as specified in [XMLDSIG].

4. Include the namespace qualified Signature element in the document just signed, following the last PartyInfo element.

9.9.1.2 ds:SignedInfo element

The ds:SignedInfo element SHALL be comprised of zero or one ds:CanonicalizationMethod element, the ds:SignatureMethod element, and one or more ds:Reference elements.

9.9.1.3 ds:CanonicalizationMethod element

The ds:CanonicalizationMethod element as defined in [XMLDSIG], can occur zero or one time, meaning that the element need not appear in an instance of a ds:SignedInfo element. The default canonicalization method that is applied to the data to be signed is [XMLC14N] in the absence of a ds:CanonicalizationMethod element that specifies otherwise. This default SHALL also serve as the default canonicalization method for the ebXML CPP and CPA documents.
9.9.1.4 ds:SignatureMethod element

The ds:SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The RECOMMENDED value for the Algorithm attribute is:

"http://www.w3.org/2000/09/xmldsig#sha1"
This RECOMMENDED value SHALL be supported by all compliant ebXML CPP or CPA software implementations.

9.9.1.5 ds:Reference element

The ds:Reference element for the CPP or CPA document SHALL have a REQUIRED URI attribute value of "" to provide for the signature to be applied to the document that contains the ds:Signature element (the CPA or CPP document). The ds:Reference element for the CPP or CPA document can include an IMPLIED type attribute that has a value of:

"http://www.w3.org/2000/09/xmldsig#Object"

in accordance with [XMLDSIG]. This attribute is purely informative. It MAY be omitted. Implementations of software designed to author or process an ebXML CPA or CPP document SHALL be prepared to handle either case. The ds:Reference element can include the id attribute, type ID, by which this ds:Reference element is referenced from a ds:Signature element.

9.9.1.6 ds:Transform element

The ds:Reference element for the CPA or CPP document SHALL include a descendant ds:Transform element that excludes the containing ds:Signature element and all its descendants. This exclusion is achieved by means of specifying the ds:Algorithm attribute of the Transform element as

"http://www.w3.org/2000/09/xmldsig#enveloped-signature"

For example:

<ds:Reference ds:URI="">

 <ds:Transforms>

 <ds:Transform

ds:Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 </ds:Transforms>

 <ds:DigestMethod

 ds:Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>...</ds:DigestValue>

</ds:Reference>

9.9.1.7 ds:Algorithm attribute

The ds:Transform element SHALL include a ds:Algorithm attribute that has a value of:

 http://www.w3.org/2000/09/xmldsig#enveloped-signature

NOTE: When digitally signing a CPA, it is RECOMMENDED that each Party sign the document in accordance with the process described above.

When the two Parties sign the CPA, the first Party that signs the CPA SHALL sign only the CPA contents, excluding their own signature. The second Party SHALL sign over the contents of the CPA as well as the ds:Signature element that contains the first Party's signature. If necessary, a notary can then sign over both signatures.
9.10 Comment element

The CollaborationProtocolAgreement element contains zero or more Comment elements. See Section 8.8 for details of the syntax of the Comment element.

9.11 Composing a CPA from Two CPPs

This section discusses normative issues in composing a CPA from two CPPs. See also Appendix E, "CPA Composition (Non-Normative)".

9.11.1 ID Attribute Duplication

In composing a CPA from two CPPs, there is a hazard that ID attributes from the two CPPs might have duplicate values. When a CPA is composed from two CPPs, duplicate ID attribute values SHALL be tested for. If a duplicate ID attribute value is present, one of the duplicates SHALL be given a new value and the corresponding IDREF attribute values from the corresponding CPP SHALL be corrected.

NOTE: A party can seek to prevent ID/IDREF reassignment in the CPA by choosing ID and IDREF values which are likely to be unique among its trading partners. For example, the following Certificate element found in a CPP has a certId attribute that is generic enough that it might clash with a certId attribute found in a collaborating party's CPP:

<tp:Certificate tp:certId="EncryptionCert"><ds:KeyInfo/></tp:Certificate>
To prevent reassignment of this ID (and its associated IDREFs) in a CPA, a better choice of certId in Company A's CPP would be:

<tp:Certificate tp:certId="CompanyA_EncryptionCert"><ds:KeyInfo/></tp:Certificate>

9.12 Modifying Parameters of the Process-Specification Document Based on Information in the CPA
A Process-Specification document contains a number of parameters, expressed as XML attributes. An example is the security attributes that are counterparts of the attributes of the CPA BusinessTransactionCharacteristics element. The values of these attributes can be considered to be default values or recommendations. When a CPA is created, the Parties might decide to accept the recommendations in the Process-Specification or they MAY agree on values of these parameters that better reflect their needs.

When a CPA is used to configure a run-time system, choices specified in the CPA MUST always assume precedence over choices specified in the referenced Process-Specification document. In particular, all choices expressed in a CPA’s BusinessTransactionCharacteristics and Packaging elements MUST be implemented as agreed to by the Parties. These choices SHALL override the default values expressed in the Process-Specification document. The process of installing the information from the CPA and Process-Specification document MUST verify that all of the resulting choices are mutually consistent and MUST signal an error if they are not.

NOTE: There are several ways of overriding the information in the Process-Specification document by information from the CPA. For example:

The CPA composition tool can create a separate copy of the Process-Specification document. The tool can then directly modify the Process-Specification document with information from the CPA. An advantage of this method is that the override process is performed entirely by the CPA composition tool.

A CPA installation tool can dynamically override parameters in the Process-Specification document using information from the corresponding parameters in the CPA at the time the CPA and Process-Specification document are installed in the Parties' systems. This eliminates the need to create a separate copy of the Process-Specification document.
Other possible methods might be based on XSLT transformations of the parameter information in the CPA and/or the Process-Specification document.

10 Provisions for CPP and CPA Extensibility

In version 2.0 of this specification, several areas of extensibility had been assumed, but little guidance had been provided in supporting extensiblity or illustrating how extensibility points could be utilized. In this section, the extensibility provisions of ebCPPA 2.1 are described and illustrated. It is hoped that the illustrations can serve as patterns so that for future extensibility, separate specifications can be created that document those new extensions and their specific semantic contents.
10.1 Goals for Extensibility Framework

The ebXML component design intended that each specification be aligned with others, but that the specifications also be capable of working with alternative specifications. For CPPA, two main types of alternative specifications need to be considered.

In section 8.4.4, it has been noted that when using an alternative Business-Collaboration descriptions, it is necessary to reconsider affected elements such as the Role element, the CanSend and CanReceive elements, the ActionContext element, and possibly some attributes of the BusinessTransactionCharacteristics element.

Likewise, in section 8.4.39, alternatives to the ebXML Message Service[ebMS]) are abstractly considered. It is there noted that the document-exchange section can be extended to apply to messaging services other than the ebXML Message service by adding additional xxxSenderBinding and xxxReceiverBinding elements, with customized content models that describe these services, and where “xxx” can be replaced by a suitable identifier for the additional binding.

The basic approach in version 2.1 of this specification is to use substitution groups to support these extensions, and the version 2.1 schema differs primarily from the 2.0 schema in that it implements a substitution group approach for making ebCPPA extensibility explicit.

New abstract elements (substitution group heads) are introduced to serve as the global elements that are referenced when declaring extension elements. The result of this approach is to preserve the layering in the CPP and CPA that has been used to organize configuration parameters and user selectable functionality within a collaboration protocol.
To maintain compatibility with version 2.0, the original elements are redeclared as members of the newly introduced substitution groups. The effect is to allow previous instances of CPPs and CPAs to validate against the 2.1 schema, once the instances are modified to be placed in the new target namespace.
10.2 Illustration of CPP and CPA Extensibility: Alternative Messaging Framework

In this section and the next, the EDIINT (AS1, AS2, and AS3) collaboration protocols are used to illustrate how version 2.1’s extensibility framework can be used in creating CPPs and CPAs for EDIINT messaging [RFC3335]. Following this, new extensibility elements introduced will be documented.
10.2.1 EDIINT Configuration Requirements

EDIINT protocols are peer-to-peer collaboration protocols using IETF transfer protocols (SMTP, HTTP, FTP), S/MIME security [S/MIME], and acknowledgements using Message Disposition Notifications [RFC3798]. Peers need to agree upon the following kinds of configuration features and values.
10.2.1.1 Message security

Security Requirement 1.
Whether or not message should be encrypted.

 a. If encrypted, the encryption certificate.

 b. If encrypted, the symmetric encryption algorithm.

Security Requirement 2.
Whether or not the message should be signed.

 a. If signed, the signing certificate.

 b. If signed, the signing MIC algorithm (SHA1 or MD5).

10.2.1.2 Message compression

Compression Requirement 1.
Whether or not the message should be compressed.

 a. If compressed, the compression mechanism (EDIINT/ZLIB or MIME/GZIP).

 (EDIINT/ZLIB is the standard mechanism supported by AS1, AS2 and AS3.)
10.2.1.3 Receipt or Acknowledgments (MDNs)

Receipt Requirement 1.
Whether or not a receipt is requested.

Receipt Requirement 2.
Whether or not a signed receipt is requested.

 a. If so, the requested signing MIC algorithm (SHA1 or MD5).

Receipt Requirement 3.
Whether a synchronous or asynchronous receipt is requested (AS2 only).

Receipt Requirement 4.
Destination URL for asynchronous receipt.

10.2.1.4 Transfer Protocol

Transfer Protocol Requirement 1.
Select transfer protocol SMTP, HTTP, or FTP.

 a. If SMTP, email address values used.
 b. If HTTP, URL endpoints used and AS2-To and AS2-From values to identify peers.

 c. If FTP, hostname and paths to be used.

10.2.1.5 Participant Identifer Values

Select values to be used in headers (“AS2-To” “AS2-From”) that identify the collaboration participants.
10.2.2 Mapping of Configuration Requirements to CPP and CPA Elements and Attributes

Many features of EDIINT messaging can be selected by reusing existing CPP and CPA elements and attributes without needing to adopting new variations as extensions. Certain features, such as reliable messaging, are not explicitly defined by the EDIINT specifications. Other EDIINT features, such as compression, were not specified for ebXML Messaging in version 2.0 and so explicit extensions are needed.
In the following, the mapping for each of the requirements of section to values in elements or attributes of CPPs and CPAs will be described.
10.2.2.1 Mappings for Security Requirements of Section 10.2.1.1
Security Requirement 1: Encrypting by using a digital envelope technology is declared by setting
ServiceBinding/Can[Send|Receive]/ThisPartyActionBinding/BusinessTransactionCharacteristics/@isConfidential

 to a value of either “persistent” or “transient-and-persistent.” (The “persistent” value indicates use of a digital envelope technology, in this case [S/MIME].)
Security Requirement 1.a
New DocExchange “Binding” child elements, DocExchange/EdiintReceiverBinding and DocExchange/EdiintSenderBinding, are created in the substitution group of the representative element, DocExchangeBindingHead. Some existing modules will be reused under this binding and some new modules will be introduced into the substitution group of DocExchangeModuleHead.
The encryption certificate that can be or will be used is declared using:

DocExchange/EdiintReceiverBinding/ReceiverDigitalEnvelope/EncryptionCertificateRef

The trust anchors for checking this certificate are found in the SecurityDetails whose IDREF is found in

DocExchange/EdiintSenderBinding/SenderDigitalEnvelope/EncryptionSecurityDetailsRef

 Security Requirement 1.b
The encryption symmetric encryption algorithm is declared using one or more of the following attributes (though the @oid attribute is preferable):
DocExchange/EdiintReceiverBinding/ReceiverDigitalEnvelope/EncryptionAlgorithm/@oid or DocExchange/EdiintReceiverBinding/ReceiverDigitalEnvelope/EncryptionAlgorithm /@w3c.

Encryption strength is or can be declared using the attribute:
DocExchange/EdiintReceiverBinding/ReceiverDigitalEnvelope/EncryptionAlgorithm/@minimumStrength

These values match values found at:

DocExchange/EdiintSenderBinding/SenderDigitalEnvelope/EncryptionAlgorithm/@oid or DocExchange/EdiintSenderBinding/SenderDigitalEnvelope/EncryptionAlgorithm /@w3c.

Security Requirement 2.
Digital signature capabilities or agreements are declared using a “true” value for the attribute:

ServiceBinding/Can[Send|Receive]/ThisPartyActionBinding/BusinessTransaction-Characteristics/@isNonRepudiationRequired

[and the request for a signed MDN is declared using the attribute:
BusinessTransactionCharacteristics/@isNonRepudiationReceiptRequired]

Security Requirement 2.a The SigningCertificate is found using the IDREF in:
DocExchange/EdiintSenderBinding/SenderNonRepudiation/SigningCertificateRef

 Also, DocExchange/EdiintReceiverBinding/ReceiverNonRepudiation/SigningSecurity-DetailsRef has a reference to the trust anchors used for checking the signing certificate.

Security Requirement 2.b For the signature algorithm, see declarations at:
DocExchange/EdiintSenderBinding/SenderNonRepudiation/HashFunction

DocExchange/EdiintSenderBinding/SenderNonRepudiation/SignatureAlgorithm

and,
DocExchange/EdiintSenderBinding/SenderNonRepudiation/NonRepudiationProtocol

These values match those at the corresponding nodes:

DocExchange/EdiintReceiverBinding/ReceiverNonRepudiation/*

10.2.2.2 Mapping for Compression Requirements of Section 10.2.1.2
Compression Requirement 1
Compression is requested by including the new element:
DocExchange/EdiintSenderBinding/SenderCompression,

or

DocExchange/EdiintReceiverBinding/ReceiverCompression.

Omitting this element means that compression will not be used.

These new elements are in the substitution group of the element DocExchangeModuleHead.
Compression Requirement 1.a
The attribute @mechanismType is used to indicate the type of compression used, with the “zlib” value as the default.

10.2.2.3 Mapping for Receipt Requirements of Section 10.2.1.3
The elements SenderRequestedMDNStyle, ReceiverAcceptedMDNStyle, when present, document the agreement for MDNs. These new elements are in the substitution group of the element DocExchangeModuleHead.
The MDN is treated as if it were a business acknowledgment or business signal, and not as a MSH signal response (which are always declared by means of SOAP header blocks).

Receipt Requirements 1 and 2
Attribute receiptType can have values, “signed” and “unsigned” to indicate whether MDNs are to be signed or not. If omitted, no receipt is requested.
Receipt Requirement 2a The child element HashFunction contains the MIC algorithm that will be requested by the Sender in a header in accordance with the syntax of [RFC3335].
Receipt Requirement 3 The attribute mdnRequested is used to indicate whether an MDN is always, never, or sent on a perMessage basis. The default is “perMessage” and indicates that for the AS2 protocol, if the MDN is to be sent on a separate TCP connection, the “Disposition-Notification-To” header should be included, with values from the mdnDestination attribute.
Receipt Requirement 4 When asynchronous MDNs are used, the attribute “mdnDestination” indicates the proposed or agreed upon destination.
If the “mdnDestination” attribute is missing, the AS2 default behavior (return MDN in the HTTP response body) is proposed or agreed upon. In this case, the MessagingCharacteristics/@syncReplyMode SHOULD be set to either “responseOnly” or “signalsAndResponse” because the MDN acknowledgment is treated as it it were a business message.
Packaging formats will conform with the specifications for MIME formats of the offered cryptographic services [RFC3335] and other relevant specifications [RFC3798, S/MIME].
Example CPPs and CPAs illustrate these aspects.

10.2.2.4 Mapping of Transfer Protocol Requirements of Section 10.2.1.4
The EDIINT collaboration messaging protocol is specified in three application statements, AS1, AS2 and AS3, that differ primarily in which IETF transfer protocol is used. AS1, AS2, and AS3 use SMTP, HTTP/HTTPS, and FTP/FTP-over-SSL respectively.

The transfer protocol descriptions are therefore expressible by reusing the 2.0 Transport element and its content model as explained in the following subsections.
10.2.2.4.1 The EDIINT Endpoint information
AS1: The URL uses the “mailto:“ scheme to exchange RFC 2822 adresses.
AS2: The URL uses either “http:” or “https:” schemes.
[The POST method is assumed in the 2.0 Transport semantics, which is what AS2 uses. The Response can be returned using the same TCP connection in the HTTP Reply (“synchronously”).]

AS3: The URL uses “ftp:” or “ftps:” to indicate the scheme.
[The PUT method is assumed in the 2.0 Transport semantics, which is what AS3 currently uses.]

10.2.2.4.2 PKI alignment information

SSL and PKI aspects for Transport Security are documented by means of components of the TransportServerSecurity or TransportClientSecurity, such as ServerCertificateRef, ClientCertificateRef, ClientSecurityDetailsRef, ServerSecurityDetailsRef.
10.2.2.5 Mapping to Participant Identification Values of Section 10.2.1.5
The AS2 and AS3 protocols have special headers (“AS2-To”, “AS2-From”, “AS3-To”, “AS3-From”) that identify the participants. The PartyInfo/PartyId values supply these values. In AS1, the Endpoint/@uri values will also contain the identifying email addresses of the parties within the mailto: URLs.
10.3 DocExchange Extensions for Ediint Message Protocol Support
As explained in section 10.2, EDIINT messaging defines its own (signed) acknowledgment message (MDN) and defines a compression option. Because these features are not found in ebXML 2.0 Messaging, it is necessary to add “modules” that document configuration details for these features.
First, two new DocExchange binding elements are introduced for the senders and receivers of EDIINT messages, called EdiintReceiverBinding and EdiintSenderBinding. Each of these elements contain the new modules mentioned above as well as modules that can be reused from ebXML Messaging.
The following sections document these new elements.

10.3.1 EdiintReceiverBinding Element
The EdiintReceiverBinding element describes features of the interfaces used in receiving messages with EDIINT []. The EdiintReceiverBinding element is comprised of the following child elements:

one ReceiverCompression element (see Section),

one ReceiverAcceptedMDNStyle element (see Section),

zero or one ReceiverNonRepudiation element which specifies the receiver’s requirements for message signing,

zero or one ReceiverDigitalEnvelope element which specifies the receiver’s requirements and certificate for encryption by the digital-envelope method,

The EdiintReceiverBinding element has one attribute:

a REQUIRED version attribute.
10.3.1.1 version attribute

The REQUIRED version attribute identifies the version of the EDIINT specification being used.

These values include: 1.0, 1.1, and 1.2 and are used in the ASx-Version header.

10.3.2 EdiintSenderBinding Element
The EdiintSenderBinding element describes features of interfaces used when sending messages with the EDIINT Messaging protocol. The EdiintSenderBinding element is comprised of the following child elements:

one ReceiverCompression element (see Section),

one ReceiverAcceptedMDNStyle element (see Section),
zero or one ReliableMessaging element which specifies the characteristics of reliable messaging,

zero or one PersistDuration element which specifies the duration for which certain messages have to be stored persistently for the purpose of duplicate elimination,

zero or one SenderNonRepudiation element which specifies the sender’s requirements and certificate for message signing,

zero or one SenderDigitalEnvelope element which specifies the sender’s requirements for encryption by the digital-envelope[DIGENV] method,

zero or more NamespaceSupported elements that identify any namespace extensions supported by the messaging service implementation.

The EdiintSenderBinding element has one attribute:

a REQUIRED version attribute.

10.3.2.1 version attribute

The REQUIRED version attribute identifies the version of the EDIINT specification being used.

These values include: 1.0, 1.1, and 1.2 and are used in the ASx-Version header.
10.3.3 SenderCompression Element
The SenderCompression element has two declared attributes: version and
mechanismType.
10.3.3.1 version attribute

The version attribute can occur zero or one times, and is used to declare the version of compression support. It has a default value of 1.1, which is the ASx-Version value for compression.
10.3.3.2 mechanismType attribute

The mechanismType attribute can occur zero or one times. It has a default value of “zlib,” which is the value defined by the compression draft []. Any other value is implementation dependent.
10.3.4 ReceiverCompression Element
The ReceiverCompression element has two attributes: version and
mechanismType.
10.3.4.1 version attribue

The version attribute can occur zero or one times, and is used to declare the version of compression support. It has a default value of 1.1, which is the ASx-Version value for compression.
10.3.4.2 mechanismType attribute

The mechanismType attribute can occur zero or one times. It has a default value of “zlib,” which is the value defined by the compression draft []. Any other value is implementation dependent.
10.3.5 SenderRequestedMDNStyle Element

The SenderRequestedMDNStyle element has one child element, HashFunction, and three defined attributes.
10.3.5.1 HashFunction element
The HashFunction element is defined in section 8.4.45
10.3.5.2 receiptType attribute
The receiptType attribute can occur zero or one times. The values “signed” or “unsigned” indicate whether the MDN is to be signed.
If the attribute is omitted, no receipt is requested.

10.3.5.3 mdnRequested attribute

The mdnRequested attribute can occur zero or one times and can have values “always,” “never,” or “perMessage.”
The mdnRequested attribute is used to indicate whether an MDN is always, never, or sent on a perMessage basis. The default is “perMessage” and indicates that for the AS2 protocol, if the MDN is to be sent on a separate TCP connection, the “Disposition-Notification-To” header should be included, with values from the mdnDestination attribute.

10.3.5.4 mdnDestination attribute
The mdnDestination attribute can occur zero or one times and its value is a URL or email address that indicates where the MDN is to be sent.
When asynchronous MDNs are used, the value of the attribute “mdnDestination” is the proposed or agreed upon destination.

10.3.6 ReceiverAcceptedMDNStyle Element
The ReceiverRequestedMDNStyle element has one child element, HashFunction, and three defined attributes.
10.3.6.1 HashFunction element

The HashFunction element is defined in section 8.4.45
10.3.6.2 receiptType attribute

The receiptType attribute can occur zero or one times. The values “signed” or “unsigned” indicate whether the MDN is to be signed.

If the attribute is omitted, no receipt is requested.

10.3.6.3 mdnRequested attribute
The mdnRequested attribute can occur zero or one times and can have values “always,” “never,” or “perMessage.”
The attribute mdnRequested is used to indicate whether an MDN is always, never, or sent on a perMessage basis. The default is “perMessage” and indicates that for the AS2 protocol, if the MDN is to be sent on a separate TCP connection, the “Disposition-Notification-To” header should be included, with values from the mdnDestination attribute.

10.3.6.4 mdnDestination attribute

The mdnDestination attribute can occur zero or one times and its value is a URL or email address that indicates where the MDN is to be sent.
When asynchronous MDNs are used, the attribute “mdnDestination” indicates the proposed or agreed upon destination.

10.4 Illustration of Alternative Document Exchange Definitions using WSDL
In order to announce capabilities described by WSDL (Web Services Description Language) [WSDL], a web services DocExchange extension module is added to a CPP using either the WSSenderBinding or WSReceiverBinding element. Within this element, the WSDLOperation element is used as a container for WSDL definitions.
For a service using typical Message Exchange Patterns (the In, In-Robust, and In-Out MEPs), a Service’s ActionBinding is associated with its WSDL definitions within the DocExchange element by referencing the DocExchange element’s id within its CanReceive element in the usual way. If an In-Out MEP pattern is used, the CanReceive element will contain a nested CanSend element to indicate that there is a “synchronous” mode of interaction returning a message.
The server receiver only needs to indicate the “interface” aspects of WSDL. These aspects are found within the wsdl:portType (or wsdl:Interface), its included wsdl:operations and referenced wsdl:message, wsdl:type, or wsdl:part elements (the precise elements needed differ in WSDL versions). For each ActionBinding, the interface’s operation needs to be identified. The WSDLOperation/@operationRef uses a URI-Reference to identify the operation. This reference is constructed by appending a fragment identifier to the targetNamespace URI. The fragment is constructed using an Xpointer syntax:
http://hello.org/hello1#operation(Hello/sayHello)
where the Interface or portType name starts the path, and is followed by operation name.

Because an operation can involve both requests and responses, the identification of the specific document that is being sent is indicated by the WSDLOperation@messageRef value, which contains an Xpointer [] value eventually indicating the relevant XML type information.
WSDL content may be placed verbatim within the WSDLOperation content model. If the content is not explicitly included, then its location may be indicated by the value of WSDLOperation/@wsdlLocation. Finally, the content may be included by using a WSDL stub that simply wsdl:imports the needed WSDL file contents. At least one of the above options MUST be supported.
The question of how to make use of wsdl:service and wsdl:binding elements is left unspecified in this maintenance release; therefore the use of this technical information is implementation dependent. The default convention of the CPA will, however, be to make use of Endpoint/@uri values within the Transport content model as definitive. The use of HTTP, MIME, or SOAP binding information from the wsdl:binding element is implementation dependent.

On the client side (which for typical MEPs is the initial sender), the current capability to act as a client is marked by an entirely empty WSDLOperation element. An empty element indicates that the client is capable of conforming to whatever the service specifies in terms of input, output, and faults.
[The support for 2.0 Feature and Property extensions are under review.]

[The use of message, part and header in 1.1 is not described.]

[Policy additions to WSDL are not described. Possibly these will be handled by reference in a manner analogous to how we added wsdl:interface and wsdl:operation references.]

[CPPs and CPAs could handle less commonly used WSDL MEPs (the “out” and “out-in” forms called Notification and Solicit-Response in WSDL 1.1). These would basically reverse the conventions and duties of sender and receiver discussed above. Still to be illustrated]
[Allowing clients to specify nonempty WSDL modules could conceivably be taken to indicate constraints on what the client was willing to accept input-, output- and fault-wise. Not discussed yet.]

[The BPSS instance for WSDL is deferred until the resolution of changes under discussion for BPSS 2.0, possibly using its new construct of OperationMapping.]

10.5 Web Services Doc Exchange Elements
[Introductory]
10.5.1 WSSenderBinding element

The WSSenderBinding element describes properties related to sending messages by means of web services. The WSSenderBinding element MUST include the WSDLOperation element and MAY include the following child elements (documented elsewhere):

zero or one ReliableMessaging element which specifies the characteristics of reliable messaging,

zero or one PersistDuration element which specifies the duration for which certain messages have to be stored persistently for the purpose of duplicate elimination,

zero or one SenderNonRepudiation element which specifies the sender’s requirements and certificate for message signing,

zero or one SenderDigitalEnvelope element which specifies the sender’s requirements for encryption by the digital-envelope[DIGENV] method,

zero or more NamespaceSupported elements that identify any namespace extensions supported by the messaging service implementation.

The WSSenderBinding element has one attribute:

a REQUIRED version attribute.
10.5.1.1 version attribute

The REQUIRED version attribute identifies the version of the SOAP specification being used.

10.5.2 WSReceiverBinding element

The WSReceiverBinding element describes properties related to receiving messages using the Web Services Message Service. The WSReceiverBinding element is an alternative to the ebXMLReceiverBinding element and MUST include the WSDLOperation element and MAY include the following child elements (documented elsewhere):

zero or one ReliableMessaging element (see section 8.4.41),

zero or one ReceiverNonRepudiation element which specifies the receiver’s requirements for message signing (see section),

zero or one ReceiverDigitalEnvelope element which specifies the receiver’s requirements and certificate for encryption by the digital-envelope[DIGENV] method,

zero or more NamespaceSupported elements (see section 8.4.52).

The WSSenderBinding element has one attribute:

a REQUIRED version attribute.

10.5.2.1 version attribute

The REQUIRED version attribute identifies the version of the SOAP specification being used.

.

10.5.3 WSDLOperation Element

The WSDLOperation element provides information about the operation that implements the action [8.4.12.1]. The WSDLOperation element has the following attributes:
a REQUIRED version attribute,

a REQUIRED operationRef attribute,

a REQUIRED wsdlLocation attribute,

a REQUIRED messageRef attribute.

10.5.3.1 version attribute
The REQUIRED version attribute identifies the version of the WSDL specification being used.

10.5.3.2 operationRef attribute

The REQUIRED operationRef attribute provides a URIReference [] to the wsdl:operation.The format for these references varies by WSDL version. For WSDL version 1.1[], the format is a URIReference with the targetNamespace forming the first part of the URIReference, and a fragment using Xpointer syntax to identify the operation name.For WSDL version 2.0[], the format is a URIReference with the targetNamespace forming the first part of the URIReference, and a fragment can use the WSDL 2.0 Appendix C syntax[]. However, Xpointer fragment syntax should be supported for either version.
[Fix on targetNamespace – probably not desirable in 1.1 URI-reference using Xpointer]
10.5.3.3 wsdlLocation attribute
The REQUIRED wsdlLocation attribute provides a URL that both parties can use to access the relevant WSDL for the targetNamespace identified WSDL.
[wsdl could be at targetNamespace URL, but is that enough to make this optional?]
10.5.3.4 messageRef attribute
The REQUIRED messageRef attribute provides a URI-Reference [] to the specific XML type information for the document that is being sent and received. Xpointer [] syntax is used for this reference. When more than one kind of document may be conveyed by this Action, the Xpointer will select a nodeset of the main and fault message. For WSDL 1.1 [], the relevant wsdl:parts of wsdl:message will be referenced. For WSDL 2.0 [], the relevant global element declarations will be referenced.
[Illustrations TBD.]
10.6 Alternative Business Process Specification Definitions

As this maintenance release is being developed, several alternatives exist for describing business processes at various levels of abstractions and with varying degrees of information about business quality of service. In future major versions of this specification, explicit guidance for using these specifications with ebXML CPPA descriptions may be provided within the basic approach of the extension framework.
In this maintenance release, explicit attention will be given to the modifications needed for using this maintenance release with [ebBPSS2]. The Business Process descriptions of [ebBPSS2] differ from those descriptions provided in [ebBPSS] in several ways. A summary of mappings is provided in Appendix 22.
10.6.1 Service

In [ebBPSS2], Service values are associated with the name attribute of toplevel BusinessCollaborations, BinaryCollaborations, or MultiPartyCollaborations. Therefore, multiple services may be found in a single BPSS instance. Although the nameId values of toplevel Collaborations must differ, the name attribute could be the same (in which case, the Service would encompass multiple Collaborations). However, because the Service value provides a grouping and scope over a collections of Actions, an Xlink reference is added to the Service element to reference the specific toplevel BusinessCollaborations, BinaryCollaborations, or MultiPartyCollaborations for the service and action bindings. These attributes MUST be used when referencing Business Process descriptions of [ebBPSS2]
10.6.1.1 xlink:type attribute

The xlink:type attribute has a FIXED value of "simple". This identifies the link as being an [XLINK] simple link.

10.6.1.2 xlink:href attribute

The xlink:href attribute SHALL have a value that is a URI that conforms to [RFC2396]. It identifies the location of the element by using a URI Reference (“fragment identifier”) to refer to an information item in a Process-Specification document. An example is:

 xlink:href="http://www.rosettanet.org/processes/3A4.xml#RequestPurchaseOrder_BC"

where the “fragment identifier” RequestPurchaseOrder_BC is the value of the nameID attribute (of type ID) of a Collaboration element in the Process-Specification document. The name attribute of this element has the value for Service when using [ebBPSS2].
10.6.2 ServiceBinding

Because in [ebBPSS2] a given Process Specification document can have multiple Services (top level Business Collaboration elements), a CollaborationRole element may group multiple ServiceBinding elements--each with different Service values--alongside the same ProcessSpecification and Role elements. However, when different Roles within Services are described, then it will be necessary to add new CollaborationRole elements to contain these descriptions.
10.6.3 Role
In [ebBPSS2], new constructs are introduced to track Role values through complicated Business Collaborations (choreographies). An ExternalRole element allows global values to be declared that Performs elements then associate with Role values in toplevel Business Collaborations. Likewise, Performs elements are used within a CollaborationActivity to associate the current Business Collaboration’s Role values with the declared Role values within a referenced Business Collaboration. As a result, one Party may be associated with multiple values even within the same service. For the CPPA 2.1 maintenance release, this means that when different Role values within Services are described, then new CollaborationRole elements will be needed.
NOTE: When a new major version of ebXML CPPA is warranted, it is likely that the organization of the CollaborationRole element within CPPA will undergo considerable “flattening” and refactoring. Additional changes may be needed to accommodate other concepts introduced in emerging business process specifications.
10.6.4 ActionContext2

An alternative ActionContext element ActionContext2 has been defined in the substitution group of ActionContext. The primary change introduced is that the attribute, binaryCollaboration, has been removed. The Service element is not mapped to the toplevel BusinessCollaboration, BinaryCollaboration, or MultiPartyCollaboration and because of this linkage, the scope for the action is provided by the mapping indicated by the Service element.
10.6.5 timeToPerform
The ebXML CPPA schema datatype for the timeToPerform attribute has been generalized to apply to more dynamic setting of the time to perform a process in [ebBPSS2].
11 References

Some references listed below specify functions for which specific XML definitions are provided in the CPP and CPA. Other specifications are referred to in this specification in the sense that they are represented by keywords for which the Parties to the CPA MAY obtain plug-ins or write custom support software but do not require specific XML element sets in the CPP and CPA.

In a few cases, the only available specification for a function is a proprietary specification. These are indicated by notes within the citations below.

[ccOVER] ebXML Core Components Overview, http://www.ebxml.org/specs/ccOVER.pdf.

[DIGENV] Digital Envelope, RSA Laboratories, http://www.rsasecurity.com/rsalabs/faq/2-2-4.html. NOTE: At this time, the only available specification for digital envelope appears to be the RSA Laboratories specification.

[ebBPSS] ebXML Business Process Specification Schema, http://www.ebxml.org/specs/ebBPSS.pdf.

[ebBPSS2] OASIS ebXML Business Process,

[ebMS] ebXML Message Service Specification, http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf.

[ebRS] ebXML Registry Services Specification, http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf.

[HTTP] Hypertext Transfer Protocol, Internet Engineering Task Force RFC 2616, http://www.rfc-editor.org/rfc/rfc2616.txt.

[IPSEC] IP Security Document Roadmap, Internet Engineering Task Force RFC 2411, http://www.ietf.org/rfc/rfc2411.txt.

[ISO6523] Structure for the Identification of Organizations and Organization Parts, International Standards Organization ISO-6523.

[ISO9735] UN/CEFACT Syntax, International Standards Organization ISO-9735.

[MIME] MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies. Internet Engineering Task Force RFC 1521, http://www.ietf.org/rfc/rfc1521.txt.

[RFC959] File Transfer Protocol (FTP), Internet Engineering Task Force RFC 959, http://www.ietf.org/rfc/rfc959.txt.

[RFC1123] Requirements for Internet Hosts -- Application and Support, Internet Engineering Task Force RFC 1123, http://www.ietf.org/rfc/rfc1123.txt.

[RFC1579] Firewall-Friendly FTP, Internet Engineering Task Force RFC 1579, http://www.ietf.org/rfc/rfc1579.txt.

[RFC2015] MIME Security with Pretty Good Privacy, Internet Engineering Task Force, RFC 2015, http://www.ietf.org/rfc/rfc2015.txt.

[RFC2119] Key Words for use in RFCs to Indicate Requirement Levels, Internet Engineering Task Force RFC 2119, http://www.ietf.org/rfc/rfc2119.txt.

[RFC2141]. URN Syntax, R. Moats May 1997,

HYPERLINK "http://www.rfc-editor.org/rfc/rfc2396.txt"

 http://www.ietf.org/rfc/rfc2141.txt

.

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax; T. Berners-Lee, R. Fielding, L. Masinter - August 1998, http://www.ietf.org/rfc/rfc2396.txt
[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax, Internet Engineering Task Force RFC 2396, http://www.ietf.org/rfc/rfc2396.txt.

[RFC2246] The TLS Protocol, Internet Engineering Task Force RFC 2246, http://www.ietf.org/rfc/rfc2246.txt.

[RFC2251] Lightweight Directory Access Protocol (v3), Internet Engineering Task Force RFC 2251, http://www.ietf.org/rfc/rfc2251.txt.

[RFC2617] HTTP Authentication: Basic and Digest Authentication, , Internet Engineering Task Force RFC 2617, http://www.ietf.org/rfc/rfc2617.txt.
[RFC2822] Internet Message Format, Internet Engineering Task Force RFC 2822, http://www.ietf.org/rfc/rfc2822.txt.

[RFC3335]MIME-based Secure Peer-to-Peer Business Data Interchange over the Internet, Internet Engineering Task Force RFC 3335, http://www.ietf.org/rfc/rfc3335.txt.
[RFC3798] Message Disposition Notification, Internet Engineering Task Force RFC 3798, http://www.ietf.org/rfc/rfc3798.txt
[S/MIME] S/MIME Version 3 Message Specification, Internet Engineering Task Force RFC 2633, http://www.ietf.org/rfc/rfc2633.txt.

[SAML] Security Assertion Markup Language, http://www.oasis-open.org/committees/security/ - documents.

[SMTP] Simple Mail Transfer Protocol, Internet Engineering Task Force RFC 2821, http://www.faqs.org/rfcs/rfc2821.html.

[SSL] Secure Sockets Layer, Netscape Communications Corp., http://www.netscape.com/eng/ssl3/
NOTE: At this time, it appears that the Netscape specification is the only available specification of SSL.

[X12] ANSI X12 Standard for Electronic Data Interchange, X12 Standard Release
4050, December 2001.

[XAML] Transaction Authority Markup Language, http://xaml.org/.

[XLINK] XML Linking Language, http://www.w3.org/TR/xlink/.

[XML] Extensible Markup Language (XML), World Wide Web Consortium,

http://www.w3.org/XML.

[XMLC14N] Canonical XML, Ver. 1.0, Worldwide Web Consortium, http://www.w3.org/TR/2001/REC-xml-c14n-20010315.

[XMLDSIG] XML Signature Syntax and Processing, Worldwide Web Consortium, http://www.w3.org/TR/xmldsig-core/.

[XMLENC] XML Encryption Syntax and Processing, Worldwide Web Consortium, http://www.w3.org/TR/2002/CR-xmlenc-core-20020304/.

[XMLNS] Namespaces in XML, Worldwide Web Consortium, http://www.w3.org/TR/REC-xml-names/.

[XMLSCHEMA-1] XML Schema Part 1: Structures, Worldwide Web Consortium, http://www.w3.org/TR/xmlschema-1/.

[XMLSCHEMA-2] XML Schema Part 2: Datatypes, Worldwide Web Consortium,
http://www.w3.org/TR/xmlschema-2/.

[XPATH] James Clark and Steve DeRose, editors. XML Path Language (XPath). World Wide Web Consortium, 1999. (See http://www.w3.org/TR/xpath.)

[XPOINTER] XML Pointer Language, Worldwide Web Consortium, http://www.w3.org/TR/xptr/.

[XPOINTERFRAME] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh, editors. XPointer Framework. World Wide Web Consortium, 2002, http://www.w3.org/TR/2002/WD-xptr-framework-20020710/.

[XMLNS-SCHEME] Steven DeRose, Eve Maler, and Ron Daniel Jr., editors. XPointer xmlns() Scheme Proposal. World Wide Web Consortium, 2001, http://www.w3.org/TR/2002/WD-xptr-xmlns-20020710/.

[XPOINTER-SCHEME] XPointer xpointer() Scheme,
[ZLIB] Zlib: A Massively Spiffy Yet Delicately Unobtrusive Compression Library, http://www.gzip.org/zlib/.

12 Conformance
In order to conform to this specification, an implementation:

a) SHALL support all the functional and interface requirements defined in this specification,

b) SHALL NOT specify any requirements that would contradict or cause non-conformance to this specification.

A conforming implementation SHALL satisfy the conformance requirements of the applicable parts of this specification.

An implementation of a tool or service that creates or maintains ebXML CPP or CPA instance documents SHALL be determined to be conformant by validation of the CPP or CPA instance documents, created or modified by said tool or service, against the XML Schema[XMLSCHEMA-1] definition of the CPP or CPA in Appendix D and available from

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd
by using two or more validating XML Schema parsers that conform to the W3C XML Schema specifications[XMLSCHEMA-1, XMLSCHEMA-2].

The objective of conformance testing is to determine whether an implementation being tested conforms to the requirements stated in this specification. Conformance testing enables vendors to implement compatible and interoperable systems. Implementations and applications SHALL be tested using available test suites to verify their conformance to this specification.

Publicly available test suites from vendor neutral organizations such as OASIS and the U.S.A. National Institute of Science and Technology (NIST) SHOULD be used to verify the conformance of implementations, applications, and components claiming conformance to this specification. Open-source reference implementations might be available to allow vendors to test their products for interface compatibility, conformance, and interoperability.

13 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

14 Contact Information
 Arvola Chan (Author)

 TIBCO Software

 3303 Hillview Avenue

 Palo Alto, CA 94304

 USA

 Phone: 650-846-5046

 email: mailto:arvola@tibco.com
 Dale W. Moberg (Author)

 Cyclone Commerce

 8388 E. Hartford Drive

 Scottsdale, AZ 85255

 USA

 Phone: 480-627-2648

 email: mailto:dmoberg@cyclonecommerce.com
 Himagiri Mukkamala (Author)

 Sybase Inc.

 5000 Hacienda Dr

 Dublin, CA, 84568

 USA

 Phone: 925-236-5477

 email: mailto:himagiri@sybase.com
 Peter M. Ogden (Author)

 Cyclone Commerce, Inc.

 8388 East Hartford Drive

 Scottsdale, AZ 85255

 USA

 Phone: 480-627-1800

 email: mailto:pogden@cyclonecommerce.com
 Martin W. Sachs (Author)

 IBM T. J. Watson Research Center

 P.O.B. 704

 Yorktown Hts, NY 10598

 USA

 Phone: 914-784-7287

 email: mailto:mwsachs@us.ibm.com
 Tony Weida (Coordinating Editor)

 535 West 110th St., #4J

 New York, NY 10025

 USA

 Phone: 212-678-5265

 email: mailto:rweida@hotmail.com
 Jean Zheng

 Vitria
 945 Stewart Drive
 Sunnyvale, CA 94086
 USA
 Phone: 408-212-2468
 email: mailto:jzheng@vitria.com
15 Notices

Portions of this document are copyright (c) 2001 OASIS and UN/CEFACT.

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS] 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights.
16 Example of CPP Document (Non-Normative)

This example includes two CPPs that are used to form the CPA in Appendix B. They are available as ASCII files at

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-example-companyA-2_0b.xml
http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-example-companyB-2_0b.xml
cpp-example-companyA-2_0b.xml:

<?xml version="1.0"?>

<!-- Copyright UN/CEFACT and OASIS, 2001. All Rights Reserved. -->

<tp:CollaborationProtocolProfile

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd

 cpp-cpa-2_0.xsd"

 tp:cppid="uri:companyA-cpp" tp:version="2_0b">

 <!-- Party info for CompanyA-->

 <tp:PartyInfo

 tp:partyName="CompanyA"

 tp:defaultMshChannelId="asyncChannelA1"

 tp:defaultMshPackageId="CompanyA_MshSignalPackage">

 <tp:PartyId

 tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

 <tp:PartyRef xlink:href="http://CompanyA.com/about.html"/>

 <tp:CollaborationRole>

 <tp:ProcessSpecification

 tp:version="2.0"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml"

 tp:uuid="urn:icann:rosettanet.org:bpid:3A4$2.0"/>

 <tp:Role

 tp:name="Buyer"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml#Buyer"/>

 <tp:ApplicationCertificateRef tp:certId="CompanyA_AppCert"/>

 <tp:ServiceBinding>

 <tp:Service>bpid:icann:rosettanet.org:3A4$2.0</tp:Service>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID1"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyA_RequestPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID2"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <!-- The next binding uses a synchronous delivery channel -->

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID6"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyA_RequestPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"

 tp:timeToPerform="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID7"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyA_SyncReplyPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID8"

 tp:action="Exception"

 tp:packageId="CompanyA_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 </tp:CanSend>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID3"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyA_ResponsePackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID4"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent" tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID5"

 tp:action="Exception"

 tp:packageId="CompanyA_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 </tp:ServiceBinding>

 </tp:CollaborationRole>

 <!-- Certificates used by the "Buyer" company -->

 <tp:Certificate tp:certId="CompanyA_AppCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_AppCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyA_SigningCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_SigningCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyA_EncryptionCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_EncryptionCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyA_ServerCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_ServerCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyA_ClientCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_ClientCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA1">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA1_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA2">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA2_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA3">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA3_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA4">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA4_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA5">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA5_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:SecurityDetails tp:securityId="CompanyA_TransportSecurity">

 <tp:TrustAnchors>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA1"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA2"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA4"/>

 </tp:TrustAnchors>

 </tp:SecurityDetails>

 <tp:SecurityDetails tp:securityId="CompanyA_MessageSecurity">

 <tp:TrustAnchors>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA3"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA5"/>

 </tp:TrustAnchors>

 </tp:SecurityDetails>

 <!-- An asynchronous delivery channel -->

 <tp:DeliveryChannel

 tp:channelId="asyncChannelA1"

 tp:transportId="transportA2"

 tp:docExchangeId="docExchangeA1">

 <tp:MessagingCharacteristics

 tp:syncReplyMode="none"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"/>

 </tp:DeliveryChannel>

 <!-- A synchronous delivery channel -->

 <tp:DeliveryChannel

 tp:channelId="syncChannelA1"

 tp:transportId="transportA1"

 tp:docExchangeId="docExchangeA1">

 <tp:MessagingCharacteristics

 tp:syncReplyMode="signalsAndResponse"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"/>

 </tp:DeliveryChannel>

 <tp:Transport tp:transportId="transportA1">

 <tp:TransportSender>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:AccessAuthentication>digest</tp:AccessAuthentication>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyA_ClientCert"/>

 <tp:ServerSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:AccessAuthentication>digest</tp:AccessAuthentication>

 <tp:Endpoint

 tp:uri="https://www.CompanyA.com/servlets/ebxmlhandler/sync"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyA_ServerCert"/>

 <tp:ClientSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

 </tp:Transport>

 <tp:Transport tp:transportId="transportA2">

 <tp:TransportSender>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:AccessAuthentication>digest</tp:AccessAuthentication>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyA_ClientCert"/>

 <tp:ServerSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:AccessAuthentication>digest</tp:AccessAuthentication>

 <tp:Endpoint

 tp:uri="https://www.CompanyA.com/servlets/ebxmlhandler/sync"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyA_ServerCert"/>

 <tp:ClientSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

 </tp:Transport>

 <tp:DocExchange tp:docExchangeId="docExchangeA1">

 <tp:ebXMLSenderBinding tp:version="2.0">

 <tp:ReliableMessaging>

 <tp:Retries>3</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

 </tp:ReliableMessaging>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 <tp:SenderNonRepudiation>

 <tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

 <tp:SigningCertificateRef tp:certId="CompanyA_SigningCert"/>

 </tp:SenderNonRepudiation>

 <tp:SenderDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionSecurityDetailsRef tp:securityId="CompanyA_MessageSecurity"/>

 </tp:SenderDigitalEnvelope>

 </tp:ebXMLSenderBinding>

 <tp:ebXMLReceiverBinding tp:version="2.0">

 <tp:ReliableMessaging>

 <tp:Retries>3</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

 </tp:ReliableMessaging>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 <tp:ReceiverNonRepudiation>

 <tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

 <tp:SigningSecurityDetailsRef tp:securityId="CompanyA_MessageSecurity"/>

 </tp:ReceiverNonRepudiation>

 <tp:ReceiverDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionCertificateRef tp:certId="CompanyA_EncryptionCert"/>

 </tp:ReceiverDigitalEnvelope>

 </tp:ebXMLReceiverBinding>

 </tp:DocExchange>

 </tp:PartyInfo>

 <!-- SimplePart corresponding to the SOAP Envelope -->

 <tp:SimplePart

 tp:id="CompanyA_MsgHdr"

 tp:mimetype="text/xml">

 <tp:NamespaceSupported

 tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

 tp:version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to a Receipt Acknowledgment business signal -->

 <tp:SimplePart

 tp:id="CompanyA_ReceiptAcknowledgment"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd"

 tp:version="2.0">

 http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to an Exception business signal -->

 <tp:SimplePart

 tp:id="CompanyA_Exception"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

 tp:version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to a request action -->

 <tp:SimplePart

 tp:id="CompanyA_Request"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd"

 tp:version="2.0">

 http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to a response action -->

 <tp:SimplePart

 tp:id="CompanyA_Response"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd"

 tp:version="2.0">

 http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- An ebXML message with a SOAP Envelope only -->

 <tp:Packaging tp:id="CompanyA_MshSignalPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_MshSignal"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus a request action payload -->

 <tp:Packaging tp:id="CompanyA_RequestPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_RequestMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_Request"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus a response action payload -->

 <tp:Packaging tp:id="CompanyA_ResponsePackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_ResponseMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_Response"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a Receipt Acknowledgment signal, plus a business response,

 or an ebXML message with an Exception signal -->

 <tp:Packaging tp:id="CompanyA_SyncReplyPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_SignalAndResponseMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_ReceiptAcknowledgment"/>

 <tp:Constituent tp:idref="CompanyA_Response"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus a ReceiptAcknowledgment payload -->

 <tp:Packaging tp:id="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_ReceiptAcknowledgmentMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_ReceiptAcknowledgment"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus an Exception payload -->

 <tp:Packaging tp:id="CompanyA_ExceptionPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_ExceptionMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_Exception"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Comment xml:lang="en-US">Buyer's Collaboration Protocol Profile</tp:Comment>

</tp:CollaborationProtocolProfile>
cpp-example-companyB-2_0b.xml:

<?xml version="1.0"?>

<!-- Copyright UN/CEFACT and OASIS, 2001. All Rights Reserved. -->

<tp:CollaborationProtocolProfile

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd

 cpp-cpa-2_0.xsd"

 tp:cppid="uri:companyB-cpp"

 tp:version="2_0b">

 <!-- Party info for CompanyB-->

 <tp:PartyInfo

 tp:partyName="CompanyB"

 tp:defaultMshChannelId="asyncChannelB1"

 tp:defaultMshPackageId="CompanyB_MshSignalPackage">

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">987654321</tp:PartyId>

 <tp:PartyRef xlink:type="simple" xlink:href="http://CompanyB.com/about.html"/>

 <tp:CollaborationRole>

 <tp:ProcessSpecification

 tp:version="2.0"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple" xlink:href="http://www.rosettanet.org/processes/3A4.xml"

 tp:uuid="urn:icann:rosettanet.org:bpid:3A4$2.0"/>

 <tp:Role

 tp:name="Seller"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml#seller"/>

 <tp:ApplicationCertificateRef tp:certId="CompanyB_AppCert"/>

 <tp:ServiceBinding>

 <tp:Service>bpid:icann:rosettanet.org:3A4$2.0</tp:Service>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID1"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyB_ResponsePackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID2"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyB_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID3"

 tp:action="Exception"

 tp:packageId="CompanyB_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID4"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyB_RequestPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID5" tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyB_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <!-- The next binding uses a synchronous delivery channel -->

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID6"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyB_SyncReplyPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"

 tp:timeToPerform="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>syncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID7"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyB_ResponsePackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>syncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID8"

 tp:action="Exception"

 tp:packageId="CompanyB_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>syncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 </tp:CanReceive>

 </tp:ServiceBinding>

 </tp:CollaborationRole>

 <!-- Certificates used by the "Seller" company -->

 <tp:Certificate tp:certId="CompanyB_AppCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_AppCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyB_SigningCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_Signingcert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyB_EncryptionCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_EncryptionCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyB_ServerCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_ServerCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyB_ClientCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_ClientCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB4">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB4_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB5">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB5_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB6">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB6_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB7">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB7_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB8">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB8_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:SecurityDetails tp:securityId="CompanyB_TransportSecurity">

 <tp:TrustAnchors>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB5"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB6"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB4"/>

 </tp:TrustAnchors>

 </tp:SecurityDetails>

 <tp:SecurityDetails tp:securityId="CompanyB_MessageSecurity">

 <tp:TrustAnchors>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB8"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB7"/>

 </tp:TrustAnchors>

 </tp:SecurityDetails>

 <!-- An asynchronous delivery channel -->

 <tp:DeliveryChannel

 tp:channelId="asyncChannelB1"

 tp:transportId="transportB1"

 tp:docExchangeId="docExchangeB1">

 <tp:MessagingCharacteristics

 tp:syncReplyMode="none"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"/>

 </tp:DeliveryChannel>

 <!-- A synchronous delivery channel -->

 <tp:DeliveryChannel

 tp:channelId="syncChannelB1"

 tp:transportId="transportB2"

 tp:docExchangeId="docExchangeB1">

 <tp:MessagingCharacteristics

 tp:syncReplyMode="signalsAndResponse"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"/>

 </tp:DeliveryChannel>

 <tp:Transport tp:transportId="transportB1">

 <tp:TransportSender>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyB_ClientCert"/>

 <tp:ServerSecurityDetailsRef tp:securityId="CompanyB_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:Endpoint

 tp:uri="https://www.CompanyB.com/servlets/ebxmlhandler/sync"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyB_ServerCert"/>

 <tp:ClientSecurityDetailsRef tp:securityId="CompanyB_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

 </tp:Transport>

 <tp:Transport tp:transportId="transportB2">

 <tp:TransportSender>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyB_ClientCert"/>

 <tp:ServerSecurityDetailsRef tp:securityId="CompanyB_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:Endpoint

 tp:uri="https://www.CompanyB.com/servlets/ebxmlhandler/async"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyB_ServerCert"/>

 <tp:ClientSecurityDetailsRef tp:securityId="CompanyB_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

 </tp:Transport>

 <tp:DocExchange tp:docExchangeId="docExchangeB1">

 <tp:ebXMLSenderBinding tp:version="2.0">

 <tp:ReliableMessaging>

 <tp:Retries>3</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

 </tp:ReliableMessaging>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 <tp:SenderNonRepudiation>

 <tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

 <tp:SigningCertificateRef tp:certId="CompanyB_SigningCert"/>

 </tp:SenderNonRepudiation>

 <tp:SenderDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionSecurityDetailsRef tp:securityId="CompanyB_MessageSecurity"/>

 </tp:SenderDigitalEnvelope>

 </tp:ebXMLSenderBinding>

 <tp:ebXMLReceiverBinding tp:version="2.0">

 <tp:ReliableMessaging>

 <tp:Retries>3</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

 </tp:ReliableMessaging>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 <tp:ReceiverNonRepudiation>

 <tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

 <tp:SigningSecurityDetailsRef tp:securityId="CompanyB_MessageSecurity"/>

 </tp:ReceiverNonRepudiation>

 <tp:ReceiverDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionCertificateRef tp:certId="CompanyB_EncryptionCert"/>

 </tp:ReceiverDigitalEnvelope>

 </tp:ebXMLReceiverBinding>

 </tp:DocExchange>

 </tp:PartyInfo>

 <!-- SimplePart corresponding to the SOAP Envelope -->

 <tp:SimplePart

 tp:id="CompanyB_MsgHdr"

 tp:mimetype="text/xml">

 <tp:NamespaceSupported

 tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

 tp:version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to a Receipt Acknowledgment business signal -->

 <tp:SimplePart

 tp:id="CompanyB_ReceiptAcknowledgment"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd"

 tp:version="2.0">

 http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to an Exception business signal -->

 <tp:SimplePart

 tp:id="CompanyB_Exception"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

 tp:version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to a request action -->

 <tp:SimplePart

 tp:id="CompanyB_Request"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd"

 tp:version="2.0">

 http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to a response action -->

 <tp:SimplePart

 tp:id="CompanyB_Response"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd"

 tp:version="2.0">

 http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- An ebXML message with a SOAP Envelope only -->

 <tp:Packaging tp:id="CompanyB_MshSignalPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_MshSignal"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus a request action payload -->

 <tp:Packaging tp:id="CompanyB_RequestPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_RequestMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_Request"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus a response action payload -->

 <tp:Packaging tp:id="CompanyB_ResponsePackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_ResponseMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_Response"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus a Receipt Acknowledgment payload -->

 <tp:Packaging tp:id="CompanyB_ReceiptAcknowledgmentPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_ReceiptAcknowledgmentMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_ReceiptAcknowledgment"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus an Exception payload -->

 <tp:Packaging tp:id="CompanyB_ExceptionPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_ExceptionMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_Exception"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a Receipt Acknowledgment signal, plus a business response,

 or an ebXML message with an Exception signal -->

 <tp:Packaging tp:id="CompanyB_SyncReplyPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_SignalAndResponseMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_ReceiptAcknowledgment"/>

 <tp:Constituent tp:idref="CompanyB_Response"/>

 </tp:Composite>

 </tp:CompositeList>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_SyncExceptionMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_Exception"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Comment xml:lang="en-US">Seller's Collaboration Protocol Profile</tp:Comment>

</tp:CollaborationProtocolProfile>
17 Example of CPA Document (Non-Normative)

The example in this appendix is to be parsed with an XML Schema parser. The schema is available as an ASCII file at

 http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0b.xsd
The example that can be parsed with the XSD is available at

http://www.oasis-open.org/committees/ebxml-cppa/schema/cpa-example-2_0b.xml
<?xml version="1.0"?>

<!-- Copyright UN/CEFACT and OASIS, 2001. All Rights Reserved. -->

<tp:CollaborationProtocolAgreement

 xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd

 cpp-cpa-2_0.xsd"

 tp:cpaid="uri:companyA-and-companyB-cpa" tp:version="2_0b">

 <tp:Status tp:value="proposed"/>

 <tp:Start>2001-05-20T07:21:00Z</tp:Start>

 <tp:End>2002-05-20T07:21:00Z</tp:End>

 <tp:ConversationConstraints tp:invocationLimit="100" tp:concurrentConversations="10"/>

 <!-- Party info for CompanyA -->

 <tp:PartyInfo

 tp:partyName="CompanyA"

 tp:defaultMshChannelId="asyncChannelA1"

 tp:defaultMshPackageId="CompanyA_MshSignalPackage">

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

 <tp:PartyRef xlink:type="simple" xlink:href="http://CompanyA.com/about.html"/>

 <tp:CollaborationRole>

 <tp:ProcessSpecification

 tp:version="2.0"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml"

 tp:uuid="urn:icann:rosettanet.org:bpid:3A4$2.0"/>

 <tp:Role

 tp:name="Buyer"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml#Buyer"/>

 <tp:ApplicationCertificateRef tp:certId="CompanyA_AppCert"/>

 <tp:ServiceBinding>

 <tp:Service>bpid:icann:rosettanet.org:3A4$2.0</tp:Service>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID1"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyA_RequestPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyB_ABID4</tp:OtherPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID2"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyB_ABID5</tp:OtherPartyActionBinding>

 </tp:CanSend>

 <!-- The next binding uses a synchronous delivery channel -->

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID6"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyA_RequestPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"

 tp:timeToPerform="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyB_ABID6</tp:OtherPartyActionBinding>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID7"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyA_SyncReplyPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyB_ABID7</tp:OtherPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID8"

 tp:action="Exception"

 tp:packageId="CompanyA_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyB_ABID8</tp:OtherPartyActionBinding>

 </tp:CanReceive>

 </tp:CanSend>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID3"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyA_ResponsePackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyB_ABID1</tp:OtherPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID4"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyB_ABID2</tp:OtherPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID5"

 tp:action="Exception"

 tp:packageId="CompanyA_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyB_ABID3</tp:OtherPartyActionBinding>

 </tp:CanReceive>

 </tp:ServiceBinding>

 </tp:CollaborationRole>

 <!-- Certificates used by the "Buyer" company -->

 <tp:Certificate tp:certId="CompanyA_AppCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_AppCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyA_SigningCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_SigningCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyA_EncryptionCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_EncryptionCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyA_ServerCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_ServerCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyA_ClientCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyA_ClientCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA1">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA1_Key </ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA2">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA2_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA3">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA3_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA4">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA4_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertA5">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertA5_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:SecurityDetails tp:securityId="CompanyA_TransportSecurity">

 <tp:TrustAnchors>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA1"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA2"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA4"/>

 </tp:TrustAnchors>

 </tp:SecurityDetails>

 <tp:SecurityDetails tp:securityId="CompanyA_MessageSecurity">

 <tp:TrustAnchors>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA3"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertA5"/>

 </tp:TrustAnchors>

 </tp:SecurityDetails>

 <tp:DeliveryChannel

 tp:channelId="asyncChannelA1"

 tp:transportId="transportA1"

 tp:docExchangeId="docExchangeA1">

 <tp:MessagingCharacteristics

 tp:syncReplyMode="none"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"/>

 </tp:DeliveryChannel>

 <tp:DeliveryChannel

 tp:channelId="syncChannelA1"

 tp:transportId="transportA2"

 tp:docExchangeId="docExchangeA1">

 <tp:MessagingCharacteristics

 tp:syncReplyMode="signalsAndResponse"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"/>

 </tp:DeliveryChannel>

 <tp:Transport tp:transportId="transportA1">

 <tp:TransportSender>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyA_ClientCert"/>

 <tp:ServerSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:Endpoint

 tp:uri="https://www.CompanyA.com/servlets/ebxmlhandler/async"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyA_ServerCert"/>

 <tp:ClientSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

 </tp:Transport>

 <tp:Transport tp:transportId="transportA2">

 <tp:TransportSender>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyA_ClientCert"/>

 <tp:ServerSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:Endpoint

 tp:uri="https://www.CompanyA.com/servlets/ebxmlhandler/sync"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyA_ServerCert"/>

 <tp:ClientSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

 </tp:Transport>

 <tp:DocExchange tp:docExchangeId="docExchangeA1">

 <tp:ebXMLSenderBinding tp:version="2.0">

 <tp:ReliableMessaging>

 <tp:Retries>3</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

 </tp:ReliableMessaging>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 <tp:SenderNonRepudiation>

 <tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

 <tp:SigningCertificateRef tp:certId="CompanyA_SigningCert"/>

 </tp:SenderNonRepudiation>

 <tp:SenderDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionSecurityDetailsRef tp:securityId="CompanyA_MessageSecurity"/>

 </tp:SenderDigitalEnvelope>

 </tp:ebXMLSenderBinding>

 <tp:ebXMLReceiverBinding tp:version="2.0">

 <tp:ReliableMessaging>

 <tp:Retries>3</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

 </tp:ReliableMessaging>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 <tp:ReceiverNonRepudiation>

 <tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

 <tp:SigningSecurityDetailsRef tp:securityId="CompanyA_MessageSecurity"/>

 </tp:ReceiverNonRepudiation>

 <tp:ReceiverDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionCertificateRef tp:certId="CompanyA_EncryptionCert"/>

 </tp:ReceiverDigitalEnvelope>

 </tp:ebXMLReceiverBinding>

 </tp:DocExchange>

 </tp:PartyInfo>

 <!-- Party info for CompanyB -->

 <tp:PartyInfo

 tp:partyName="CompanyB"

 tp:defaultMshChannelId="asyncChannelB1"

 tp:defaultMshPackageId="CompanyB_MshSignalPackage">

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">987654321</tp:PartyId>

 <tp:PartyRef xlink:type="simple" xlink:href="http://CompanyB.com/about.html"/>

 <tp:CollaborationRole>

 <tp:ProcessSpecification

 tp:version="2.0"

 tp:name="PIP3A4RequestPurchaseOrder"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml"

 tp:uuid="urn:icann:rosettanet.org:bpid:3A4$2.0"/>

 <tp:Role

 tp:name="Seller"

 xlink:type="simple"

 xlink:href="http://www.rosettanet.org/processes/3A4.xml#seller"/>

 <tp:ApplicationCertificateRef tp:certId="CompanyB_AppCert"/>

 <tp:ServiceBinding>

 <tp:Service>bpid:icann:rosettanet.org:3A4$2.0</tp:Service>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID1"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyB_ResponsePackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyA_ABID3</tp:OtherPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID2"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyB_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyA_ABID4</tp:OtherPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID3"

 tp:action="Exception"

 tp:packageId="CompanyB_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyA_ABID5</tp:OtherPartyActionBinding>

 </tp:CanSend>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID4"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyB_RequestPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyA_ABID1</tp:OtherPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID5"

 tp:action="ReceiptAcknowledgment"

 tp:packageId="CompanyB_ReceiptAcknowledgmentPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>asyncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyA_ABID2</tp:OtherPartyActionBinding>

 </tp:CanReceive>

 <!-- The next binding uses a synchronous delivery channel -->

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID6"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyB_RequestPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"

 tp:timeToPerform="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>syncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyA_ABID6</tp:OtherPartyActionBinding>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID7"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyB_SyncReplyPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>syncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyA_ABID7</tp:OtherPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID8"

 tp:action="Exception"

 tp:packageId="CompanyB_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"/>

 <tp:ChannelId>syncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding>companyA_ABID8</tp:OtherPartyActionBinding>

 </tp:CanSend>

 </tp:CanReceive>

 </tp:ServiceBinding>

 </tp:CollaborationRole>

 <!-- Certificates used by the "Seller" company -->

 <tp:Certificate tp:certId="CompanyB_AppCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_AppCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyB_SigningCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_Signingcert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyB_EncryptionCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_EncryptionCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyB_ServerCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_ServerCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="CompanyB_ClientCert">

 <ds:KeyInfo>

 <ds:KeyName>CompanyB_ClientCert_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB4">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB4_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB5">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB5_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB6">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB6_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB7">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB7_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:Certificate tp:certId="TrustedRootCertB8">

 <ds:KeyInfo>

 <ds:KeyName>TrustedRootCertB8_Key</ds:KeyName>

 </ds:KeyInfo>

 </tp:Certificate>

 <tp:SecurityDetails tp:securityId="CompanyB_TransportSecurity">

 <tp:TrustAnchors>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB5"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB6"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB4"/>

 </tp:TrustAnchors>

 </tp:SecurityDetails>

 <tp:SecurityDetails tp:securityId="CompanyB_MessageSecurity">

 <tp:TrustAnchors>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB8"/>

 <tp:AnchorCertificateRef tp:certId="TrustedRootCertB7"/>

 </tp:TrustAnchors>

 </tp:SecurityDetails>

 <!-- An asynchronous delivery channel -->

 <tp:DeliveryChannel

 tp:channelId="asyncChannelB1"

 tp:transportId="transportB1"

 tp:docExchangeId="docExchangeB1">

 <tp:MessagingCharacteristics

 tp:syncReplyMode="none"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"/>

 </tp:DeliveryChannel>

 <!-- A synchronous delivery channel -->

 <tp:DeliveryChannel

 tp:channelId="syncChannelB1"

 tp:transportId="transportB2"

 tp:docExchangeId="docExchangeB1">

 <tp:MessagingCharacteristics

 tp:syncReplyMode="signalsAndResponse"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"/>

 </tp:DeliveryChannel>

 <tp:Transport tp:transportId="transportB1">

 <tp:TransportSender>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyB_ClientCert"/>

 <tp:ServerSecurityDetailsRef tp:securityId="CompanyB_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:Endpoint

 tp:uri="https://www.CompanyB.com/servlets/ebxmlhandler/async"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyB_ServerCert"/>

 <tp:ClientSecurityDetailsRef tp:securityId="CompanyB_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

 </tp:Transport>

 <tp:Transport tp:transportId="transportB2">

 <tp:TransportSender>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:TransportClientSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ClientCertificateRef tp:certId="CompanyB_ClientCert"/>

 <tp:ServerSecurityDetailsRef tp:securityId="CompanyB_TransportSecurity"/>

 </tp:TransportClientSecurity>

 </tp:TransportSender>

 <tp:TransportReceiver>

 <tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

 <tp:AccessAuthentication>basic</tp:AccessAuthentication>

 <tp:Endpoint

 tp:uri="https://www.CompanyB.com/servlets/ebxmlhandler/sync"

 tp:type="allPurpose"/>

 <tp:TransportServerSecurity>

 <tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

 <tp:ServerCertificateRef tp:certId="CompanyB_ServerCert"/>

 <tp:ClientSecurityDetailsRef tp:securityId="CompanyB_TransportSecurity"/>

 </tp:TransportServerSecurity>

 </tp:TransportReceiver>

 </tp:Transport>

 <tp:DocExchange tp:docExchangeId="docExchangeB1">

 <tp:ebXMLSenderBinding tp:version="2.0">

 <tp:ReliableMessaging>

 <tp:Retries>3</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

 </tp:ReliableMessaging>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 <tp:SenderNonRepudiation>

 <tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

 <tp:SigningCertificateRef tp:certId="CompanyB_SigningCert"/>

 </tp:SenderNonRepudiation>

 <tp:SenderDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionSecurityDetailsRef tp:securityId="CompanyB_MessageSecurity"/>

 </tp:SenderDigitalEnvelope>

 </tp:ebXMLSenderBinding>

 <tp:ebXMLReceiverBinding tp:version="2.0">

 <tp:ReliableMessaging>

 <tp:Retries>3</tp:Retries>

 <tp:RetryInterval>PT2H</tp:RetryInterval>

 <tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

 </tp:ReliableMessaging>

 <tp:PersistDuration>P1D</tp:PersistDuration>

 <tp:ReceiverNonRepudiation>

 <tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#</tp:NonRepudiationProtocol>

 <tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

 <tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>

 <tp:SigningSecurityDetailsRef tp:securityId="CompanyB_MessageSecurity"/>

 </tp:ReceiverNonRepudiation>

 <tp:ReceiverDigitalEnvelope>

 <tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

 <tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

 <tp:EncryptionCertificateRef tp:certId="CompanyB_EncryptionCert"/>

 </tp:ReceiverDigitalEnvelope>

 </tp:ebXMLReceiverBinding>

 </tp:DocExchange>

 </tp:PartyInfo>

 <!-- SimplePart corresponding to the SOAP Envelope -->

 <tp:SimplePart

 tp:id="CompanyA_MsgHdr"

 tp:mimetype="text/xml">

 <tp:NamespaceSupported

 tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

 tp:version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <tp:SimplePart

 tp:id="CompanyB_MsgHdr"

 tp:mimetype="text/xml">

 <tp:NamespaceSupported

 tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

 tp:version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to a Receipt Acknowledgment business signal -->

 <tp:SimplePart

 tp:id="CompanyA_ReceiptAcknowledgment"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd"

 tp:version="2.0">http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <tp:SimplePart

 tp:id="CompanyB_ReceiptAcknowledgment"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd"

 tp:version="2.0">

 http://www.ebxml.org/bpss/ReceiptAcknowledgment.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to an Exception business signal -->

 <tp:SimplePart

 tp:id="CompanyA_Exception"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

 tp:version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <tp:SimplePart

 tp:id="CompanyB_Exception"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

 tp:version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to a request action -->

 <tp:SimplePart

 tp:id="CompanyA_Request"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd"

 tp:version="1.0">

 http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <tp:SimplePart

 tp:id="CompanyB_Request"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd"

 tp:version="1.0">

 http://www.rosettanet.org/schemas/PIP3A4RequestPurchaseOrder.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- SimplePart corresponding to a response action -->

 <tp:SimplePart

 tp:id="CompanyA_Response"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd"

 tp:version="1.0">

 http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <tp:SimplePart

 tp:id="CompanyB_Response"

 tp:mimetype="application/xml">

 <tp:NamespaceSupported

 tp:location="http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd"

 tp:version="1.0">

 http://www.rosettanet.org/schemas/PIP3A4PurchaseOrderConfirmation.xsd

 </tp:NamespaceSupported>

 </tp:SimplePart>

 <!-- An ebXML message with a SOAP Envelope only -->

 <tp:Packaging

 tp:id="CompanyA_MshSignalPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_MshSignal"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Packaging

 tp:id="CompanyB_MshSignalPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_MshSignal"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus a request action payload -->

 <tp:Packaging tp:id="CompanyA_RequestPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_RequestMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_Request"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Packaging tp:id="CompanyB_RequestPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_RequestMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_Request"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus a response action payload -->

 <tp:Packaging tp:id="CompanyA_ResponsePackage">

 <tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_ResponseMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_Response"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Packaging tp:id="CompanyB_ResponsePackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_ResponseMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_Response"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus a Receipt Acknowledgment payload -->

 <tp:Packaging tp:id="CompanyA_ReceiptAcknowledgmentPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_ReceiptAcknowledgmentMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_ReceiptAcknowledgment"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Packaging tp:id="CompanyB_ReceiptAcknowledgmentPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_ReceiptAcknowledgmentMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_ReceiptAcknowledgment"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a SOAP Envelope plus an Exception payload -->

 <tp:Packaging tp:id="CompanyA_ExceptionPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_ExceptionMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_Exception"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Packaging tp:id="CompanyB_ExceptionPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_ExceptionMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_Exception"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <!-- An ebXML message with a Receipt Acknowledgment signal, plus a business response,

 or an ebXML message with an Exception signal -->

 <tp:Packaging tp:id="CompanyA_SyncReplyPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyA_SignalAndResponseMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyA_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyA_ReceiptAcknowledgment"/>

 <tp:Constituent tp:idref="CompanyA_Response"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Packaging tp:id="CompanyB_SyncReplyPackage">

 <tp:ProcessingCapabilities

 tp:parse="true"

 tp:generate="true"/>

 <tp:CompositeList>

 <tp:Composite

 tp:id="CompanyB_SignalAndResponseMsg"

 tp:mimetype="multipart/related"

 tp:mimeparameters="type=text/xml">

 <tp:Constituent tp:idref="CompanyB_MsgHdr"/>

 <tp:Constituent tp:idref="CompanyB_ReceiptAcknowledgment"/>

 <tp:Constituent tp:idref="CompanyB_Response"/>

 </tp:Composite>

 </tp:CompositeList>

 </tp:Packaging>

 <tp:Comment xml:lang="en-US">buy/sell agreement between CompanyA.com and CompanyB.com</tp:Comment>

</tp:CollaborationProtocolAgreement>
18 Business Process Specification Corresponding to Complete CPP and CPA Definition (Non-Normative)

This Business Process Specification referenced by the CPPs and CPA in Appendix A and Appendix B are reproduced here. This document is available as an ASCII file at:

 http://www.oasis-open.org/committees/ebxml-cppa/schema/bpss-example-2_0a.xml
The schema to which this instance document conforms is available as an ASCII file at:

 http://www.oasis-open.org/committees/ebxml-cppa/schema/ebBPSS1.04.xsd
<?xml version="1.0" encoding="UTF-8"?>

<ProcessSpecification

 xmlns="http://www.ebxml.org/BusinessProcess"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ebxml.org/BusinessProcess ebBPSS1.04.xsd"

 name="PIP3A4RequestPurchaseOrder"

 uuid="urn:icann:rosettanet.org:bpid:3A4$2.0"

 version="R02.00">

 <Documentation>

 This PIP enables a buyer to issue a purchase order and obtain a quick response

 from the provider that acknowledges which of the purchase order product line

 items are accepted, rejected, or pending.

 </Documentation>

 <!--Purchase order Request Document-->

 <BusinessDocument

 name="Puchase Order Request"

 nameID="PIP3A4PurchaseOrderRequest"

 specificationLocation="PurchaseOrderRequest.xsd">

 <Documentation>

 The document is an XSD file that specifies the rules for creating the XML

 document for the business action of requesting a purchase order.

 </Documentation>

 </BusinessDocument>

 <BusinessDocument

 name="Puchase Order Confirmation"

 nameID="PIP3A4PurchaseOrderConfirmation"

 specificationLocation="PIP3A4PurchaseOrderConfirmation.xsd">

 <Documentation>

 The document is an XSD file that specifies the rules for creating the XML

 document for the business action of making a purchase order confirmation.

 </Documentation>

 </BusinessDocument>

 <BusinessTransaction

 name="Request Purchase Order"

 nameID="RequestPurchaseOrder_BT">

 <RequestingBusinessActivity

 name="Purchase Order Request Action"

 nameID="PurchaseOrderRequestAction"

 isAuthorizationRequired ="true"

 isIntelligibleCheckRequired="true"

 isNonRepudiationReceiptRequired="true"

 isNonRepudiationRequired="true"

 timeToAcknowledgeReceipt="P0Y0M0DT2H0M0S">

 <DocumentEnvelope

 businessDocument="Puchase Order Request"

 businessDocumentIDRef="PIP3A4PurchaseOrderRequest"

 isAuthenticated="persistent"

 isConfidential="transient"

 isTamperProof="persistent"/>

 </RequestingBusinessActivity>

 <RespondingBusinessActivity

 name="Purchase Order Confirmation Action"

 nameID="PurchaseOrderConfirmationAction"

 isAuthorizationRequired="true"

 isIntelligibleCheckRequired="true"

 isNonRepudiationRequired="true"

 timeToAcknowledgeReceipt="P0Y0M0DT2H0M0S">

 <DocumentEnvelope

 businessDocument="Purchase Order Confirmation"

 businessDocumentIDRef="PIP3A4PurchaseOrderConfirmation"

 isAuthenticated="persistent"

 isConfidential="transient"

 isPositiveResponse="true"

 isTamperProof="persistent"/>

 </RespondingBusinessActivity>

 </BusinessTransaction>

 <BinaryCollaboration

 name="Request Purchase Order"

 nameID="RequestPurchaseOrder_BC"

 initiatingRole="BuyerId">

 <Role

 name="Buyer"

 nameID="BuyerId"/>

 <Role

 name="Seller"

 nameID="SellerId"/>

 <Start toBusinessState="Request Purchase Order"/>

 <BusinessTransactionActivity

 name="Request Purchase Order"

 nameID="RequestPurchaseOrder_BTA"

 businessTransaction="Request Purchase Order"

 businessTransactionIDRef="RequestPurchaseOrder_BT"

 fromRole="Buyer" fromRoleIDRef="BuyerId"

 toRole="Seller" toRoleIDRef="SellerId"

 isLegallyBinding="true"

 timeToPerform="P0Y0M0DT24H0M0S"

 isConcurrent="false"/>

 <Success

 fromBusinessState="Request Purchase Order"

 conditionGuard="Success"/>

 <Failure

 fromBusinessState="Request Purchase Order"

 conditionGuard="BusinessFailure"/>

 <Transition

 fromBusinessState="Request Purchase Order"

 toBusinessState="Request Purchase Order"/>

 </BinaryCollaboration>

</ProcessSpecification>
19 W3C XML Schema Document Corresponding to Complete CPP and CPA Definition (Normative)

This XML Schema document is available as an ASCII file at:

 http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0b.xsd
<?xml version="1.0" encoding="UTF-8"?>

<!-- This is the schema that corresponds to the version 2.0 CPP/A spec -->

<!-- Some parsers may require explicit declaration of 'xmlns:xml="http://www.w3.org/XML/1998/namespace"'.

 In that case, a copy of this schema augmented with the above declaration should be cached and used

 for the purpose of schema validation for CPPs and CPAs. -->

<schema

 targetNamespace="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns:tns="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_0.xsd"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 elementFormDefault="qualified"

 attributeFormDefault="qualified" version="2_0b">

 <import

 namespace="http://www.w3.org/1999/xlink"

 schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd"/>

 <import

 namespace="http://www.w3.org/2000/09/xmldsig#"

 schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/>

 <import

 namespace="http://www.w3.org/XML/1998/namespace"

 schemaLocation="http://www.w3.org/2001/03/xml.xsd"/>

 <attributeGroup name="pkg.grp">

 <attribute ref="tns:id" use="required"/>

 <attribute name="mimetype" type="tns:non-empty-string" use="required"/>

 <attribute name="mimeparameters" type="tns:non-empty-string"/>

 </attributeGroup>

 <attributeGroup name="xlink.grp">

 <attribute ref="xlink:type" fixed="simple"/>

 <attribute ref="xlink:href" use="required"/>

 </attributeGroup>

 <element name="CollaborationProtocolAgreement">

 <complexType>

 <sequence>

 <element ref="tns:Status"/>

 <element ref="tns:Start"/>

 <element ref="tns:End"/>

 <element ref="tns:ConversationConstraints" minOccurs="0"/>

 <element ref="tns:PartyInfo" minOccurs="2" maxOccurs="2"/>

 <element ref="tns:SimplePart" maxOccurs="unbounded"/>

 <element ref="tns:Packaging" maxOccurs="unbounded"/>

 <element ref="tns:Signature" minOccurs="0"/>

 <element ref="tns:Comment" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="cpaid" type="tns:non-empty-string" use="required"/>

 <attribute ref="tns:version" use="required"/>

 </complexType>

 </element>

 <element name="Signature">

 <complexType>

 <sequence>

 <element ref="ds:Signature" maxOccurs="3"/>

 </sequence>

 </complexType>

 </element>

 <element name="CollaborationProtocolProfile">

 <complexType>

 <sequence>

 <element ref="tns:PartyInfo" maxOccurs="unbounded"/>

 <element ref="tns:SimplePart" maxOccurs="unbounded"/>

 <element ref="tns:Packaging" maxOccurs="unbounded"/>

 <element ref="tns:Signature" minOccurs="0"/>

 <element ref="tns:Comment" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="cppid" type="tns:non-empty-string" use="required"/>

 <attribute ref="tns:version" use="required"/>

 </complexType>

 </element>

 <element name="ProcessSpecification">

 <complexType>

 <sequence>

 <element ref="ds:Reference" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="name" type="tns:non-empty-string" use="required"/>

 <attribute ref="tns:version" use="required"/>

 <attributeGroup ref="tns:xlink.grp"/>

 <attribute name="uuid" type="anyURI"/>

 </complexType>

 </element>

 <element name="Service" type="tns:service.type"/>

 <element name="Protocol" type="tns:protocol.type"/>

 <element name="SendingProtocol" type="tns:protocol.type"/>

 <element name="ReceivingProtocol" type="tns:protocol.type"/>

 <element name="OverrideMshActionBinding">

 <complexType>

 <attribute name="action" type="tns:non-empty-string" use="required"/>

 <attribute name="channelId" type="IDREF" use="required"/>

 </complexType>

 </element>

 <element name="ChannelId" type="IDREF"/>

 <complexType name="ActionBinding.type">

 <sequence>

 <element ref="tns:BusinessTransactionCharacteristics"/>

 <element ref="tns:ActionContext" minOccurs="0"/>

 <element ref="tns:ChannelId" maxOccurs="unbounded"/>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="id" type="ID" use="required"/>

 <attribute name="action" type="tns:non-empty-string" use="required"/>

 <attribute name="packageId" type="IDREF" use="required"/>

 <attribute ref="xlink:href" use="optional"/>

 <attribute ref="xlink:type" fixed="simple"/>

 </complexType>

 <element name="ActionContext">

 <complexType>

 <sequence>

 <element ref="tns:CollaborationActivity" minOccurs="0"/>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="binaryCollaboration" type="tns:non-empty-string" use="required"/>

 <attribute name="businessTransactionActivity" type="tns:non-empty-string" use="required"/>

 <attribute name="requestOrResponseAction" type="tns:non-empty-string" use="required"/>

 </complexType>

 </element>

 <element name="CollaborationActivity">

 <complexType>

 <sequence>

 <element ref="tns:CollaborationActivity" minOccurs="0"/>

 </sequence>

 <attribute name="name" type="tns:non-empty-string"/>

 </complexType>

 </element>

 <element name="CollaborationRole">

 <complexType>

 <sequence>

 <element ref="tns:ProcessSpecification"/>

 <element ref="tns:Role"/>

 <element name="ApplicationCertificateRef" type="tns:CertificateRef.type" minOccurs="0" maxOccurs="unbounded"/>

 <element name="ApplicationSecurityDetailsRef" type="tns:SecurityDetailsRef.type" minOccurs="0"/>

 <element ref="tns:ServiceBinding"/>

 </sequence>

 </complexType>

 </element>

 <element name="PartyInfo">

 <complexType>

 <sequence>

 <element ref="tns:PartyId" maxOccurs="unbounded"/>

 <element ref="tns:PartyRef" maxOccurs="unbounded"/>

 <element ref="tns:CollaborationRole" maxOccurs="unbounded"/>

 <element ref="tns:Certificate" minOccurs=”0” maxOccurs="unbounded"/>

 <element ref="tns:SecurityDetails" minOccurs=”0” maxOccurs="unbounded"/>

 <element ref="tns:DeliveryChannel" maxOccurs="unbounded"/>

 <element ref="tns:Transport" maxOccurs="unbounded"/>

 <element ref="tns:DocExchange" maxOccurs="unbounded"/>

 <element ref="tns:OverrideMshActionBinding" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="partyName" type="tns:non-empty-string" use="required"/>

 <attribute name="defaultMshChannelId" type="IDREF" use="required"/>

 <attribute name="defaultMshPackageId" type="IDREF" use="required"/>

 </complexType>

 </element>

 <element name="PartyId">

 <complexType>

 <simpleContent>

 <extension base="tns:non-empty-string">

 <attribute name="type" type="anyURI"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="PartyRef">

 <complexType>

 <sequence>

 </sequence>

 <attributeGroup ref="tns:xlink.grp"/>

 <attribute name="type" type="anyURI"/>

 <attribute name="schemaLocation" type="anyURI"/>

 </complexType>

 </element>

 <element name="DeliveryChannel">

 <complexType>

 <sequence>

 <element ref="tns:MessagingCharacteristics"/>

 </sequence>

 <attribute name="channelId" type="ID" use="required"/>

 <attribute name="transportId" type="IDREF" use="required"/>

 <attribute name="docExchangeId" type="IDREF" use="required"/>

 </complexType>

 </element>

 <element name="Transport">

 <complexType>

 <sequence>

 <element ref="tns:TransportSender" minOccurs="0"/>

 <element ref="tns:TransportReceiver" minOccurs="0"/>

 </sequence>

 <attribute name="transportId" type="ID" use="required"/>

 </complexType>

 </element>

 <element name="AccessAuthentication" type="tns:accessAuthentication.type"/>

 <element name="TransportSender">

 <complexType>

 <sequence>

 <element name="TransportProtocol" type="tns:protocol.type"/>

 <element ref="tns:AccessAuthentication" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="tns:TransportClientSecurity" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="TransportReceiver">

 <complexType>

 <sequence>

 <element name="TransportProtocol" type="tns:protocol.type"/>

 <element ref="tns:AccessAuthentication" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="tns:Endpoint" maxOccurs="unbounded"/>

 <element ref="tns:TransportServerSecurity" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="Endpoint">

 <complexType>

 <attribute name="uri" type="anyURI" use="required"/>

 <attribute name="type" type="tns:endpointType.type" default="allPurpose"/>

 </complexType>

 </element>

 <element name="TransportClientSecurity">

 <complexType>

 <sequence>

 <element name="TransportSecurityProtocol" type="tns:protocol.type"/>

 <element name="ClientCertificateRef" type="tns:CertificateRef.type" minOccurs="0"/>

 <element name="ServerSecurityDetailsRef" type="tns:SecurityDetailsRef.type" minOccurs="0"/>

 <element ref="tns:EncryptionAlgorithm" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="TransportServerSecurity">

 <complexType>

 <sequence>

 <element name="TransportSecurityProtocol" type="tns:protocol.type"/>

 <element name="ServerCertificateRef" type="tns:CertificateRef.type"/>

 <element name="ClientSecurityDetailsRef" type="tns:SecurityDetailsRef.type" minOccurs="0"/>

 <element ref="tns:EncryptionAlgorithm" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="Certificate">

 <complexType>

 <sequence>

 <element ref="ds:KeyInfo"/>

 </sequence>

 <attribute name="certId" type="ID" use="required"/>

 </complexType>

 </element>

 <element name="DocExchange">

 <complexType>

 <sequence>

 <element ref="tns:ebXMLSenderBinding" minOccurs="0"/>

 <element ref="tns:ebXMLReceiverBinding" minOccurs="0"/>

 </sequence>

 <attribute name="docExchangeId" type="ID" use="required"/>

 </complexType>

 </element>

 <element name="ReliableMessaging">

 <complexType>

 <sequence>

 <element name="Retries" type="integer" minOccurs="0"/>

 <element name="RetryInterval" type="duration" minOccurs="0"/>

 <element name="MessageOrderSemantics" type="tns:messageOrderSemantics.type"/>

 </sequence>

 </complexType>

 </element>

 <element name="PersistDuration" type="duration"/>

 <element name="SenderNonRepudiation">

 <complexType>

 <sequence>

 <element name="NonRepudiationProtocol" type="tns:protocol.type"/>

 <element ref="tns:HashFunction"/>

 <element ref="tns:SignatureAlgorithm" maxOccurs="unbounded"/>

 <element name="SigningCertificateRef" type="tns:CertificateRef.type"/>

 </sequence>

 </complexType>

 </element>

 <element name="ReceiverNonRepudiation">

 <complexType>

 <sequence>

 <element name="NonRepudiationProtocol" type="tns:protocol.type"/>

 <element ref="tns:HashFunction"/>

 <element ref="tns:SignatureAlgorithm" maxOccurs="unbounded"/>

 <element name="SigningSecurityDetailsRef" type="tns:SecurityDetailsRef.type" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="HashFunction" type="tns:non-empty-string"/>

 <element name="EncryptionAlgorithm">

 <complexType>

 <simpleContent>

 <extension base="tns:non-empty-string">

 <attribute name="minimumStrength" type="integer"/>

 <attribute name="oid" type="tns:non-empty-string"/>

 <attribute name="w3c" type="tns:non-empty-string"/>

 <attribute name="enumerationType" type="tns:non-empty-string"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="SignatureAlgorithm">

 <complexType>

 <simpleContent>

 <extension base="tns:non-empty-string">

 <attribute name="oid" type="tns:non-empty-string"/>

 <attribute name="w3c" type="tns:non-empty-string"/>

 <attribute name="enumerationType" type="tns:non-empty-string"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="SenderDigitalEnvelope">

 <complexType>

 <sequence>

 <element name="DigitalEnvelopeProtocol" type="tns:protocol.type"/>

 <element ref="tns:EncryptionAlgorithm" maxOccurs="unbounded"/>

 <element name="EncryptionSecurityDetailsRef" type="tns:SecurityDetailsRef.type" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="ReceiverDigitalEnvelope">

 <complexType>

 <sequence>

 <element name="DigitalEnvelopeProtocol" type="tns:protocol.type"/>

 <element ref="tns:EncryptionAlgorithm" maxOccurs="unbounded"/>

 <element name="EncryptionCertificateRef" type="tns:CertificateRef.type"/>

 </sequence>

 </complexType>

 </element>

 <element name="ebXMLSenderBinding">

 <complexType>

 <sequence>

 <element ref="tns:ReliableMessaging" minOccurs="0"/>

 <element ref="tns:PersistDuration" minOccurs="0"/>

 <element ref="tns:SenderNonRepudiation" minOccurs="0"/>

 <element ref="tns:SenderDigitalEnvelope" minOccurs="0"/>

 <element ref="tns:NamespaceSupported" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute ref="tns:version" use="required"/>

 </complexType>

 </element>

 <element name="ebXMLReceiverBinding">

 <complexType>

 <sequence>

 <element ref="tns:ReliableMessaging" minOccurs="0"/>

 <element ref="tns:PersistDuration" minOccurs="0"/>

 <element ref="tns:ReceiverNonRepudiation" minOccurs="0"/>

 <element ref="tns:ReceiverDigitalEnvelope" minOccurs="0"/>

 <element ref="tns:NamespaceSupported" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute ref="tns:version" use="required"/>

 </complexType>

 </element>

 <element name="NamespaceSupported">

 <complexType>

 <simpleContent>

 <extension base="anyURI">

 <attribute name="location" type="anyURI" use="required"/>

 <attribute ref="tns:version"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="BusinessTransactionCharacteristics">

 <complexType>

 <attribute name="isNonRepudiationRequired" type="boolean"/>

 <attribute name="isNonRepudiationReceiptRequired" type="boolean"/>

 <attribute name="isConfidential" type="tns:persistenceLevel.type"/>

 <attribute name="isAuthenticated" type="tns:persistenceLevel.type"/>

 <attribute name="isTamperProof" type="tns:persistenceLevel.type"/>

 <attribute name="isAuthorizationRequired" type="boolean"/>

 <attribute name="isIntelligibleCheckRequired" type="boolean"/>

 <attribute name="timeToAcknowledgeReceipt" type="duration"/>

 <attribute name="timeToAcknowledgeAcceptance" type="duration"/>

 <attribute name="timeToPerform" type="duration"/>

 <attribute name="retryCount" type="integer"/>

 </complexType>

 </element>

 <element name="MessagingCharacteristics">

 <complexType>

 <attribute ref="tns:syncReplyMode" default="none"/>

 <attribute name="ackRequested" type="tns:perMessageCharacteristics.type" default="perMessage"/>

 <attribute name="ackSignatureRequested" type="tns:perMessageCharacteristics.type" default="perMessage"/>

 <attribute name="duplicateElimination" type="tns:perMessageCharacteristics.type" default="perMessage"/>

 <attribute name="actor" type="tns:actor.type"/>

 </complexType>

 </element>

 <element name="ServiceBinding">

 <complexType>

 <sequence>

 <element ref="tns:Service"/>

 <element ref="tns:CanSend" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="tns:CanReceive" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="CanSend">

 <complexType>

 <sequence>

 <element name="ThisPartyActionBinding" type="tns:ActionBinding.type"/>

 <element name="OtherPartyActionBinding" type="IDREF" minOccurs="0"/>

 <element ref="tns:CanReceive" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="CanReceive">

 <complexType>

 <sequence>

 <element name="ThisPartyActionBinding" type="tns:ActionBinding.type"/>

 <element name="OtherPartyActionBinding" type="IDREF" minOccurs="0"/>

 <element ref="tns:CanSend" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="Status">

 <complexType>

 <attribute name="value" type="tns:statusValue.type" use="required"/>

 </complexType>

 </element>

 <element name="Start" type="dateTime"/>

 <element name="End" type="dateTime"/>

 <element name="Type" type="tns:non-empty-string"/>

 <element name="ConversationConstraints">

 <complexType>

 <attribute name="invocationLimit" type="int"/>

 <attribute name="concurrentConversations" type="int"/>

 </complexType>

 </element>

 <element name="Role">

 <complexType>

 <attribute name="name" type="tns:non-empty-string" use="required"/>

 <attributeGroup ref="tns:xlink.grp"/>

 </complexType>

 </element>

 <element name="SignatureTransforms">

 <complexType>

 <sequence>

 <element ref="ds:Transform" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="EncryptionTransforms">

 <complexType>

 <sequence>

 <element ref="ds:Transform" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="Constituent">

 <complexType>

 <sequence>

 <element ref="tns:SignatureTransforms" minOccurs="0"/>

 <element ref="tns:EncryptionTransforms" minOccurs="0"/>

 </sequence>

 <attribute ref="tns:idref" use="required"/>

 <attribute name="excludedFromSignature" type="boolean" default="false"/>

 <attribute name="minOccurs" type="nonNegativeInteger"/>

 <attribute name="maxOccurs" type="nonNegativeInteger"/>

 </complexType>

 </element>

 <element name="Packaging">

 <complexType>

 <sequence>

 <element name="ProcessingCapabilities">

 <complexType>

 <attribute name="parse" type="boolean" use="required"/>

 <attribute name="generate" type="boolean" use="required"/>

 </complexType>

 </element>

 <element name="CompositeList" maxOccurs="unbounded">

 <complexType>

 <choice maxOccurs="unbounded">

 <element name="Encapsulation">

 <complexType>

 <sequence>

 <element ref="tns:Constituent"/>

 </sequence>

 <attributeGroup ref="tns:pkg.grp"/>

 </complexType>

 </element>

 <element name="Composite">

 <complexType>

 <sequence>

 <element ref="tns:Constituent" maxOccurs="unbounded"/>

 </sequence>

 <attributeGroup ref="tns:pkg.grp"/>

 </complexType>

 </element>

 </choice>

 </complexType>

 </element>

 </sequence>

 <attribute ref="tns:id" use="required"/>

 </complexType>

 </element>

 <element name="Comment">

 <complexType>

 <simpleContent>

 <extension base="tns:non-empty-string">

 <attribute ref="xml:lang"/>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="SimplePart">

 <complexType>

 <sequence>

 <element ref="tns:NamespaceSupported" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attributeGroup ref="tns:pkg.grp"/>

 <attribute ref="xlink:role"/>

 </complexType>

 </element>

 <!-- COMMON -->

 <simpleType name="statusValue.type">

 <restriction base="NMTOKEN">

 <enumeration value="agreed"/>

 <enumeration value="signed"/>

 <enumeration value="proposed"/>

 </restriction>

 </simpleType>

 <simpleType name="endpointType.type">

 <restriction base="NMTOKEN">

 <enumeration value="login"/>

 <enumeration value="request"/>

 <enumeration value="response"/>

 <enumeration value="error"/>

 <enumeration value="allPurpose"/>

 </restriction>

 </simpleType>

 <simpleType name="non-empty-string">

 <restriction base="string">

 <minLength value="1"/>

 </restriction>

 </simpleType>

 <simpleType name="syncReplyMode.type">

 <restriction base="NMTOKEN">

 <enumeration value="mshSignalsOnly"/>

 <enumeration value="responseOnly"/>

 <enumeration value="signalsAndResponse"/>

 <enumeration value="signalsOnly"/>

 <enumeration value="none"/>

 </restriction>

 </simpleType>

 <complexType name="service.type">

 <simpleContent>

 <extension base="tns:non-empty-string">

 <attribute name="type" type="tns:non-empty-string"/>

 </extension>

 </simpleContent>

 </complexType>

 <complexType name="protocol.type">

 <simpleContent>

 <extension base="tns:non-empty-string">

 <attribute ref="tns:version"/>

 </extension>

 </simpleContent>

 </complexType>

 <attribute name="idref" type="IDREF"/>

 <attribute name="id" type="ID"/>

 <attribute name="version" type="tns:non-empty-string"/>

 <attribute name="syncReplyMode" type="tns:syncReplyMode.type"/>

 <complexType name="SecurityPolicy.type"/>

 <complexType name="CertificateRef.type">

 <attribute name="certId" type="IDREF" use="required"/>

 </complexType>

 <simpleType name="perMessageCharacteristics.type">

 <restriction base="NMTOKEN">

 <enumeration value="always"/>

 <enumeration value="never"/>

 <enumeration value="perMessage"/>

 </restriction>

 </simpleType>

 <simpleType name="actor.type">

 <restriction base="NMTOKEN">

 <enumeration value="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"/>

 <enumeration value="urn:oasis:names:tc:ebxml-msg:actor:toPartyMSH"/>

 </restriction>

 </simpleType>

 <simpleType name="messageOrderSemantics.type">

 <restriction base="Name">

 <enumeration value="Guaranteed"/>

 <enumeration value="NotGuaranteed"/>

 </restriction>

 </simpleType>

 <complexType name="SecurityDetailsRef.type">

 <attribute name="securityId" type="IDREF" use="required"/>

 </complexType>

 <simpleType name="persistenceLevel.type">

 <restriction base="Name">

 <enumeration value="none"/>

 <enumeration value="transient"/>

 <enumeration value="persistent"/>

 <enumeration value="transient-and-persistent"/>

 </restriction>

 </simpleType>

 <element name="SecurityDetailsRef" type="tns:SecurityDetailsRef.type"/>

 <element name="SecurityDetails">

 <complexType>

 <sequence>

 <element ref="tns:TrustAnchors" minOccurs="0"/>

 <element ref="tns:SecurityPolicy" minOccurs="0"/>

 </sequence>

 <attribute name="securityId" type="ID" use="required"/>

 </complexType>

 </element>

 <element name="TrustAnchors">

 <complexType>

 <sequence>

 <element name="AnchorCertificateRef" type="tns:CertificateRef.type" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 </element>

 <element name="SecurityPolicy">

 <complexType>

 <sequence>

 </sequence>

 </complexType>

 </element>

 <simpleType name="accessAuthentication.type">

 <restriction base="NMTOKEN">

 <enumeration value="basic"/>

 <enumeration value="digest"/>

 </restriction>

 </simpleType>

</schema>
20 CPA Composition (Non-Normative)

20.1 Suggestions for Design of Computational Procedures

A quick inspection of the schemas for the top level elements, CollaborationProtocolProfile (CPP) and CollaborationProtocolAgreement (CPA), shows that a CPA can be viewed as a result of merging portions of the PartyInfo elements found in constituent CPPs, and then integrating these PartyInfo elements with other CPA sibling elements, such as those governing the CPA validity period.

Merging CPPs into CPAs is one way in which trading partners can arrive at a proposed or “draft” CPA. A draft CPA might also be formed from a CPA template. A CPA-template represents one party’s proposed implementation of a business process that uses placeholding values for the identifying aspects of the other party, such as PartyId or TransportEndpoint elements. To form a CPA from a CPA template, the placeholder values are replaced by the actual values for the other trading partner. The actual values could themselves be extracted from the other trading partner’s CPP, if one is available, or they could be obtained from an administrator performing data entry functions.

We call objects draft CPAs to indicate their potential use as inputs to a CPA negotiation process in which a draft CPA is verified as suitable for both Parties, modified until a suitable CPA is found, or discovered to not be feasible until one side (or both) acquires additional software capabilities. These negotiation procedures and protocols are currently being designed, their requirements having been defined, and the resulting specifications should be available with the next release of this specification. In general, a draft CPA will constitute a proposal about an overall binding of a business process to a delivery implementation, while negotiation will be used to arrive at detailed values for parameters reflecting a final agreement. A special companion document, the NegotiationDescriptorDocument, provides both focus on what parameters can be negotiated as well as ranges or sets of acceptable values for those parameters.

In the remainder of this appendix, the goal will be to identify and describe the basic tasks that computational procedures for the assembly of the draft CPA would normally accomplish. While no normative specification is provided for an algorithm for CPA formation, some guidance for implementers is provided. This information might assist the software implementer in designing a partially automated and partially interactive software system useful for configuring Business Collaboration so as to arrive at satisfactorily complete levels of interoperability.

Before enumerating and describing the basic tasks, it is worthwhile mentioning two basic reasons why we focus on the component tasks involved in CPA formation rather than attempt to provide an algorithm for CPA formation. These reasons provide some hints to implementers about ways in which they might customize their approaches to drafting CPAs from CPPs.

Variability in Inputs

User preferences provide one source of variability in the inputs to the CPA formation process. Let us suppose in this section that each of the Parties has made its CPP available to potential collaborators. Normally one Party will have a desired Business Collaboration (defined in a ProcessSpecification document) to implement with its intended collaborator. So the information inputs will normally involve a user preference about intended Business Collaborations in addition to just the CPPs.
A CPA formation tool can have access to local user information not advertised in the CPP that can contribute to the CPA that is formed. A user can have chosen to only advertise those system capabilities that reflect capabilities that have not been deprecated. For example, a user can only advertise HTTP and omit FTP, even when capable of using FTP. The reason for omitting FTP might be concerns about the scalability of managing user accounts, directories, and passwords for FTP sessions. Despite not advertising an FTP capability, configuration software can use tacit knowledge about its own FTP capability to form a CPA with an intended collaborator who happens to have only an FTP capability for implementing a desired Business Collaboration. In other words, business interests can, in this case, override the deprecation policy. Both tacit knowledge and detailed preference information account for variability in inputs into the CPA formation process.

Variable Stringency in Evaluating Proposed Agreements

The conditions for output of a CPA given two CPPs can involve different levels and extents of interoperability. In other words, when an optimal solution that satisfies every level of requirement and every other additional constraint does not exist, a Party can propose a CPA that satisfies enough of the requirements for “a good enough” implementation. User input can be solicited to determine what is a good enough implementation, and so can be as varied as there are user configuration options to express preferences. In practice, compromises can be made on security, reliable messaging, levels of signals and acknowledgments, and other matters in order to find some acceptable means of doing business.

A CPA can support a fully interoperable configuration in which agreement has been reached on all technical levels needed for Business Collaboration. In such a case, matches in capabilities will have been found in all relevant technical levels.

However, there can be interoperable configurations agreed to in a CPA in which not all aspects of a Business Collaboration match. Gaps can exist in packaging, security, signaling, reliable messaging and other areas and yet the systems can still transport the business data, and special means can be employed to handle the exceptions. In such situations, a CPA can reflect configured policies or expressly solicited user permission to ignore some shortcomings in configurations. A system might not be capable of responding in a Business Collaboration so as to support a specified ability to supply non-repudiation of receipt, but might still be acceptable for business reasons. A system might not be able to handle all the processing needed to support, for example, SOAP with Attachments and yet still be able to treat the multipart according to "multipart/mixed" handling and allow Business Collaboration to take place. In fact, short of a failure to be able to transport data and a failure to be able to provide data relevant to the Business Collaboration, there are few features that might not be temporarily or indefinitely compromised about, given overriding business interests. This situation of "partial interoperability" is to be expected to persist for some time, and so interferes with formulating a "clean" algorithm for deciding on what is sufficient for interoperability.

20.2 CPA Formation Component Tasks

Technically viewed, a CPA provides "bindings" between Business Collaboration specifications (such as those defined within the ProcessSpecification’s referenced documents) and those services and protocols that are used to implement these specifications. The implementation takes place at several levels and involves varied services at these levels. A CPA that arrives at a fully interoperable collaboration binding can be thought of as arriving at interoperable, application-to-application integration. CPAs can fall short of this goal and still be both useful and acceptable to the collaborating Parties. Certainly, if no matching data-transport capabilities can be discovered, a CPA would not provide much in the way of interoperable integration. Likewise, partial CPAs can leave significant system work to be done before a completely satisfactory application-to-application integration is realized. Even so, partial integration can be sufficient to allow collaboration, and to enjoy payoffs from increased levels of automation.

In practice, the CPA formation process can produce a complete CPA, a failure result, a gap list that drives a dialog with the user, or perhaps even a CPA that implements partial interoperability "good enough" for the business collaborators. Because both matching capabilities and interoperability can be matters of degree, the constituent tasks are finding the matches in capabilities at different levels and for different services. We next proceed to characterize the most important of these constituent tasks.

20.3 CPA Formation from CPPs: Context of Tasks

To simplify discussion, assume in the following that we are viewing the tasks faced by a software agent when:

1. an intended collaborator is known and the collaborator's CPP has been retrieved,

2. the ProcessSpecification between our side and our intended collaborator has been selected,

3. the Service, Action, and the specific Role elements that our software agent is to play in the Business Collaboration (with discussion soon restricted to BinaryCollaborations) is known, and

4. finally, the capabilities that we have advertised in our CPP are known

For vividness, we will develop our discussions using the “3A4” ebBPSS example and the CPPs of Company A and B that are found in full in appendices of this document and that should also be available at the web site for the OASIS ebXML CPPA Technical Committee. For simplicity, we will assume that the information about capabilities is restricted to what is available in our agent’s CPP, and in the CPP of our intended collaborator. We will suppose that we have taken on the viewpoint of Company A assembling a draft CPA. Please note that there is no guarantee that the same draft CPAs will be produced in the same order from differing viewpoints.

In general, the basic tasks consist of finding "matches" between our capabilities and our intended collaborator’s capabilities at the various levels of the collaboration protocol stack and with respect to the services supplied at these various levels. This stack, which need not be characterized in any detail, is at least distinguished by an application level and a messaging transfer level. The application level is governed by a business process flow specification, such as ebBPSS. The messaging transfer level will consist of a number of requirements and options concerning transfer protocols, security, packaging, and messaging patterns (such as various kinds of acknowledgment, error messages, and the like.)

In actually assembling the tasks into a computational process, it will generally make sense to perform the tasks in a certain order. The overall order reflects the implicit structure of the CPA: first undertake those tasks to ensure that there is a match with respect to the Business Collaboration process. Without finding that the collaborators can participate in the same ProcessSpecification successfully, there is little point in working through implementation options. Then, examine the matches within the components of the bindings that have been announced for the Business Collaboration process, checking for the most indispensable “matches” first (Transport-related), and continuing checks on the other layers reflecting integrated interoperability at packaging, security, signals and protocol patterns, and so on. With this basic overview in mind, let us proceed to consider the basic tasks in greater detail.

20.4 Business Collaboration Process Matching Tasks

Company A has announced within its CPP, at least one PartyInfo element. For current purposes, the most important initial focus is on all the sibling elements with the path /CollaborationProtocolProfile/PartyInfo/CollaborationRole. Each element of this kind has a child, ProcessSpecification. Our initial matching task (probably better viewed as a filtering task) is to select those nodes where the ProcessSpecification is one that we are interested in building a CPA for! Checking the attribute values allows us to select by comparing values in the name, xlink:href or uuid attributes. The definitive value for matching ebBPSS process specifications is the value found in the ProcessSpecification/@uuid attribute.

Matching ProcessSpecification/Roles, and Actions: Initial Filtering and Selection

The previous task has essentially found two CollaborationRole node sets within our and our collaborator’s CPP documents where the ProcessSpecifications are identical, and equal to the value of interest given above. In other words, we have CollaborationRoles with ProcessSpecification/@name=’PIP3A4RequestPurchaseOrder’. It is convenient but not essential to use the name attribute in performing this selection.

We next proceed to filter these node sets. We have been given our Role element value for our participation in the ProcessSpecification. For Company A, this Role has the name attribute with value ‘Buyer’. Because we are here considering only BinaryCollaborations in ebBPSS terminology (or their equivalent in other flow languages), we are only interested in those CollaborationRole node sets within our collaborator’s CPP that have a Role value equal to ‘Seller.’ So we assume we have narrowed our focus to CollaborationRole node sets in Company A’s CPP with Role/@name=’Buyer’ and in Company B’s CollaborationRole node sets with Role/@name=’Seller’.

For more general collaborations, such as in the MultiPartyCollaborations of ebBPSS, we would need to know the list of roles available within the process, and keep track of that for each of the CollaborationRoles, the Role values chosen correspond correctly for the participants. We do not here discuss the matching/filtering task for collaborations involving more than two roles, as multiparty CPAs are not within scope for version 2.0 of this specification.

20.5 Implementation Matching Tasks

After filtering the CollaborationRoles with the desired ProcessSpecification, we should find one CollaborationRole in our own CPP where we play the Buyer role, and one CollaborationRole in our intended collaborator Company B's CPP where it plays the Seller role.

Our next task is to locate the specific candidate bindings relevant to CPA formation. There are bindings for Service and Actions. For initial simplicity, we consider detailed matching tasks as they arise for a standard collaboration case involving a Request action, followed by a Response action. For version 2.0 of this specification, most matching tasks will involve matching of referenced components of the CPP’s ThisPartyActionBinding elements under CollaborationRole/ServiceBinding/CanSend/ and under CollaborationRole/ServiceBinding/CanReceive.
Action Correspondence and Selecting Correlative PackageIds, and ChannelIds

In CPPs, under each of the elements, CollaborationRole/ServiceBinding/CanSend and CollaborationRole/ServiceBinding/CanReceive, are lists of ThisPartyActionBindings. For Request-Response collaboration patterns, we are interested in matches:

1. in the bindings of the Requesting side’s CanSend/ThisPartyActionBinding with the Responding side’s CanReceive/ThisPartyActionBinding for the request action, and
2. in the bindings of the Responding side’s CanSend/ThisPartyActionBinding with the Requesting side’s CanReceive/ThisPartyActionBinding for the response action.
These correlative bindings give us references to detailed components that need to match for a fully interoperable agreement. Case 1 pertains to the Request. Case 2 pertains to the Response.

For example, for Company A, we find under CanSend:

<tp:ThisPartyActionBinding tp:action="Purchase Order Request Action" tp:packageId="CompanyA_RequestPackage">

 <tp:BusinessTransactionCharacteristics ... />

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Request Action"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

Correlative to this, for Company B, we find under CanReceive:

<tp:ThisPartyActionBinding tp:action="Purchase Order Request Action" tp:packageId="CompanyB_RequestPackage">

 <tp:BusinessTransactionCharacteristics ... />

<tp:ActionContext tp:binaryCollaboration="Request Purchase Order" tp:businessTransactionActivity="Request Purchase Order" tp:requestOrResponseAction="Purchase Order Request Action"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

The correlation of elements can normally (when we are dealing with BPSS Binary Collaborations or their equivalents in other representations) be based on equality of the action (or requestOrResponseAction) values. More detailed correlation of elements can make use of more detailed testing and comparisons of the values in the ActionContext child elements of the relevant CanSend and CanReceive pairs.

In the preceding, we have illustrated the matching of CanSend and CanReceive for asynchronous bindings. All CanSend bindings that are siblings under a ServiceBinding element are asynchronous and make of use separate TCP connections that the CanSend side initiates on a listening TCP port. In order to represent binding details for synchronous sending, the convention is adopted whereby the CanReceiveelement for a Sender is placed under its CanSend element. This is illustrated by:

<tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID6"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyA_RequestPackage">

 <tp:BusinessTransactionCharacteristics

tp:isNonRepudiationRequired="true"

tp:isNonRepudiationReceiptRequired="true"

tp:isConfidential="transient"

tp:isAuthenticated="persistent"

tp:isTamperProof="persistent"

tp:isAuthorizationRequired="true"

tp:timeToAcknowledgeReceipt="PT2H"

tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID7"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyA_SyncReplyPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

 <tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanReceive>

 <tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyA_ABID8"

 tp:action="Exception"

 tp:packageId="CompanyA_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT2H"

 tp:timeToPerform="P1D"/>

<tp:ChannelId>syncChannelA1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

</tp:CanReceive>

 </tp:CanSend>

This subordination will also carry over to the synchronous receiving side, in which any of its CanSend elements are under the CanReceive element used to represent the initial receiving of a request. An illustration from Company B’s synchronous binding is:

<tp:CanReceive>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID8"

 tp:action="Purchase Order Request Action"

 tp:packageId="CompanyB_SyncReplyPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

tp:isConfidential="transient"

 tp:isAuthenticated="persistent" tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true" tp:timeToAcknowledgeReceipt="PT5M"

 tp:timeToPerform="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Request Action"/>

 <tp:ChannelId>syncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID6"

 tp:action="Purchase Order Confirmation Action"

 tp:packageId="CompanyB_ResponsePackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"

 tp:timeToPerform="PT5M"/>

 <tp:ActionContext

 tp:binaryCollaboration="Request Purchase Order"

 tp:businessTransactionActivity="Request Purchase Order"

 tp:requestOrResponseAction="Purchase Order Confirmation Action"/>

<tp:ChannelId>syncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

 <tp:CanSend>

 <tp:ThisPartyActionBinding

 tp:id="companyB_ABID7"

 tp:action="Exception"

 tp:packageId="CompanyB_ExceptionPackage">

 <tp:BusinessTransactionCharacteristics

 tp:isNonRepudiationRequired="true"

 tp:isNonRepudiationReceiptRequired="true"

 tp:isConfidential="transient"

 tp:isAuthenticated="persistent"

 tp:isTamperProof="persistent"

 tp:isAuthorizationRequired="true"

 tp:timeToAcknowledgeReceipt="PT5M"

 tp:timeToPerform="PT5M"/>

 <tp:ChannelId>syncChannelB1</tp:ChannelId>

 </tp:ThisPartyActionBinding>

 </tp:CanSend>

</tp:CanReceive>

Matching and Checking DeliveryChannel Details

Until now, most of the matching work has been undertaken to find pairs of correlative action binding, and so the matching has functioned as a filtering mechanism. Once in possession of pairs of correlative action bindings, however, the work of checking for matches across the various dimensions of operation—transport, transport security, PKI compatibility for various tasks, agreement about messaging characteristics (reliable messaging, digital enveloping, signed acknowledgments (minimal non-repudiation of receipt), non-repudiation of origin, packaging details, and more begins.

Once in possession of the action bindings, IDREFs provide references to the underlying components for comparison. For example, when comparing packaging details, the Request IDREFS are found at CanSend/ThisPartyActionBinding/@packageId and within the other CPP at CanReceive/ThisPartyActionBinding@packageId. For Company A’s Request "Purchase Order Request Action,” the packaging IDREF is found in:

tp:packageId="CompanyA_RequestPackage"

and this IDREF value refers to:

<tp:Packaging tp:id="CompanyA_RequestPackage">

<tp:ProcessingCapabilities tp:parse="true" tp:generate="true"/>

<tp:CompositeList>

<tp:Composite tp:id="CompanyA_RequestMsg" tp:mimetype="multipart/related" tp:mimeparameters="type=text/xml;">

<tp:Constituent tp:idref="CompanyA_MsgHdr"/>

<tp:Constituent tp:idref="CompanyA_Request"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

For Company A’s Request "Purchase Order Request Action”, the delivery channel IDREF is found in:

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

and this IDREF value refers to the element with this ID, namely:

<tp:DeliveryChannel tp:channelId="asyncChannelA1" tp:transportId="transportA1" tp:docExchangeId="docExchangeA1">

<tp:MessagingCharacteristics

 tp:syncReplyMode="none"

 tp:ackRequested="always"

 tp:ackSignatureRequested="always"

 tp:duplicateElimination="always"/>

</tp:DeliveryChannel>

Two remaining crucial references for understanding the binding, are found in attributes of the DeliveryChannel, namely: DeliveryChannel/@transportId and in the attribute DeliveryChannel/@docExchangeId.

For Company A, for example, we find transportId="transportA1" and docExchangeId="docExchangeA1" are the IDREFs for the continuing binding information with the DeliveryChannel, “asyncChannelA1”. Resolving these references, we obtain:

<tp:Transport tp:transportId="transportA1">

<tp:TransportSender>

<tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

<ClientCertificateRef tp:certId="CompanyA_ClientCert"/>

<tp:ServerSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

</tp:TransportClientSecurity>

</tp:TransportSender>

<tp:TransportReceiver>

<tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol>

<tp:Endpoint tp:uri="https://www.CompanyA.com/servlets/ebxmlhandler/async" tp:type="allPurpose"/>

<tp:TransportServerSecurity>

<tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol>

<tp:ServerCertificateRef tp:certId="CompanyA_ServerCert"/>

<tp:ClientSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/>

</tp:TransportServerSecurity>

</tp:TransportReceiver>

</tp:Transport>

for transportID "transportA1” and

<tp:DocExchange tp:docExchangeId="docExchangeA1">

<tp:ebXMLSenderBinding tp:version="2.0">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT2H</tp:RetryInterval>

<tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:PersistDuration>P1D</tp:PersistDuration>

<tp:SenderNonRepudiation>

<tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#

 </tp:NonRepudiationProtocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1

</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1

</tp:SignatureAlgorithm>

<tp:SigningCertificateRef tp:certId="CompanyA_SigningCert"/>

</tp:SenderNonRepudiation>

<tp:SenderDigitalEnvelope>

<tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionSecurityDetailsRef tp:securityId="CompanyA_MessageSecurity"/>

</tp:SenderDigitalEnvelope>

</tp:ebXMLSenderBinding>

<tp:ebXMLReceiverBinding tp:version="2.0">

<tp:ReliableMessaging>

<tp:Retries>3</tp:Retries>

<tp:RetryInterval>PT2H</tp:RetryInterval>

<tp:MessageOrderSemantics>Guaranteed</tp:MessageOrderSemantics>

</tp:ReliableMessaging>

<tp:PersistDuration>P1D</tp:PersistDuration>

<tp:ReceiverNonRepudiation>

<tp:NonRepudiationProtocol>http://www.w3.org/2000/09/xmldsig#

</tp:NonRepudiationProtocol>

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1

</tp:HashFunction>

<tp:SignatureAlgorithm>http://www.w3.org/2000/09/xmldsig#dsa-sha1

</tp:SignatureAlgorithm>

<tp:SigningSecurityDetailsRef tp:securityId="CompanyA_MessageSecurity"/>

</tp:ReceiverNonRepudiation>

<tp:ReceiverDigitalEnvelope>

<tp:DigitalEnvelopeProtocol tp:version="2.0">S/MIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionCertificateRef tp:certId="CompanyA_EncryptionCert"/>

</tp:ReceiverDigitalEnvelope>

</tp:ebXMLReceiverBinding>

</tp:DocExchange>

for the docExchangeId, docExchangeA1.

There are, of course, other references, such as those to security-related capabilities, that will be important to resolve when checking detailed matching properties, but the four IDREFs (two for the sender and two for the receiver) that have just been introduced are critical to the remainder of the match tests that will lead to the formation of draft CPAs. We will assume at this point that the reader can resolve IDREFs using the example CPPs and CPAs for Company A and B in the appendices, and will not exhibit them in the text in order to save space.

We next turn to a more in-depth treatment of the tests that are involved in finding the elements for a draft CPA.

The detailed tasks to be discussed in greater depth are:

1. Matching Channel MessagingCharacteristics

2. Checking BusinessTransactionCharacteristics coherence with Channel details
3. Matching Packaging

4. Matching Transport and Transport[Receiver|Sender]Security
5. Matching and Checking DocExchange subtrees.

Because agreement about Transport is quite fundamental, we shall consider it first. Computational processes are likely to first find pairs that match on Transport details, and will ignore pairs failing to have matches at this level.

Matching Transport

Matching Transport first involves matching the Transport/TransportSender/TransportProtocol capabilities of the requester with the Transport/TransportReceiver/TransportProtocol capabilities found under the collaborator receiving the request. Several such matches can exist, and any of these matches can be used in forming a draft, provided other aspects match up satisfactorily. Each CPP is assumed to have listed its preferred transport protocols first (as determined by the listing of the Bindings that reference the Transport element, but different outcomes can result depending on which CPP is used first for searching for matches. In general, resolution of preference differences is left to a distinct phase of CPA negotiation, following proposal of a draft CPA. Negotiation can be performed by explicit actions of users, but is expected to become increasingly automated.

Matching transport secondly involves matching the TransportSender/TransportProtocol capabilities of the responding collaborator with its TransportReceiver/TransportProtocol capabilities found under the collaborator receiving the response, which is typically the collaborator that has sent a request. Several such matches can exist, and any of these matches can be used in forming a draft. In one case, however, there may be no need for the second match on TransportProtocol. If we are using HTTP or some other protocol supporting synchronous replies, and the DeliveryChannel has a MessagingCharacteristics child that has its syncReplyMode attribute with a value of “signalsAndResponse,” then everything comes back synchronously, and there is no need to match on TransportProtocol for the Response DeliveryChannel.
If TransportSecurity is present, then there can be additional checks. First,

TransportSender/TransportClientSecurity/TransportSecurityProtocol should be compatible with TransportReceiver/TransportServerSecurity/TransportSecurityProtocol. Second, if either the TransportSender/TransportClientSecurity/ClientSecurityDetailsRef or TransportSender/TransportClientSecurity/ServerSecurityDetailsRef elements are present, and the IDREF references an element containing some AnchorCertificateRef, then an opportunity exists to check suitability of one Party’s PKI trust of the certificates used in the TransportSecurityProtocol. For example, by resolving the IDREF value in TransportSender/TransportClientSecurity/ClientCertificateRef/@certId, we can obtain the proposed client certificate to use for client-side authentication. By resolving the IDREFs from the AnchorCertificateRef, we become able to determine whether the proposed client certificate will “chain to a trusted root” on the server side’s PKI. Similar remarks apply to checks on the validity of a server certificate found by resolving TransportReceiver/TransportServerSecurity/ServerCertificateRef . This server certificate can be checked against the CA trust anchors that are found by resolving TransportSender/TransportClientSecurity/ServerSecurityDetailsRef/@securityId, and finding CA certificates (or CA certificate chains) in the KeyInfo elements under the Certificate element obtained by resolving the IDREF found in AnchorCertificateRef@certId.
When matches exist for the correlative Transport components, we then have discovered an interoperable solution at the transport level. If not, no CPA will be available, and a gap has been identified that will need to be remedied by whatever exception handling procedures are in place. Let us next consider other capabilities that need to match for “thicker” interoperable solutions.

Checking BusinessTransactionCharacteristics and DeliveryChannel MessagingCharacteristics

Under each of the correlative action bindings, there is a child element of DeliveryChannel, MessagingCharacteristics that has several attributes important in CPA formation tasks. The attributes having wider implications are syncReplyMode, ackRequested, and ackSignatureRequested; for the duplicateElimination and actor attributes, compatibility exists when the attributes that are found under the CanSend and CanReceive DeliveryChannels have the same values. As the element’s name implies, all of these DeliveryChannel features pertain to the messaging layer.

In addition, BusinessTransactionCharacteristics, found under ThisPartyActionBinding, contains attributes reflecting a variety of features pertaining to desired security and business transaction properties that are to be implemented by the agreed upon DeliveryChannels. These properties may have implications on what capabilities are needed within more detailed components of the DeliveryChannel elements, such as in the Packaging element. When using a BPSS process specification, these properties may be specified within the BusinessTransaction. The properties of the BusinessTransactionCharacteristics element are, however, the ones that will be operative in the implementation of the BusinessTransaction, and may override the specified values found in the BPSS Process specification. Because the properties are diverse, the details that implement the properties can be spread over other elements referenced within the DeliveryChannel elements.

These attributes apply to either a Request or Response delivery channel, but can impact either the Sender or Receiver (or both) in a channel. In addition, the attributes governing acknowledgments, for example, qualify the interrelation of DeliveryChannel elements by specifying behavior that is to occur that qualifies the contents of a return message.

The most basic test for compatibility for any of the attributes in either MessagingCharacteristics or BusinessTransactionCharacteristics is that the attributes are equal in the sending party’s DeliveryChannel referenced by CanSend/ThisPartyActionBinding/ChannelId and in the receiving party’s DeliveryChannel referenced by CanReceive/ThisPartyActionBinding/ChannelId. If they are unequal, and all Bindings have been examined on both sides, a draft CPA will represent a compromise to some common set with respect to the functionality represented by the attributes.

In the following discussions, we will consider many of the attributes in the two Characteristics elements, and relate them to additional underlying implementational details, one of which is Packaging.

From a high level, basic agreement in packaging is a matter of compatibility of the generated packaging on the sending side with the parsed packaging on the receiving side. The basic packaging check is, therefore, checking packaging compatibility under the CanSend element of a sender action with the packaging under the CanReceive element of that same action under the receiver side.

For efficiency, representation of capabilities of parsing/handling packaging can make use of both wildcards and repetition, and as needed these capabilities can also express open data formatting used on the generating side. For example, consider the SimplePart:

<tp:SimplePart tp:id="IWild" tp:mimetype="*/*"/>

By wildcarding mimetype values, we represent our capability of accepting any data, and would match any specific MIME type. Also, consider a Constituent appearing within a Composite:

 <tp:Constituent tp:idref="MsgHdr"/>

<tp:Constituent minOccurs="0" maxOccurs="10" tp:idref="IWild"/>

This notation serves to capture the capability of handling any number of arbitrary MIME bodyparts within the Composite being defined. A Packaging capability such as this would obviously match numerous more specific generated Packaging schemes, as well as matching literally with a scheme of the same generality.

Certain more complex checks are needed for more complicated packaging options pertaining to syncReplyMode. These are discussed in the following.

syncReplyMode

The syncReplyMode has a value other than “none” to indicate what parts of a message should be returned in the Reply of a transport capable of synchronous operation, such as HTTP. (We here use “synchronous” to mean “on the same TCP connection,” which is one use of this term. We do not specify any waiting, notification, or blocking behavior on processes or threads that are involved, though presumably there is some computational activity that maintains the connection state and is above the TCP and socket layers.)

The possible implementations pertaining to various values of the syncReplyModes are numerous, but we will try to indicate at least the main factors that are involved.

As will be seen, the Packaging element is important in specifying implementation details and compatibilities. But, because business level signals may be involved, other action bindings may need examination in addition to the already selected bindings for the Request and Response. Also, the values of TransportReceiver/Endpoint/@type might need checking when producing draft CPAs.

Let us first begin with the cases in which Responses, Message Service Handler Signals and Business Signals return in some combination of a synchronous reply and other asynchronous message(s). These various combinations will be discussed for the syncReplyMode values: "mshSignalsOnly,” "signalsOnly,” “responseOnly," and "signalsAndResponse."

By convention, synchronous replies are represented by subordinating CanSend or CanReceive elements under the CanReceive or CanSend elements that represent the initial Request binding capabilities. For representing asynchronous Requests, Replies, or Signals, the CanSend or CanReceive elements are all siblings and directly subordinate to the ServiceBinding. Therefore, both asynchronous and synchronous capabilities can be grouped under a ServiceBinding in a CPP, and can still be unambiguously distinguished. In principle, increasing subordination (nesting) can indicate patterns of dialog more elaborate than Request and Response. Few use cases for this functionality are common at the time of this writing.
mshSignalsOnly

The Request sender’s DeliveryChannel (referenced by CanSend/ThisPartyActionBinding/ChannelId) and the Request receiver’s DeliveryChannel (referenced by CanReceive/ThisPartyActionBinding/ChannelId) both should have MessagingCharacteristics/@syncReplyMode value of mshSignalsOnly.

While a Party can explicitly identify a DeliveryChannel for the SOAP envelope with subordinate CanSend and CanReceive elements, and with them specialized bindings, these are typically omitted for ebXML Messaging software. It is presumed that each side can process a synchronous reply constructed in accordance with ebXML Messaging. The DeliveryChannel representation mechanism here serves as a placeholder for capturing other Messaging Signal protocols that might emerge.

Currently acknowledgments and signed acknowledgments, along with errors, are the primary MSH signals that are included in the SOAP envelope. If Company A set

syncReplyMode to mshSignalsOnly, then Company B’s correlative CanReceive/ThisPartyActionBinding/@packageId should contain a nested

CanSend/ThisPartyActionBinding/@packageId for a message without any business payload or signals. In addition, the CanSend/ThisPartyActionBinding/@packageId of Company B’s Response should resolve to packaging format capable of returning the Response (and possibly other constituents) asynchronously. The compatibility of the DeliveryChannel elements can be checked, as can the capability of Company A to receive that Response payload, the Signal payload(s), or Responses bundled with signals as specified by the packaging formats that are referenced through the relevant ThisPartyActionBindings element’s packageId attribute values.

signalsOnly

The Request sender’s DeliveryChannel (referenced by its CanSend/ThisPartyActionBinding/ChannelId) and the Request receiver’s DeliveryChannel (referenced by its CanReceive/ThisPartyActionBinding/ChannelId) both should have MessagingCharacteristics/@syncReplyMode value of signalsOnly.

If Company A sets syncReplyMode to signalsOnly, then under Company B’s correlative CanReceive element, there should be a nested CanSend/ThisPartyActionBinding whose packageId attribute’s value resolves to a packaging format appropriate for Signals. For the CanSend/ThisPartyActionBinding/@packageId associated with Company B’s business level Response, the attribute IDREF value should resolve to a packaging format capable of returning payloads and that omits business signals. This CanSend element will be a direct child of ServiceBinding, a placement representing its asynchronous character. The original requesting party will need to have a CanReceive/ThisPartyActionBinding that is compatible with the responding party, and that is a direct child of its ServiceBinding element.

Using subordinate CanSend and subordinate CanReceive elements can be useful if the DeliveryChannel details for Exception signals differ from those specified for Request and Response. Signal bindings, for example, may differ by omitting ackRequested, or possibly one of the security features (digital enveloping or non-repudiation of receipt) that are used for Requests or Responses. Just as with other tests on Requests and Responses, there can be checks for compatibility in Packaging, DocExchange, MessagingCharacteristics, or BusinessTransactionCharacteristics referred to in the correlative subordinate CanSend and CanReceive DeliveryChannels.
responseOnly

The Request sender’s DeliveryChannel (referenced by CanSend/ThisPartyActionBinding/ChannelId) and the Request receiver’s DeliveryChannel (referenced by CanReceive/ThisPartyActionBinding/ChannelId) both should have MessagingCharacteristics/@syncReplyMode value of responseOnly.

 If Company A sets syncReplyMode to responseOnly, the CanSend/ThisPartyActionBinding/@packageId of Company B’s response should resolve to a packaging format capable of returning payloads, but omitting business signals. The CanSend/ThisPartyActionBinding element will be included as a child of the CanReceive element so the responder can indicate that it is a synchronous response.

 There should be an independent way to return business level error signals. So, there should be a ThisPartyActionBinding for any Signal payload announced, and these bindings should be at the direct child of ServiceBinding level to represent their asynchronous flavor.

It is not too likely that ReceiptAcknowledgment and similar signals will be used when a response is returned synchronously. The motivation for using these signals is indicating positive forward progress, and this motivation will be undermined when a Response is returned directly.

For the responseOnly case, including subordinate CanSend/ThisPartyActionBinding and CanReceive/ThisPartyActionBinding, means that there can be checks for compatibility in Packaging, DocExchange, MessagingCharacteristics, or BusinessTransactionCharacteristics.

The syncReplyMode and ackRequested attributes here should be carefully considered because a mshSignalsOnly value here would mean that another round of synchronous messaging will need to occur on the same connection. Incidentally, for Transport elements referenced under subordinate bindings, there need not be any Endpoint elements. If there are Endpoint elements, they may be ignored.
signalsAndResponse

The Request sender’s DeliveryChannel (referenced by CanSend/ThisPartyActionBinding/ChannelId) and the Request receiver’s DeliveryChannel (referenced by CanReceive/ThisPartyActionBinding/ChannelId) both should have MessagingCharacteristics/@syncReplyMode value of signalsAndResponse.

If Company A sets syncReplyMode to signalsAndResponse, the CanSend/ThisPartyActionBinding of Company B’s response should be subordinate to Company B’s CanReceive element. The packaging format that is referenced should be capable of returning payloads and signals bundled together. If no asynchronous bindings exist for error signals, this will be the only defined DeliveryChannel agreed to for all aspects of message exchange for the business transaction. However, it is likely that an asynchronous binding would normally be provided to send Exception signals.
ackRequested and ackSignatureRequested

Checks on the ackRequested and ackSignatureRequested attributes within correlative DeliveryChannels (that is, correlative because referenced under one action’s CanSend and CanReceive elements) are primarily to see that the values of the corresponding attributes are the same.

However, there are some interactions of these attributes with other information items that need to be mentioned.

The principal use of the ackRequested attribute is within reliable messaging configurations. If reliable messaging is to be configured, then checks on agreement in the correlative ReliableMessaging elements as found under DocExchange/ebXMLSenderBinding and DocExchange/ebXMLReceiverBinding are in order. Also, the value of the duplicateElimination attribute of MessagingCharacteristics should be checked for agreement. Draft CPAs may be formed by deliberately aligning values that are not equal along some of these dimensions. Downgrading may provide draft CPAs most likely to gain acceptance; so, for example, if duplicateElimination is false on the receiving side, aligning it to false on the sending side is most likely to produce a draft that succeeds.

The additional function of ackSignatureRequested is that it provides a “thin” implementation for non-repudiation of receipt. The basic check is for equality of attribute value, but additional constraints may need test and alignment. If no signal capable of implementing non-repudiation of receipt is found under the ServiceBinding, then having an “always” value for ackSignatureRequested suggests aligning the BusinessTransactionCharacteristics attributes, isNonRepudiationReceiptRequired, to be true. However, if this is done, care should be taken to check that the BusinessTransactionCharacteristics attribute isIntelligibleCheckRequired is false. This is because the messaging implementation only deals with receipt in the sense of having received a byte stream off the wire (and persisting it so that it is available for further processing). It is not safe to presume that any syntactical or semantic checks on the data were performed.

DocExchange Checks for BusinessTransactionCharacteristics

When using CPPs and CPAs with ebXML Messaging, which is the most likely early deployment situation, there exists an opportunity to check agreement on BusinessTransactionCharacteristics attributes:

The following three attributes need to have equal values in the bindings for a Request or for a Response. No further discussion will be provided in this appendix on these “deadlines,” except to say that a sophisticated proposed CPA generation tool might check on the coherence of the values chosen here with values for reliable messaging parameters, existence of compatible ReceiptAcknowledgment or AcceptanceAcknowledgment bindings, and consistency with syncReplyMode internal configuration.

<attribute name="timeToAcknowledgeReceipt" type="duration"/>

<attribute name="timeToAcknowledgeAcceptance" type="duration"/>

<attribute name="timeToPerform" type="duration"/>

The remaining attributes involve a number of security related issues and will be the focus of the remaining discussion of BusinessTransactionCharacteristics attributes:

<attribute name="isNonRepudiationRequired" type="boolean"/>

<attribute name="isNonRepudiationReceiptRequired" type="boolean"/>

<attribute name="isIntelligibleCheckRequired" type="boolean"/>

<attribute name="isAuthenticated" type="tns:persistenceLevel.type"/>

<attribute name="isTamperProof" type="tns:persistenceLevel.type"/>

<attribute name="isAuthorizationRequired" type="boolean"/>

<attribute name="isConfidential" type="tns:persistenceLevel.type"/>

Here, the basic test is that for correlative DeliveryChannels, the corresponding attributes have the same values. Again there are some interaction aspects with parts of the DeliveryChannel that motivate making some additional checks.

Previously, when discussing the MessagingCharacteristics attribute ackSignatureRequested, it was pointed out that the messaging implementation provides thin support for holding isNonRepudiationReceiptRequired true provided that the attribute isIntelligibleCheckRequired is false. When both are true, then there should exist a business signal with compatible Packaging and DeliveryChannel values. If the signal has been independently described within asynchronous CanSend and CanReceive elements, knowing the signal name (such as, “ReceiptAcknowlegment”) may support a relatively simple search and test. However, if synchronous transports are involved, some filters using syncReplyModes may be needed to discover an underlying support for a “thick” implementation of non-repudiation of receipt.

When non-repudiation of receipt is implemented by a business signal, then checks on signing certificate validity can involve the CollaborationRole/ApplicationCertificateRef and the CollaborationRole/ApplicationSecurityDetailsRef, that provides a reference to the SecurityDetails element containing the list of TrustAnchors. The certificate from the side signing the ReceiptAcknowledgment would be checked against the certificates referred to by the AnchorCertificateRef under TrustAnchors.

The business signal will sometimes be conveyed as part of a message. It remains true that the message itself will still be sent through a MSH, and that the MSH can also sign the message using the certificate found by resolving the IDREF found at DocExchange/ebXMLSenderBinding/SenderNonRepudiation/SigningCertificateRef/@certId.

If a particular software component implements both MSH functionality and business level security functionality, it is possible that the same certificate may be pointed to by ApplicationCertificateRef and SigningCertificateRef/@certId. In other words, the distinction between MSH level signing and application level signing is a logical one, and may not correspond with software component boundaries. Because the MSH signature is over the message, the message signature may be over an application level signature. While this may be redundant for some system configurations, protocols may require both signatures to exist over the different regions.
Failure to validate a certificate may not prevent formation of a draft CPA. First, the sender’s signing certificate can be a self-signed certificate. If so, a reference to this self-signed certificate may be added to the receiver’s TrustAnchors/AnchorCertificateRef list. This proposal amounts to proposing to agree to a direct trust model, rather than a hierarchical model involving certificate authorities. Second, a proposal to add a trusted root may be made, again by appropriate revision of the TrustAnchors.

When non-repudiation of receipt is implemented by the Messaging layer, the checks on PKI make use of elements under DocExchange.

isNonRepudiationRequired

isAuthenticated

isAuthorizationRequired

isTamperProof
The ideas of authentication, authorization, nonrepudiation and being “tamper proof” may be very distinct as business level concepts, yet the implementation of these factors tend to use very similar technologies. Actually, prevention of tampering is not literally implemented. Instead, means are provided for detecting that tampering (or some accidental garbling) has occurred. Likewise, implementations of authorization usually are provided by implementations of access control (permitting or prohibiting a user in a role making use of a resource) and presentation of a token or credential to gain access, which may involve authentication as an initial step! Nonrepudiation may build on all the previous functions, plus retaining information for supplying presumptive evidence of origination at some later time.
When checking whether isNonRepudiationRequired can be set to True for both Parties, check whether the signing certificate will be counted as valid at the receiver.

The IDREF reference to the signing certificate is found in DocExchange/ebXMLSenderBinding/SenderNonRepudiation/SigningCertificateRef/@certId. The referenced certificate should be checked for validity with respect to the trust anchors obtained from TrustAnchors/AnchorCertificateRef elements under the SecurityDetails element referenced by the IDREF at DocExchange/ebXMLReceiverBinding/ReceiverNonRepudiation/SigningSecurityDetailsRef/@securityId.

As previously noted, failure to validate a certificate does not prevent constructing a draft CPA. Either self-signed certificates or new trust anchors can be added to align the trust model on one side with the other side’s certificate.

In addition to checking the interoperability of the PKI infrastructures, checks on compatibility of values in the other attributes in DocExchange/ebXMLReceiverBinding/ReceiverNonRepudiation and in DocExchange/ebXMLSenderBinding/SenderNonRepudiation can be made. NonRepudiationProtocol, HashFunction, and SignatureAlgorithm values may be compatible even when not equal if knowledge of the protocol requirements allows fallback to a mandatory to implement value. So values here can be found equal, aligned, or negotiated to reach an agreement.

If isNonRepudiationRequired is True, the isAuthenticated and isTamperProof should also be True. This is because in implementing isNonRepudiationRequired by means of a digital signature, both authentication (with respect to the identity associated with the signing certificate) and tamper detection (with respect to the cryptographic hash of the signature) will be implemented as well. The converses need not be true because authentication and tamper detection might be accomplished without archiving information needed to support claims of nonrepudiation.
isConfidential

The isConfidential attribute indicates properties variously distributed among levels of the application-to-application sending/receiving stacks.

isConfidential has possible values of "none", "transient", "persistent", and "transient-and-persistent. The “persistent” or “transient-and-persistent” values indicate that some digital enveloping function is present; a “transient” value indicates confidentiality is applied at the transfer layer or below.

ebXML Messaging version 2.0 does not have an “official” implementation for digital envelopes, and refers to the future XML Encryption specification as its intended direction for that function.

However, the XML Encryption specification is now a candidate recommendation, and is suitable for preliminary implementation.

Within the CPA, the DocExchange/ebXMLSenderBinding/SenderDigitalEnvelope and DocExchange/ebXMLReceiverBinding/ReceiverDigitalEnvelope can provide configuration details pertaining to security in accordance with [XMLENC].Use of XML Encryption also will normally show up in the value of DigitalEnvelopeProtocol, and can also appear within a NamespaceSupported element within Packaging.

Currently, [ebMS] has only indicated a direction to eventually use XML Encryption, but has not mandated any digital envelope protocol. Digital enveloping may be done at the “application level,” and will show up under MIME types within the Packaging element. PKI matching will make use of certificates supplied in ApplicationCertificateRef and ApplicationSecurityDetailsRef. If other protocols are to be used, it would be safest to use extensions to the content model of DocExchange, such as, XXXSenderBinding and XXXReceiverBinding, and follow the pattern of the ebXML content models for DocExchange. Future versions of this specification intend to make these extension semantics easier to use interoperably; currently, the extensions would be a multilateral extension within some trading community.
When checking whether isConfidential can be set to “persistent” or “transient-and-persistent” for both Parties, check whether the key exchange certificate will be counted as valid at the sender. The IDREF reference to the SecurityDetails element is found in DocExchange/ebXMLSenderBinding/SenderDigitalEnvelope/EncryptionSecurityDetailsRef/@securityId. The trust anchor certificates obtained from TrustAnchors/AnchorCertificateRef elements under the SecurityDetails element will be used to test that the certificate referenced by DocExchange/ebXMLReceiverBinding/ReceiverDigitalEnvelope/EncryptionCertificateRef/@certId validates at the sender side.

As previously noted, failure to validate a certificate does not prevent constructing a draft CPA. Either self-signed certificates or new trust anchors can be added to align the trust model on one side with the other side’s certificate.

In addition to the PKI related checks and alignments, the elements EncryptionAlgorithm and DigitalEnvelopeProtocol should be checked for equality (or compatibility) and, if not compatible or equal, aligned to values that would work for an initial version of a proposed CPA. Preferences and alignment of these elements can be achieved in a subsequent Negotiation phase.

Finally, it is possible that one side’s DigitalEnvelope will be modeled using either the DocExchange/ebXMLSenderBinding/SenderDigitalEnvelope and DocExchange/ebXMLReceiverBinding/ReceiverDigitalEnvelope, while the other side uses only Packaging to indicate use of, for example, S/MIME Digital Envelopes, because it receives an already enveloped payload from an application. In such a case, the PKI certificate validation check could require checking that a certificate described by DocExchange/ebXMLReceiverBinding/ReceiverDigitalEnvelope/EncryptionCertificateRef/@certId validates against the TrustAnchors found by resolving CollaborationRole/ApplicationSecurityDetailsRef. This complication arises from the possibility that digital enveloping functionality can be spread over quite distinct portions of the stack in different software installations.

20.6 CPA Formation: Technical Details

When assembling a draft CPA from matching portions of two CPPs’ PartyInfo elements, some additional constraints need to be observed.

First, as mentioned in section 9.11.1, software for producing draft CPAs needs to guarantee that ID values in one CPP are distinct from ID values in the other CPP so that no IDREF references collide when the CPPs are merged. The following ID values are potentially subject to collision:
Certificates

SecurityDetails

SimplePart

Packaging

DocExchange

Transport

DeliveryChannel

ThisPartyActionBinding

There are elements and complex type definitions containing IDREFs. Also some elements have attributes with IDREF values. These are:

PartyInfo

ActionBinding.type

ThisPartyActionBinding

OtherPartyActionBinding

OverrideMSHActionBinding

ChannelId

DeliveryChannel

Constituent

CertificateRef.type

AnchorCertificateRef

ApplicationCertificateRef

ClientCertificateRef

ServerCertificateRef
SigningCertificateRef

EncryptionCertificateRef

CertificateRef

SecurityDetailsRef.type
Second, when the CanSend and CanReceive binding information has been found to match (equal, correspond with, or be compatible with) the binding information under the other Party’s CanReceive and CanSend elements, the IDREF references for the OtherPartyActionBinding are filled out in the CPA.

Third, for CPAs that are signed, the implementer is advised to review section 9.9.1.1 when using [XMLDSIG] for the signature technique. A proposed CPA need not have a signature.

Fourth, when a CPA is composed from two CPPs, see section 8.8 in which it stated that all Comment elements from both CPPs SHALL be included in the CPA unless agreed to otherwise.

Fifth, several tests on CPA validity could be conducted on draft CPAs, but these tests are more critical for a negotiated CPA that is to be deployed and imported into run-time software components.

1. Expiration: Certificates used in signing a CPA can be checked to verify that they do not expire before the CPA expires, as given in the End element.

2. Certificate expiration: If a CPA lifetime exceeds the lifetime of certificates accepted for use in signing, key exchange or other security functions, then it would be advisable to make ds:KeyInfo refer to certificates, rather than to include them within the element by value.

3. Process-Specification references can be checked in accordance with the provisions of section 8.4.4 and its subsections.

Finally, a CPA has several elements whose values are not typically derived from either CPPs (and can need checking when using a CPA template as the basis for a draft CPA.) The Status, Start, End, and possibly a ConversationConstraints element need to be added. The attributes,

CollaborationProtocolAgreement/@cpaid,

CollaborationProtocolAgreement/@version,

CollaborationProtocolAgreement/Status@value,

CollaborationProtocolAgreement/ConversationConstrain@invocationLimit, and

CollaborationProtocolAgreement/ConversationConstraint@concurrentConversations,

can also be supplied values as needed.

21 Correspondence Between CPA and ebXML Messaging Parameters (Normative)

The following table shows the correspondence between elements used in the ebXML Messaging Service message header and their counterparts in the CPA.

	Message Header Element / Attribute
	Corresponding CPA Element / Attribute

	PartyId element
	PartyId element; if multiple PartyID elements occur under the same PartyInfo element in the CPA, all of them MUST be included in the Message Header

	Role element
	Role/@name value.

	CPAId element
	cpaid attribute in CollaborationProtocolAgreement element

	ConversationId element
	No equivalent; SHOULD be generated by software above the Message Service Interface (MSI)

	Service element
	Service element

	Action element
	action attribute in ThisPartyActionBinding element

	TimeToLive element
	Computed as the sum of Timestamp (in message header) + PersistDuration (under DocExchange/ebXMLReceiverBinding)

	MessageId element
	No equivalent; generated by the MSH per message

	Timestamp element
	No equivalent; generated by the MSH per message

	RefToMessageId element
	No equivalent; usually passed in by the application where applicable; SHOULD be used for correlating response messages with request messages

	SyncReply element
	syncReplyMode attribute in MessagingCharacteristics element; the SyncReply element is included if and only if the syncReplyMode attribute is not “none”

	DuplicateElimination element
	duplicateElimination attribute in MessagingCharacteristics element; the DuplicateElimination element is included if the duplicateElimination attribute under MessagingCharacteristics is set to “always”, or if it is set to “perMessage” and the application indicates to the MSH that duplicate elimination is desired

	Manifest element
	Packaging element; each Reference element under Manifest SHOULD correspond to a SimplePart that is referenced from one of the CompositeList elements under Packaging

	xlink:role attribute in Reference element
	xlink:role attribute in SimplePart element

	AckRequested element
	ackRequested attribute in MessagingCharacteristics element; an AckRequested element is included in the SOAP Header if the ackRequested attribute is set to “always”; if it is set to “perMessage”, input passed to the MSI is to be used to determine if an AckRequested element needs to be included; likewise, the signed attribute under AckRequested will be appropriately set based on the ackSignatureRequested attribute and possibly determined by input passed to the MSI

	MessageOrder element
	messageOrderSemantics attribute in ReliableMessaging element; the MessageOrder element will be present if the AckRequested element is present, and if the messageOrderSemantics attibute in the ReliableMessaging element is set to "Guaranteed"

	ds:Signature element
	ds:Signature will be present in the SOAP Header if the isNonRepudiationRequired attribute in the BusinessTransactionCharacterisitcs element is set to “true”; the relevant parameters for constructing the signature can be obtained from the SenderNonRepudiation and ReceiverNonRepudiation elements

The following table shows the implicit parameters employed by the ebXML Messaging Service that are not included in the message header and how those parameters can be obtained from the CPA.
	Implicit Messaging Parameters
	Corresponding CPA Element / Attribute

	Retries (not in Message Header) but used to govern Reliable Messaging behavior in sender
	Retries element (under ReliableMessaging element)

	RetryInterval (not in Message Header) but used to govern Reliable Messaging behavior in sender
	RetryInterval element (under ReliableMessaging element)

	PersistDuration (not in Message Header) but used to govern Reliable Messaging behavior in receiver
	PersistDuration element (under ebXMLReceiverBinding element)

	Endpoint (not in Message Header) but used for sending SOAP message
	Endpoint element (under TransportReceiver); the type of message being sent MUST be passed in to the MSI; an appropriate endpoint can then be selected from among the Endpoints included under the TransportReceiver element

	Use Service & Action to determine the corresponding DeliveryChannel
	DeliveryChannel

	Use ReceiverDigitalEnvelope to determine the encryption algorithm and key
	ReceiverDigitalEnvelope

	Use SenderNonRepudiation to determine signing certificate(s) and ReceiverNonRepudiation to determine the trust anchors and security policy to apply to the signing certificate
	SenderNonRepudiation and ReceiverNonRepudiation

	Use Packaging to determine how payload containers ought to be encapsulated. Also use Packaging to determine how an individual SimplePart ought to be extracted and validated against its schema
	Packaging

	Use TransportClientSecurity and TransportServerSecurity to determine certificates to be used by server and client for authentication purposes
	TransportClientSecurity and TransportServerSecurity

	Use the DeliveryChannel identified by defaultMshChannelId for standalone MSH level messages like Acknowledgment, Error, StatusRequest, StatusResponse, Ping, Pong, unless overridden by OverrideMshActionBinding
	defaultMshChannelId attribute in PartyInfo element, and OverrideMshActionBinding

22 Correspondence Between ebBPSS and ebXML Messaging Parameters

	ebBPSS Version 1.*

	ebCPPA Version 2.0
	Status

	ProcessSpecification/@uuid
	ProcessSpecification/@uuid
	Required

	ProcessSpecification/@uuid
	Service/@name
	Required

	BinaryCollaboration/Role/@name
	CollaborationRole/Role/@name
	Recommended

	RequestingBusinessActivity/@name
	ThisPartyActionBinding@action
	Recommended

	RespondingBusinessActivity/@name
	ThisPartyActionBinding@action
	Recommended

	ebBPSS Version 2.*
	ebCPPA Version 2.1

	

	ProcessSpecification/@uuid
	ProcessSpecification/@uuid
	Required

	BusinessCollaboration/@name

BinaryCollaboration/@name

MultiPartyCollaboration/@name
	Service
	Recommended

(Note: only where @isInnerCollaboration

 is false)

	BusinessCollaboration/Role/@name BinaryCollaboration/Role/@name

MultiPartyCollaboration/Role/@name
	CollaborationRole/Role/@name
	Required

	
	
	

	BusinessCollaboration/@name BinaryCollaboration//@name

MultiPartyCollaboration/@name
	ThisPartyActionBinding@action
	Recommended

23 Glossary of Terms

	Term
	Definition

	AGREEMENT
	An arrangement between two partners that specifies in advance the conditions under which they will trade (terms of shipment, terms of payment, collaboration protocols, etc.) An agreement does not imply specific economic commitments.

	APPLICATION
	Software above the level of the MSH that implements a Service by processing one or more of the Messages in the Document Exchanges associated with the Service.

	AUTHORIZATION
	A right or a permission that is granted to a system entity to access a system resource.

	BUSINESS ACTIVITY
	A business activity is used to represent the state of the business process of one of the partners. For instance the requester is either in the state of sending the request, in the state of waiting for the response, or in the state of receiving.

	BUSINESS COLLABORATION
	An activity conducted between two or more parties for the purpose of achieving a specified outcome.

	BUSINESS DOCUMENT
	The set of information components that are interchanged as part of a business activity.

	BUSINESS PARTNER
	An entity that engages in business transactions with another business partner(s).

	BUSINESS PROCESS
	The means by which one or more activities are accomplished in operating business practices.

	BUSINESS PROCESS SPECIFICATION SCHEMA
	Defines the necessary set of elements to specify run-time aspects and configuration parameters to drive the partners' systems used in the collaboration. The goal of the BP Specification Schema is to provide the bridge between the eBusiness process modeling and specification of eBusiness software components.

	BUSINESS TRANSACTION
	A business transaction is a logical unit of business conducted by two or more parties that generates a computable success or failure state. The community, the partners, and the process, are all in a definable, and self-reliant state prior to the business transaction, and in a new definable, and self-reliant state after the business transaction. In other words if you are still 'waiting' for your business partner's response or reaction, the business transaction has not completed.

	CLIENT
	Software that initiates a connection with a Server.

	COLLABORATION
	Two or more parties working together under a defined set of rules.

	COLLABORATION PROTOCOL
	The protocol that defines for a Collaborative Process: 1. The sequence, dependencies and semantics of the Documents that are exchanged between Parties in order to carry out that Collaborative Process, and 2. The Messaging Capabilities used when sending documents between those Parties. Note that a Collaborative Process can have more than one Collaboration Protocol by which it can be implemented.

	COLLABORATION PROTOCOL AGREEMENT (CPA)
	Information agreed between two (or more) Parties that identifies or describes the specific Collaboration Protocol that they have agreed to use. A CPA indicates what the involved Parties “will” do when carrying out a Collaborative Process. A CPA is representable by a Document.

	COLLABORATION PROTOCOL PROFILE (CPP)
	Information about a Party that can be used to describe one or more Collaborative Processes and associated Collaborative Protocols that the Party supports. A CPP indicates what a Party “can” do in order to carry out a Collaborative Process. A CPP is representable by a Document. While logically, a CPP is a single document, in practice, the CPP might be a set of linked documents that express various aspects of the capabilities. A CPP is not an agreement. It represents the capabilities of a Party.

	COLLABORATIVE PROCESS
	A shared process by which two Parties work together in order to carry out a process. The Collaborative Process can be defined by an ebXML Collaboration Model.

	CONFORMANCE
	Fulfillment of a product, process or service of all requirements specified; adherence of an implementation to the requirements of one or more specific standards or technical specifications.

	DIGITAL SIGNATURE
	A digital code that can be attached to an electronically transmitted message that uniquely identifies the sender

	DOCUMENT
	A Document is any data that can be represented in a digital form.

	DOCUMENT EXCHANGE
	An exchange of documents between two parties.

	ENCRYPTION
	Cryptographic transformation of data (called "plaintext") into a form (called "ciphertext") that conceals the data's original meaning to prevent it from being known or used. If the transformation is reversible, the corresponding reversal process is called "decryption", which is a transformation that restores encrypted data to its original state.

	EXTENSIBLE MARKUP LANGUAGE
	XML is designed to enable the exchange of information (data) between different applications and data sources on the World Wide Web and has been standardized by the W3C.

	IMPLEMENTATION
	An implementation is the realization of a specification. It can be a software product, system or program.

	MESSAGE
	The movement of a document from one party to another.

	MESSAGE HEADER
	A specification of the structure and composition of the information necessary for an ebXML Messaging Service to successfully generate or process an ebXML compliant message.

	MESSAGING CAPABILITIES
	The set of capabilities that support exchange of Documents between Parties. Examples are the communication protocol and its parameters, security definitions, and general properties of sending and receiving messages.

	MESSAGING SERVICE
	A framework that enables interoperable, secure and reliable exchange of Messages between Trading Partners.

	PACKAGE
	A general-purpose mechanism for organizing elements into groups. Packages can be nested within other packages.

	PARTY
	A Party is an entity such as a company, department, organization or individual that can generate, send, receive or relay Documents.

	PARTY DISCOVERY PROCESS
	A Collaborative Process by which one Party can discover CPP information about other Parties.

	PAYLOAD
	A section of data/information that is not part of the ebXML wrapping.

	PAYLOAD CONTAINER
	A container used to envelope the real payload of an ebXML message. If a payload is present, the payload container consists of a MIME header portion (the ebXML Payload Envelope) and a content portion (the payload itself).

	PAYLOAD ENVELOPE
	The specific MIME headers that are associated with a MIME part.

	RECEIVER
	Recipient of a Message.

	REGISTRY
	A mechanism whereby relevant repository items and metadata about them can be registered such that a pointer to their location, and all their metadata, can be retrieved as a result of a query.

	REQUESTER
	Initiator of a Business Transaction.

	RESPONDER
	A counterpart to the initiator in a Business Transaction.

	ROLE
	The named specific behavior of an entity participating in a particular context. A role could be static (e.g., an association end) or dynamic (e.g., a collaboration role).

	SECURITY POLICY
	A set of rules and practices that specify or regulate how a system or organization provides security services to protect sensitive and critical system resources.

	SENDER
	Originator of a Message.

	SERVER
	Software that accepts a connection initiated by a Client.

	UNIQUE IDENTIFIER
	The abstract concept of utilizing a standard mechanism and process for assigning a sequence of alphanumeric codes to ebXML Registry items, including: Core Components, Aggregate Information Entities, and Business Processes.

	UNIVERSALLY UNIQUE IDENTIFIER (UUID)
	An identifier that is unique across both space and time, with respect to the space of all UUIDs. A UUID can be used for multiple purposes, from tagging objects with an extremely short lifetime, to reliably identifying very persistent objects across a network.

24 PartyID
24.1 Summary of Contents of Appendix

This document describes Party Identifiers (values for the PartyId element) and how they are used to logically identify business partner entities. A Party Identifiers consisst of a Domain or Type, named with a Uniform Resource Identifier (URI), and an identifier value, that will be viewed as a string, even though often consisting of digits. Party Ids are referred to from within the CPP and CPA within the PartyID element. A PartyId element is also present in the ebXML Messaging header. It is intended that the URN values for types here specified, as well as the text values of the PartyId elements found in CPAs, be usable within ebXML Message header structures.

24.2 Audience

One target audience is implementers, designers and developers of ebXML middleware and application software that is to be used for collaborative commerce. Another target audience is the people in each enterprise who are responsible for creating CPPs and CPAs [ebCPPA] or configuring ebXML Messaging software [ebMS].

24.3 Assumptions

The reader should recall that URIs include both URNs and URLs. The allowable characters in URLs and URNIs differ somewhat. Consult [RFC2141] and [RFC2396] for details and for escaping conventions.

24.4 Party Identifier Domains

Industries and groups have created their own naming schemes to suit their own purposes. For example, Dun & Bradstreet assigns company IDs (DUNS) to all incorporated business entities. The National Motor Freight Traffic Association (NMFTA) assigns Standard Carrier Alpha Codes (SCAC) to common carriers used to report tariffs and other regulatory information. The Uniform Code Council (UCC) assigns UCS Communication IDs to their members in the grocery and retail industry. The U.S. Federal Government assigns a Federal Employer Identifier Numbers (FEIN), or Tax ID (TIN), to each employer. S.W.I.F.T. assigns the ISO 9362 Bank Identifier Code (BIC), a universal identifier for financial institutions throughout the world. Each bank in the U.S. has a Transit Routing Number assigned by the American Bankers Association (ABA). The Japan Information Processing Development Corporation (JIPDEC) Electronic Commerce Promotion Center (ECPC) assigns IDs (Standard Company Code) to business entities which have requested to register their company codes in Japan. There are many different codes to identify secondary and post-secondary educational institutions.

Most entities have at least one ID from multiple domains - e.g., almost all U.S. corporations almost certainly have both at least one DUNS and a FEIN (or TIN). Insurance companies not only are identified by at least one DUNS and a TIN, but also by NAIC company codes (administered by the National Association of Insurance Commissioners). Many entities even have more than one ID from the same domain - it's easy to have multiple DUNS numbers due to mergers or acquisitions.

Concrete examples will illustrate Party ID Domains and Identifiers. Roadway Express in Akron, Ohio is identified by the NMFTA SCAC RDWY in addition to the DUNS 006998397. These are unambiguous identifiers. The NMFTA is the Registration Authority (RA) for the SCAC domain, and guarantees that Roadway's SCAC is different from all other motor carrier SCACs. Likewise, Dun & Bradstreet (the RA for the DUNS domain) guarantees the uniqueness of DUNS numbers. Entities not usually thought of as businesses often have unique identifiers suitable for their purposes: the University of Texas at Austin is identified as 003658 by the Federal Interagency Commission on Education (though UT also has one or more DUNS and FEINs, also).

The domain chosen to identify another entity often depends on the purpose. For example, in the context of electronic payments, depository financial institutions (e.g., banks) will be identified by ABA Routing Numbers, as these are exclusively used in the ACH funds transfer environment. In the context of procurement, a bank would probably be identified by its DUNS. And when a bank identifies itself to the U.S. Internal Revenue Service (IRS) for the purposes of remitting Social Security (FICA) taxes, the Federal Employer ID (FEIN) would be used, just as any other (non-bank) employer would use it.

24.5 Identifier Formats

The identifiers within a particular domain usually have a rigid format. For example, DUNS numbers are always nine numeric digits composed byof a random 8 digit sequence assigned by Dun & Bradstreet and, with a final check digit. The NMFTA uses 4 alphabetic characters, often a mnemonic of the company name, to identify carriers. The ABA routing code used to identify financial institutions is semi-intelligent: the first three digits signify the geographic location of the bank itself.

24.6 Domain Nomenclature

There already exist schemes for naming identifier domains. ISO 6523[ISO6523] enumerates

ICDs for many domains: the domain is identified by a four digit numeric sequence. For example, the ISO 6523 ICD 0060 identifies the Dun & Bradstreet domain.

Alternatively, the code list for ISO 9735 (UN/EDIFACT syntax) D.E.Service simple data element 0007 (routing Identification Ccode qualifier) can be used to name identifier domains.

ANSI ASC X12[X12] Data Element I05 (Interchange ID Qualifier) element, used in the ISA Interchange Control Header segment, also provides a list of code values for naming domains.

These three serve as "catalogs" of schemes for naming identifier domains, and processes exists by which additional domains can be identified: the British Standards Institute (BSI) is the RA for ISO 6523; the ISO/TC154-UN/CEFACT Joint Syntax Working Group(JSWG) for ISO 9735[ISO9735] D.E.Service simple data element 0007; and ANSI ASC X12 for X12 D.E. I05.

24.7 Party ID URIs in ebXML CPPA [ebCPPA] and in ebXML Messaging [ebMS]

In both ebXML Messaging and ebXML CPPA, PartyId elements provide logical identifiers that may be used to logically identify the Party.

The value of the PartyId element is any non-empty string that provides an identifier. While an identifiers may be any identifier that is understood by both Parties to a CPA, in [ebMS] it is recommended that they be URIs.

Within [ebCPPA], the PartyId element has a single attribute,: type, that has a string value. It is recommended that the type value of the type attribute be a URN. If the type attribute is present, then it provides a scope or namespace for the content of the PartyId element.

Within [ebMS], if the type attribute is not present, the content of the PartyId element MUST be a URI that conforms to [RFC2396].

 It is RECOMMENDED that the value of the type attribute be a URN that defines a namespace for the value of the PartyId element. Typically, the URN would be registered in a well-known directory of organization identifiers.

Here are examples from [ebCPPA] that illustrate how URNs are used for the type attribute and for the PartyId elementvalue.

 <tp:PartyId tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

 <tp:PartyId>urn:icann:example.com</tp:PartyId>

The first example shows how to indicate the Party's DUNS number using a type attribute. Its value is a URN. The value of the PartyId element itself is the DUNS number of the organization, which is a string of digits assigned by the agency.

The second example shows an arbitrary URN as a PartyId value. No type is indicated, but the value might be a URN that the Party has registered with IANA to identify itself directly.

24.8 Method to Generate Values for the “type” Attribute from Information Items in the [ISO6523] ICD List

While both [ebMS] and [ebCPPA] mention the idea that the URN for the PartyId/@type attribute would come from a well-known directory of organization identifiers, no example is given except in tp:type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns". The following method provides standardization for the URNs used as PartyId/@type values when using [ISO6523]. The example value for DUNS from the specification may, of course, be used but so may the standardized values found below. None of the rules, requirements or recommendations of either [ebMS] or [ebCPPA] are modified by the standardization suggested below. It is recommended that implementers provide support, and be able to accommodate, the usage of the “type” values standardized by following the method next described.

1. If an abbreviated name is described in the item titled “Name of Coding System” within the ICD list, a “type” attribute can be constructed by prepending “urn:oasis:names:tc:ebxml-cppa:partyid-type:” to the abbreviated name and appending a colon “:” followed by the ICD value.

Example:

Using abbreviated name D-U-N-S Number:

Abbreviated Name: “D-U-N-S Number”

Upper-camel-case resultant string: “D-U-N-SNumber”

tp:type=" urn:oasis:names:tc:ebxml-cppa:partyid-type:D-U-N-SNumber:0060"

Note: “0060” is the ICD value of D-U-N-S Number. Also, the value

“urn:oasis:names:tc:ebxml-cppa:partyid-type:duns” remains a valid type attribute value for the PartyId element.

This value was specified previously in the version 2.0 CPPA specification.

2. Because an abbreviated name may be omitted from the ICD list, the “type” attribute can always contain the string derived from “Name of Coding System” expressed ininto upper-camel-case. A value can always be constructed by prepending “urn:oasis:names:tc:ebxml-cppa:partyid-type:” to the upper-camel-case name and appending a colon “:” followed by the ICD value.

Example:

Using formal name:

Name of Coding System(formal name): “Data Universal Numbering System”

Transformed Camel-case: “DataUniversalNumberingSystem”

tp:type=" urn:oasis:names:tc:ebxml-cppa:partyid-type:DataUniversalNumberingSystem:0060"

3. Punctuation marks in these formal names (such as, “/”, “-“ or “’”) should be included unless they are not allowed in URNs [RFC 2141]. If the punctuation characters are not allowed in URNs, then the hexadecimal escaping convention explained in [RFC 2141] should be followed for characters not allowed in URNs. However, spaces are not allowed in URNs and should be consumed during the production of an upper-camel-case string, rather than preserved in an escaped form. Words in names that are all upper-case should re
main so when converted to an upper-camel-case string.

4. The ICD value should be appended as the last field of the URN so that any collision between formal or abbreviated names is avoided.

25 Alternative Collaboration Protocol Messaging Illustration

First, a generic EDIINT BPSS instance:

<?xml version="1.0" encoding="UTF-8"?>

<ProcessSpecification xmlns="http://www.ebxml.org/2003/1.1/BusinessProcess" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.ebxml.org/2003/1.1/BusinessProcess /Schemas/ebBPSS1.08.xsd" name="EdiintCollaboration" uuid="urn:ietf:ediint:as2" version="1.0">

<Documentation>An EdiintCollaboration exchanges an arbitrary business document and receives back a MDN (Message Disposition Notification)</Documentation>

<!--Purchase order Request Document-->

<BusinessDocument name="BusinessDocument" nameID="ABD1" specificationLocation="http://www.ietf.org/rfc/rfc1767.txt">

<Documentation>Though this is an arbitrary business document, the location given describes a media type for EDI documents.</Documentation>

</BusinessDocument>

<BusinessDocument name="MessageDispositionNotification" nameID="MDN1" specificationLocation="http://www.ietf.org/rfc/rfc2298.txt">

<Documentation>The document describes the Message Disposition Notification</Documentation>

</BusinessDocument>

<BusinessTransaction name="EdiintBT" nameID="EdiintBT1">

<RequestingBusinessActivity name="EdiintSend" nameID="EdiintSend1" isAuthorizationRequired="true" isIntelligibleCheckRequired="false" isNonRepudiationReceiptRequired="true" isNonRepudiationRequired="true" timeToAcknowledgeReceipt="P0Y0M0DT2H0M0S">

<DocumentEnvelope businessDocument="AnyBusinessDocument" businessDocumentIDRef="ABD1" isAuthenticated="persistent" isConfidential="persistent"/>

</RequestingBusinessActivity>

<RespondingBusinessActivity name="Acknowledgment" nameID="Acknowledgment1" isAuthorizationRequired="true" isIntelligibleCheckRequired="true" isNonRepudiationReceiptRequired="false" isNonRepudiationRequired="true" timeToAcknowledgeReceipt="P0Y0M0DT2H0M0S">

<DocumentEnvelope businessDocument="MessageDispositionNotitication" businessDocumentIDRef="MDN1" isAuthenticated="persistent" isConfidential="transient" isPositiveResponse="true"/>

</RespondingBusinessActivity>

</BusinessTransaction>

<BinaryCollaboration name="PerformEdiintCollaboration" initiatingRoleID="Ediint1" nameID="PerformEdiintCollaboration_BC">

<Role name="Sender" nameID="Sender1"/>

<Role name="Receiver" nameID="Receiver2"/>

<Start toBusinessState="SendDocument" toBusinessStateIDRef="SendDocBTA1"/>

<BusinessTransactionActivity name="SendDocument" nameID="SendDocBTA1" businessTransaction="EdiintBT" businessTransactionIDRef="EdiintBT1" fromRole="Sender" fromRoleIDRef="Sender1" toRole="Receiver" toRoleIDRef="Receiver2" isLegallyBinding="true" timeToPerform="P0Y0M0DT24H0M0S" isConcurrent="false"/>

<Success fromBusinessState="SendDocument" fromBusinessStateIDRef="SendDocBTA1"/>

<Failure fromBusinessState="SendDocument" conditionGuard="AnyProtocolFailure" fromBusinessStateIDRef="SendDocBTA1"/>

</BinaryCollaboration>

</ProcessSpecification>

Next, two CPPs for the Sender and Receiver Roles.

1. Sender
<?xml version="1.0"?>

<!-- Copyright UN/CEFACT and OASIS, 2002. All Rights Reserved. -->

<tp:CollaborationProtocolProfile xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd /Schemas/cpp-cpa-2_x.xsd " cppid="uri:companyA-cpp" version="2_x">

<!-- Party info for CompanyA Asynchronous Ediint -->

<tp:PartyInfo partyName="CompanyA" defaultMshChannelId="asyncChannelA1" defaultMshPackageId="MshSignalPackage">

<tp:PartyId type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

<tp:PartyRef xlink:href="http://CompanyA.com/about.html"/>

<tp:CollaborationRole>

<tp:ProcessSpecification version="1.0" name="EdiintCollaboration" xlink:type="simple" xlink:href="EdiintBPSS.xml" uuid="urn:ietf:ediint:as2"/>

<tp:Role name="Sender" xlink:type="simple" xlink:href="EdiintBPSS.xml#Sender"/>

<tp:ServiceBinding>

<tp:Service>urn:ietf:ediint:as2</tp:Service>

<tp:CanSend>

<tp:ThisPartyActionBinding id="companyA_TPAB1" action="Request Action" packageId="SignedAndEncryptedX12Package">

<!-- These are used to select mode of ediint security and MDN, timeToPerform/AcknowledgeReceipt not defined in EDIINT-->

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="true" isNonRepudiationReceiptRequired="true" isConfidential="transient" isAuthenticated="persistent" isTamperProof="persistent" isAuthorizationRequired="true" timeToAcknowledgeReceipt="PT2H" timeToPerform="P1D"/>

<tp:ActionContext binaryCollaboration="PerformEDIINTCollaboration" businessTransactionActivity="SendDocument" requestOrResponseAction="EDIINTSend"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

</tp:CanSend>

<tp:CanReceive>

<tp:ThisPartyActionBinding id="companyA_TPAB2" action="ReceiptAcknowledgment" packageId="MdnComposite">

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="true" isNonRepudiationReceiptRequired="true" isConfidential="transient" isAuthenticated="persistent" isTamperProof="persistent" isAuthorizationRequired="true"/>

 <tp:ActionContext binaryCollaboration="PerformEDIINTCollaboration" businessTransactionActivity="SendDocument" requestOrResponseAction="Acknowledgment"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

</tp:CanReceive>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the "Buyer" company -->

<tp:Certificate certId="CompanyA_SigningCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_SigningCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyA_EncryptionCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_EncryptionCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyA_ServerCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_ServerCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyA_ClientCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_ClientCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertA1">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA1_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertA2">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA2_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertA3">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA3_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:SecurityDetails securityId="CompanyA_TransportSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef certId="TrustedRootCertA1"/>

<tp:AnchorCertificateRef certId="TrustedRootCertA2"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<tp:SecurityDetails securityId="CompanyA_MessageSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef certId="TrustedRootCertA3"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<!-- An asynchronous delivery channel -->

<tp:DeliveryChannel channelId="asyncChannelA1" transportId="transportA1" docExchangeId="docExchangeA1">

<tp:MessagingCharacteristics syncReplyMode="none" ackRequested="always" ackSignatureRequested="always" duplicateElimination="always"/>

</tp:DeliveryChannel>

<tp:Transport transportId="transportA1">

<tp:TransportSender>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:AccessAuthentication>digest</tp:AccessAuthentication>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol version="3.0">SSL</tp:TransportSecurityProtocol>

<tp:ClientCertificateRef certId="CompanyA_ClientCert"/>

<tp:ServerSecurityDetailsRef securityId="CompanyA_TransportSecurity"/>

</tp:TransportClientSecurity>

</tp:TransportSender>

<tp:TransportReceiver>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:AccessAuthentication>digest</tp:AccessAuthentication>

<tp:Endpoint uri="https://www.CompanyA.com/servlets/ebxmlhandler/sync" type="allPurpose"/>

<tp:TransportServerSecurity>

<tp:TransportSecurityProtocol version="3.0">SSL</tp:TransportSecurityProtocol>

<tp:ServerCertificateRef certId="CompanyA_ServerCert"/>

<tp:ClientSecurityDetailsRef securityId="CompanyA_TransportSecurity"/>

</tp:TransportServerSecurity>

</tp:TransportReceiver>

</tp:Transport>

<tp:DocExchange docExchangeId="docExchangeA1">

<tp:EdiintSenderBinding version="2.0">

<tp:SenderNonRepudiation>

<tp:NonRepudiationProtocol>EDIINTSMIME</tp:NonRepudiationProtocol>

<tp:HashFunction>SHA1</tp:HashFunction>

<tp:SignatureAlgorithm oid="1.2.840.113549.1.1.5">RSA-SHA1</tp:SignatureAlgorithm>

<tp:SigningCertificateRef certId="CompanyA_SigningCert"/>

</tp:SenderNonRepudiation>

<tp:SenderDigitalEnvelope>

<tp:DigitalEnvelopeProtocol version="2.0">EDIINTSMIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm oid="1.2.840.113549.3.7">DES-EDE3-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionSecurityDetailsRef securityId="CompanyA_MessageSecurity"/>

</tp:SenderDigitalEnvelope>

<tp:SenderCompression mechanismType="zlib" version="1.0"/>

<tp:SenderRequestedMDNStyle receiptType="signed" mdnDestination="http://companyA.com" mdnRequested="always">

<tp:HashFunction>sha1</tp:HashFunction>

</tp:SenderRequestedMDNStyle>

</tp:EdiintSenderBinding>

<tp:EdiintReceiverBinding version="2.0">

<tp:ReceiverNonRepudiation>

<tp:NonRepudiationProtocol>EDIINTSMIME</tp:NonRepudiationProtocol>

<tp:HashFunction>SHA1</tp:HashFunction>

<tp:SignatureAlgorithm oid="1.2.840.113549.1.1.5">RSA-SHA1</tp:SignatureAlgorithm>

<tp:SigningSecurityDetailsRef securityId="CompanyA_MessageSecurity"/>

</tp:ReceiverNonRepudiation>

<tp:ReceiverDigitalEnvelope>

<tp:DigitalEnvelopeProtocol version="2.0">EDIINTSMIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm oid="1.2.840.113549.3.7">DES-EDE3-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionCertificateRef certId="CompanyA_EncryptionCert"/>

</tp:ReceiverDigitalEnvelope>

<tp:ReceiverCompression mechanismType="zlib" version="1.0"/>

<tp:ReceiverAcceptedMDNStyle receiptType="signed" mdnDestination="http://companyA.com" mdnRequested="always">

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

</tp:ReceiverAcceptedMDNStyle>

</tp:EdiintReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- SimplePart for BPSS BusinessDocument and MessageDispositionNotification -->

<tp:SimplePart id="X12SimplePart" mimetype="application/EDI-X12"/>

<tp:SimplePart id="MdnText" mimetype="text/plain"/>

<tp:SimplePart id="MdnMessage" mimetype="message/disposition-notification"/>

<!-- SimplePart corresponding to the SOAP Envelope -->

<tp:SimplePart id="SOAPEnvelope" mimetype="text/xml">

<tp:NamespaceSupported location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd" version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- An ebXML message with a SOAP Envelope only -->

<tp:Packaging id="MshSignalPackage">

<tp:ProcessingCapabilities parse="true" generate="true"/>

<tp:CompositeList>

<tp:Composite id="CompanyA_MshSignal" mimetype="multipart/related" mimeparameters="type=text/xml">

<tp:Constituent idref="SOAPEnvelope"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint message in the clear-->

<tp:Packaging id="ClearX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="X12CompositePart" mimetype="application/edI*">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="0"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint signed message -->

<tp:Packaging id="SignedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Encapsulation id="SignedEncapsulation0" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Composite id="DefaultComposite1" mimeparameters="protocol="application/pkcs7-signature"" mimetype="multipart/signed">

<tp:Constituent excludedFromSignature="false" idref="SignedEncapsulation0" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint encrypted message -->

<tp:Packaging id="EncryptedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Encapsulation id="DefaultEncapsulation" mimetype="application/pkcs7-mime" mimeparameters="smime-type=enveloped-data; name=smime.p7m">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint compressed message -->

<tp:Packaging id="CompressedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="DefaultComposite2" mimeparameters="smime-type=compressed-data; name=smime.p7m" mimetype="application/pkcs7-mime">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint signed and compressed message -->

<tp:Packaging id="SignedCompressedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="CompressedComposite0" mimeparameters="smime-type=compressed-data; name=smime.p7m" mimetype="application/pkcs7-mime">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

<tp:Encapsulation id="SignedEncapsulation1" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="CompressedComposite0" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Composite id="DefaultComposite3" mimeparameters="protocol="application/pkcs7-signature"" mimetype="multipart/signed">

<tp:Constituent excludedFromSignature="false" idref="SignedEncapsulation1" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="SignedAndEncryptedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Encapsulation id="SignatureEncapsulation1" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Encapsulation id="EncryptionEncapsulation" mimetype="application/pkcs7-mime" mimeparameters="smime-type=enveloped-data; name=smime.p7m">

<tp:Constituent excludedFromSignature="true" idref="SignatureEncapsulation1" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="CompressedSignedAndEncryptedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="CompressedComposite1" mimeparameters="smime-type=compressed-data; name=smime.p7m" mimetype="application/pkcs7-mime">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

<tp:Encapsulation id="SignatureEncapsulation2" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="CompressedComposite1" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Encapsulation id="EncryptionEncapsulation1" mimetype="application/pkcs7-mime" mimeparameters="smime-type=enveloped-data; name=smime.p7m">

<tp:Constituent excludedFromSignature="true" idref="SignatureEncapsulation2" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="SignedMdn">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="MdnComposite" mimeparameters="report-type=disposition-notification" mimetype="multipart/report">

<tp:Constituent excludedFromSignature="false" idref="MdnText" maxOccurs="1" minOccurs="1"/>

<tp:Constituent excludedFromSignature="false" idref="MdnMessage" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

<tp:Encapsulation id="DefaultEncapsulation3" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="MdnComposite" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Composite id="DefaultComposite4" mimeparameters="protocol="application/pkcs7-signature"" mimetype="multipart/signed">

<tp:Constituent excludedFromSignature="false" idref="DefaultEncapsulation3" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="UnsignedMdn">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="DefaultComposite5" mimeparameters="report-type=disposition-notification" mimetype="multipart/report">

<tp:Constituent excludedFromSignature="false" idref="MdnText" maxOccurs="1" minOccurs="1"/>

<tp:Constituent excludedFromSignature="false" idref="MdnMessage" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Comment xml:lang="en-US">EDIINT AS2 Collaboration Protocol Profile example</tp:Comment>

</tp:CollaborationProtocolProfile>

2. Receiver

<?xml version="1.0"?>

<!-- Copyright UN/CEFACT and OASIS, 2004. All Rights Reserved. -->

<tp:CollaborationProtocolProfile xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd /Schemas/cpp-cpa-2_x.xsd " cppid="uri:CompanyB-cpp" version="2_x">

<!-- Party info for CompanyB Responder in Asynchronous Ediint -->

<tp:PartyInfo partyName="CompanyB" defaultMshChannelId="asyncChannelB1" defaultMshPackageId="MshSignalPackage">

<tp:PartyId type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">987654321</tp:PartyId>

<tp:PartyRef xlink:href="http://CompanyB.com/about.html"/>

<tp:CollaborationRole>

<tp:ProcessSpecification version="1.0" name="EdiintCollaboration" xlink:type="simple" xlink:href="EdiintBPSS.xml" uuid="urn:ietf:ediint:as2"/>

<tp:Role name="Receiver" xlink:type="simple" xlink:href="EdiintBPSS.xml#Receiver"/>

<tp:ServiceBinding>

<tp:Service>urn:ietf:ediint:as2</tp:Service>

<tp:CanSend>

<tp:ThisPartyActionBinding id="CompanyB_TPAB2" action="ReceiptAcknowledgment" packageId="MdnComposite">

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="true" isNonRepudiationReceiptRequired="true" isConfidential="transient" isAuthenticated="persistent" isTamperProof="persistent" isAuthorizationRequired="true"/>

<tp:ActionContext binaryCollaboration="PerformEDIINTCollaboration" businessTransactionActivity="SendDocument" requestOrResponseAction="Acknowledgment"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

</tp:CanSend>

<tp:CanReceive>

<tp:ThisPartyActionBinding id="CompanyB_TPAB1" action="Request Action" packageId="SignedAndEncryptedX12Package">

<!-- These are used to select mode of ediint security and MDN, timeToPerform/AcknowledgeReceipt not defined in EDIINT-->

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="true" isNonRepudiationReceiptRequired="true" isConfidential="transient" isAuthenticated="persistent" isTamperProof="persistent" isAuthorizationRequired="true" timeToAcknowledgeReceipt="PT2H" timeToPerform="P1D"/>

<tp:ActionContext binaryCollaboration="PerformEDIINTCollaboration" businessTransactionActivity="SendDocument" requestOrResponseAction="EDIINTSend"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

</tp:CanReceive>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the receiver company -->

<tp:Certificate certId="CompanyB_SigningCert">

<ds:KeyInfo>

<ds:KeyName>CompanyB_SigningCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyB_EncryptionCert">

<ds:KeyInfo>

<ds:KeyName>CompanyB_EncryptionCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyB_ServerCert">

<ds:KeyInfo>

<ds:KeyName>CompanyB_ServerCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyB_ClientCert">

<ds:KeyInfo>

<ds:KeyName>CompanyB_ClientCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertB1">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB1_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertB2">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB2_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertB3">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB3_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:SecurityDetails securityId="CompanyB_TransportSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef certId="TrustedRootCertB1"/>

<tp:AnchorCertificateRef certId="TrustedRootCertB2"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<tp:SecurityDetails securityId="CompanyB_MessageSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef certId="TrustedRootCertB3"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<!-- An asynchronous delivery channel -->

<tp:DeliveryChannel channelId="asyncChannelB1" transportId="transportB1" docExchangeId="docExchangeB1">

<tp:MessagingCharacteristics syncReplyMode="none" ackRequested="always" ackSignatureRequested="always" duplicateElimination="always"/>

</tp:DeliveryChannel>

<tp:Transport transportId="transportB1">

<tp:TransportSender>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:AccessAuthentication>digest</tp:AccessAuthentication>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol version="3.0">SSL</tp:TransportSecurityProtocol>

<tp:ClientCertificateRef certId="CompanyB_ClientCert"/>

<tp:ServerSecurityDetailsRef securityId="CompanyB_TransportSecurity"/>

</tp:TransportClientSecurity>

</tp:TransportSender>

<tp:TransportReceiver>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:AccessAuthentication>digest</tp:AccessAuthentication>

<tp:Endpoint uri="https://www.CompanyB.com/servlets/ebxmlhandler/sync" type="allPurpose"/>

<tp:TransportServerSecurity>

<tp:TransportSecurityProtocol version="3.0">SSL</tp:TransportSecurityProtocol>

<tp:ServerCertificateRef certId="CompanyB_ServerCert"/>

<tp:ClientSecurityDetailsRef securityId="CompanyB_TransportSecurity"/>

</tp:TransportServerSecurity>

</tp:TransportReceiver>

</tp:Transport>

<tp:DocExchange docExchangeId="docExchangeB1">

<tp:EdiintSenderBinding version="2.0">

<tp:SenderNonRepudiation>

<tp:NonRepudiationProtocol>EDIINTSMIME</tp:NonRepudiationProtocol>

<tp:HashFunction>SHA1</tp:HashFunction>

<tp:SignatureAlgorithm oid="1.2.840.113549.1.1.5">RSA-SHA1</tp:SignatureAlgorithm>

<tp:SigningCertificateRef certId="CompanyB_SigningCert"/>

</tp:SenderNonRepudiation>

<tp:SenderDigitalEnvelope>

<tp:DigitalEnvelopeProtocol version="2.0">EDIINTSMIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm oid="1.2.840.113549.3.7">DES-EDE3-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionSecurityDetailsRef securityId="CompanyB_MessageSecurity"/>

</tp:SenderDigitalEnvelope>

<tp:SenderCompression mechanismType="zlib" version="1.0"/>

<tp:SenderRequestedMDNStyle receiptType="signed" mdnDestination="http://CompanyB.com" mdnRequested="always">

<tp:HashFunction>sha1</tp:HashFunction>

</tp:SenderRequestedMDNStyle>

</tp:EdiintSenderBinding>

<tp:EdiintReceiverBinding version="2.0">

<tp:ReceiverNonRepudiation>

<tp:NonRepudiationProtocol>EDIINTSMIME</tp:NonRepudiationProtocol>

<tp:HashFunction>SHA1</tp:HashFunction>

<tp:SignatureAlgorithm oid="1.2.840.113549.1.1.5">RSA-SHA1</tp:SignatureAlgorithm>

<tp:SigningSecurityDetailsRef securityId="CompanyB_MessageSecurity"/>

</tp:ReceiverNonRepudiation>

<tp:ReceiverDigitalEnvelope>

<tp:DigitalEnvelopeProtocol version="2.0">EDIINTSMIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm oid="1.2.840.113549.3.7">DES-EDE3-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionCertificateRef certId="CompanyB_EncryptionCert"/>

</tp:ReceiverDigitalEnvelope>

<tp:ReceiverCompression mechanismType="zlib" version="1.0"/>

<tp:ReceiverAcceptedMDNStyle receiptType="signed" mdnDestination="http://CompanyB.com" mdnRequested="always">

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

</tp:ReceiverAcceptedMDNStyle>

</tp:EdiintReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- SimplePart for BPSS BusinessDocument and MessageDispositionNotification -->

<tp:SimplePart id="X12SimplePart" mimetype="application/EDI-X12"/>

<tp:SimplePart id="MdnText" mimetype="text/plain"/>

<tp:SimplePart id="MdnMessage" mimetype="message/disposition-notification"/>

<!-- SimplePart corresponding to the SOAP Envelope -->

<tp:SimplePart id="SOAPEnvelope" mimetype="text/xml">

<tp:NamespaceSupported location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd" version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- An ebXML message with a SOAP Envelope only -->

<tp:Packaging id="MshSignalPackage">

<tp:ProcessingCapabilities parse="true" generate="true"/>

<tp:CompositeList>

<tp:Composite id="CompanyB_MshSignal" mimetype="multipart/related" mimeparameters="type=text/xml">

<tp:Constituent idref="SOAPEnvelope"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint message in the clear-->

<tp:Packaging id="ClearX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="X12CompositePart" mimetype="application/edI*">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="0"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint signed message -->

<tp:Packaging id="SignedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Encapsulation id="SignedEncapsulation0" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Composite id="DefaultComposite1" mimeparameters="protocol="application/pkcs7-signature"" mimetype="multipart/signed">

<tp:Constituent excludedFromSignature="false" idref="SignedEncapsulation0" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint encrypted message -->

<tp:Packaging id="EncryptedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Encapsulation id="DefaultEncapsulation" mimetype="application/pkcs7-mime" mimeparameters="smime-type=enveloped-data; name=smime.p7m">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint compressed message -->

<tp:Packaging id="CompressedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="DefaultComposite2" mimeparameters="smime-type=compressed-data; name=smime.p7m" mimetype="application/pkcs7-mime">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An ediint signed and compressed message -->

<tp:Packaging id="SignedCompressedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="CompressedComposite0" mimeparameters="smime-type=compressed-data; name=smime.p7m" mimetype="application/pkcs7-mime">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

<tp:Encapsulation id="SignedEncapsulation1" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="CompressedComposite0" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Composite id="DefaultComposite3" mimeparameters="protocol="application/pkcs7-signature"" mimetype="multipart/signed">

<tp:Constituent excludedFromSignature="false" idref="SignedEncapsulation1" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="SignedAndEncryptedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Encapsulation id="SignatureEncapsulation1" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Encapsulation id="EncryptionEncapsulation" mimetype="application/pkcs7-mime" mimeparameters="smime-type=enveloped-data; name=smime.p7m">

<tp:Constituent excludedFromSignature="true" idref="SignatureEncapsulation1" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="CompressedSignedAndEncryptedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="CompressedComposite1" mimeparameters="smime-type=compressed-data; name=smime.p7m" mimetype="application/pkcs7-mime">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

<tp:Encapsulation id="SignatureEncapsulation2" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="CompressedComposite1" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Encapsulation id="EncryptionEncapsulation1" mimetype="application/pkcs7-mime" mimeparameters="smime-type=enveloped-data; name=smime.p7m">

<tp:Constituent excludedFromSignature="true" idref="SignatureEncapsulation2" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="SignedMdn">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="MdnComposite" mimeparameters="report-type=disposition-notification" mimetype="multipart/report">

<tp:Constituent excludedFromSignature="false" idref="MdnText" maxOccurs="1" minOccurs="1"/>

<tp:Constituent excludedFromSignature="false" idref="MdnMessage" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

<tp:Encapsulation id="DefaultEncapsulation3" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="MdnComposite" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Composite id="DefaultComposite4" mimeparameters="protocol="application/pkcs7-signature"" mimetype="multipart/signed">

<tp:Constituent excludedFromSignature="false" idref="DefaultEncapsulation3" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="UnsignedMdn">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="DefaultComposite5" mimeparameters="report-type=disposition-notification" mimetype="multipart/report">

<tp:Constituent excludedFromSignature="false" idref="MdnText" maxOccurs="1" minOccurs="1"/>

<tp:Constituent excludedFromSignature="false" idref="MdnMessage" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Comment xml:lang="en-US">EDIINT AS2 Collaboration Protocol Profile example</tp:Comment>

</tp:CollaborationProtocolProfile>

Finally, a CPA for the agreement to use EDIINT AS2 in asynchronous mode.

<?xml version="1.0"?>

<!-- Copyright UN/CEFACT and OASIS, 2004. All Rights Reserved. -->

<tp:CollaborationProtocolAgreement xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd /Schemas/cpp-cpa-2_x.xsd " cpaid="uri:CompanyA-ccompanyB-cpa" version="2_x">

 <tp:Status value="proposed"/>

<tp:Start>2005-05-20T07:21:00Z</tp:Start>

<tp:End>2010-05-20T07:21:00Z</tp:End>

<tp:ConversationConstraints invocationLimit="100" concurrentConversations="10"/>

<!-- Party info for CompanyA -->

<tp:PartyInfo partyName="CompanyA" defaultMshChannelId="asyncChannelA1" defaultMshPackageId="MshSignalPackage">

<tp:PartyId type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

<tp:PartyRef xlink:href="http://CompanyA.com/about.html"/>

<tp:CollaborationRole>

<tp:ProcessSpecification version="1.0" name="EdiintCollaboration" xlink:type="simple" xlink:href="EdiintBPSS.xml" uuid="urn:ietf:ediint:as2"/>

<tp:Role name="Sender" xlink:type="simple" xlink:href="EdiintBPSS.xml#Sender"/>

<tp:ServiceBinding>

<tp:Service>urn:ietf:ediint:as2</tp:Service>

<tp:CanSend>

<tp:ThisPartyActionBinding id="companyA_TPAB1" action="Request Action" packageId="SignedAndEncryptedX12Package">

<!-- These are used to select mode of EDIINT security and MDN, timeToPerform/AcknowledgeReceipt not defined in EDIINT-->

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="true" isNonRepudiationReceiptRequired="true" isConfidential="transient" isAuthenticated="persistent" isTamperProof="persistent" isAuthorizationRequired="true" timeToAcknowledgeReceipt="PT2H" timeToPerform="P1D"/>

<tp:ActionContext binaryCollaboration="PerformEDIINTCollaboration" businessTransactionActivity="SendDocument" requestOrResponseAction="EDIINTSend"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>CompanyB_TPAB2</tp:OtherPartyActionBinding>

</tp:CanSend>

<tp:CanReceive>

<tp:ThisPartyActionBinding id="companyA_TPAB2" action="ReceiptAcknowledgment" packageId="MdnComposite">

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="true" isNonRepudiationReceiptRequired="true" isConfidential="transient" isAuthenticated="persistent" isTamperProof="persistent" isAuthorizationRequired="true"/>

 <tp:ActionContext binaryCollaboration="PerformEDIINTCollaboration" businessTransactionActivity="SendDocument" requestOrResponseAction="Acknowledgment"/>

<tp:ChannelId>asyncChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>CompanyB_TPAB2</tp:OtherPartyActionBinding>

</tp:CanReceive>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the "Buyer" company -->

<tp:Certificate certId="CompanyA_SigningCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_SigningCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyA_EncryptionCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_EncryptionCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyA_ServerCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_ServerCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyA_ClientCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_ClientCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertA1">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA1_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertA2">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA2_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertA3">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA3_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:SecurityDetails securityId="CompanyA_TransportSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef certId="TrustedRootCertA1"/>

<tp:AnchorCertificateRef certId="TrustedRootCertA2"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<tp:SecurityDetails securityId="CompanyA_MessageSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef certId="TrustedRootCertA3"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<!-- An asynchronous delivery channel -->

<tp:DeliveryChannel channelId="asyncChannelA1" transportId="transportA1" docExchangeId="docExchangeA1">

<tp:MessagingCharacteristics syncReplyMode="none" ackRequested="always" ackSignatureRequested="always" duplicateElimination="always"/>

</tp:DeliveryChannel>

<tp:Transport transportId="transportA1">

<tp:TransportSender>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:AccessAuthentication>digest</tp:AccessAuthentication>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol version="3.0">SSL</tp:TransportSecurityProtocol>

<tp:ClientCertificateRef certId="CompanyA_ClientCert"/>

<tp:ServerSecurityDetailsRef securityId="CompanyA_TransportSecurity"/>

</tp:TransportClientSecurity>

</tp:TransportSender>

<tp:TransportReceiver>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:AccessAuthentication>digest</tp:AccessAuthentication>

<tp:Endpoint uri="https://www.CompanyA.com/servlets/ebxmlhandler/sync" type="allPurpose"/>

<tp:TransportServerSecurity>

<tp:TransportSecurityProtocol version="3.0">SSL</tp:TransportSecurityProtocol>

<tp:ServerCertificateRef certId="CompanyA_ServerCert"/>

<tp:ClientSecurityDetailsRef securityId="CompanyA_TransportSecurity"/>

</tp:TransportServerSecurity>

</tp:TransportReceiver>

</tp:Transport>

<tp:DocExchange docExchangeId="docExchangeA1">

<tp:EdiintSenderBinding version="2.0">

<tp:SenderNonRepudiation>

<tp:NonRepudiationProtocol>EDIINTSMIME</tp:NonRepudiationProtocol>

<tp:HashFunction>SHA1</tp:HashFunction>

<tp:SignatureAlgorithm oid="1.2.840.113549.1.1.5">RSA-SHA1</tp:SignatureAlgorithm>

<tp:SigningCertificateRef certId="CompanyA_SigningCert"/>

</tp:SenderNonRepudiation>

<tp:SenderDigitalEnvelope>

<tp:DigitalEnvelopeProtocol version="2.0">EDIINTSMIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm oid="1.2.840.113549.3.7">DES-EDE3-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionSecurityDetailsRef securityId="CompanyA_MessageSecurity"/>

</tp:SenderDigitalEnvelope>

<tp:SenderCompression mechanismType="zlib" version="1.0"/>

<tp:SenderRequestedMDNStyle receiptType="signed" mdnDestination="http://companyA.com" mdnRequested="always">

<tp:HashFunction>sha1</tp:HashFunction>

</tp:SenderRequestedMDNStyle>

</tp:EdiintSenderBinding>

<tp:EdiintReceiverBinding version="2.0">

<tp:ReceiverNonRepudiation>

<tp:NonRepudiationProtocol>EDIINTSMIME</tp:NonRepudiationProtocol>

<tp:HashFunction>SHA1</tp:HashFunction>

<tp:SignatureAlgorithm oid="1.2.840.113549.1.1.5">RSA-SHA1</tp:SignatureAlgorithm>

<tp:SigningSecurityDetailsRef securityId="CompanyA_MessageSecurity"/>

</tp:ReceiverNonRepudiation>

<tp:ReceiverDigitalEnvelope>

<tp:DigitalEnvelopeProtocol version="2.0">EDIINTSMIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm oid="1.2.840.113549.3.7">DES-EDE3-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionCertificateRef certId="CompanyA_EncryptionCert"/>

</tp:ReceiverDigitalEnvelope>

<tp:ReceiverCompression mechanismType="zlib" version="1.0"/>

<tp:ReceiverAcceptedMDNStyle receiptType="signed" mdnDestination="http://companyA.com" mdnRequested="always">

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

</tp:ReceiverAcceptedMDNStyle>

</tp:EdiintReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- Party info for CompanyB Responder in Asynchronous Ediint -->

<tp:PartyInfo partyName="CompanyB" defaultMshChannelId="asyncChannelB1" defaultMshPackageId="MshSignalPackage">

<tp:PartyId type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">987654321</tp:PartyId>

<tp:PartyRef xlink:href="http://CompanyB.com/about.html"/>

<tp:CollaborationRole>

<tp:ProcessSpecification version="1.0" name="EdiintCollaboration" xlink:type="simple" xlink:href="EdiintBPSS.xml" uuid="urn:ietf:ediint:as2"/>

<tp:Role name="Receiver" xlink:type="simple" xlink:href="EdiintBPSS.xml#Receiver"/>

<tp:ServiceBinding>

<tp:Service>urn:ietf:ediint:as2</tp:Service>

<tp:CanSend>

<tp:ThisPartyActionBinding id="CompanyB_TPAB2" action="ReceiptAcknowledgment" packageId="MdnComposite">

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="true" isNonRepudiationReceiptRequired="true" isConfidential="transient" isAuthenticated="persistent" isTamperProof="persistent" isAuthorizationRequired="true"/>

 <tp:ActionContext binaryCollaboration="PerformEDIINTCollaboration" businessTransactionActivity="SendDocument" requestOrResponseAction="Acknowledgment"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>companyA_TPAB2</tp:OtherPartyActionBinding>

</tp:CanSend>

<tp:CanReceive>

<tp:ThisPartyActionBinding id="CompanyB_TPAB1" action="Request Action" packageId="SignedAndEncryptedX12Package">

<!-- These are used to select mode of EDIINT security and MDN, timeToPerform/AcknowledgeReceipt not defined in EDIINT-->

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="true" isNonRepudiationReceiptRequired="true" isConfidential="transient" isAuthenticated="persistent" isTamperProof="persistent" isAuthorizationRequired="true" timeToAcknowledgeReceipt="PT2H" timeToPerform="P1D"/>

<tp:ActionContext binaryCollaboration="PerformEDIINTCollaboration" businessTransactionActivity="SendDocument" requestOrResponseAction="EDIINTSend"/>

<tp:ChannelId>asyncChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding>companyA_TPAB1</tp:OtherPartyActionBinding>

</tp:CanReceive>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Certificates used by the receiver company -->

<tp:Certificate certId="CompanyB_SigningCert">

<ds:KeyInfo>

<ds:KeyName>CompanyB_SigningCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyB_EncryptionCert">

<ds:KeyInfo>

<ds:KeyName>CompanyB_EncryptionCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyB_ServerCert">

<ds:KeyInfo>

<ds:KeyName>CompanyB_ServerCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="CompanyB_ClientCert">

<ds:KeyInfo>

<ds:KeyName>CompanyB_ClientCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertB1">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB1_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertB2">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB2_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate certId="TrustedRootCertB3">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertB3_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:SecurityDetails securityId="CompanyB_TransportSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef certId="TrustedRootCertB1"/>

<tp:AnchorCertificateRef certId="TrustedRootCertB2"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<tp:SecurityDetails securityId="CompanyB_MessageSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef certId="TrustedRootCertB3"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<!-- An asynchronous delivery channel -->

<tp:DeliveryChannel channelId="asyncChannelB1" transportId="transportB1" docExchangeId="docExchangeB1">

<tp:MessagingCharacteristics syncReplyMode="none" ackRequested="always" ackSignatureRequested="always" duplicateElimination="always"/>

</tp:DeliveryChannel>

<tp:Transport transportId="transportB1">

<tp:TransportSender>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:AccessAuthentication>digest</tp:AccessAuthentication>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol version="3.0">SSL</tp:TransportSecurityProtocol>

<tp:ClientCertificateRef certId="CompanyB_ClientCert"/>

<tp:ServerSecurityDetailsRef securityId="CompanyB_TransportSecurity"/>

</tp:TransportClientSecurity>

</tp:TransportSender>

<tp:TransportReceiver>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:AccessAuthentication>digest</tp:AccessAuthentication>

<tp:Endpoint uri="https://www.CompanyB.com/servlets/ebxmlhandler/sync" type="allPurpose"/>

<tp:TransportServerSecurity>

<tp:TransportSecurityProtocol version="3.0">SSL</tp:TransportSecurityProtocol>

<tp:ServerCertificateRef certId="CompanyB_ServerCert"/>

<tp:ClientSecurityDetailsRef securityId="CompanyB_TransportSecurity"/>

</tp:TransportServerSecurity>

</tp:TransportReceiver>

</tp:Transport>

<tp:DocExchange docExchangeId="docExchangeB1">

<tp:EdiintSenderBinding version="2.0">

<tp:SenderNonRepudiation>

<tp:NonRepudiationProtocol>EDIINTSMIME</tp:NonRepudiationProtocol>

<tp:HashFunction>SHA1</tp:HashFunction>

<tp:SignatureAlgorithm oid="1.2.840.113549.1.1.5">RSA-SHA1</tp:SignatureAlgorithm>

<tp:SigningCertificateRef certId="CompanyB_SigningCert"/>

</tp:SenderNonRepudiation>

<tp:SenderDigitalEnvelope>

<tp:DigitalEnvelopeProtocol version="2.0">EDIINTSMIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm oid="1.2.840.113549.3.7">DES-EDE3-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionSecurityDetailsRef securityId="CompanyB_MessageSecurity"/>

</tp:SenderDigitalEnvelope>

<tp:SenderCompression mechanismType="zlib" version="1.0"/>

<tp:SenderRequestedMDNStyle receiptType="signed" mdnDestination="http://CompanyB.com" mdnRequested="always">

<tp:HashFunction>sha1</tp:HashFunction>

</tp:SenderRequestedMDNStyle>

</tp:EdiintSenderBinding>

<tp:EdiintReceiverBinding version="2.0">

<tp:ReceiverNonRepudiation>

<tp:NonRepudiationProtocol>EDIINTSMIME</tp:NonRepudiationProtocol>

<tp:HashFunction>SHA1</tp:HashFunction>

<tp:SignatureAlgorithm oid="1.2.840.113549.1.1.5">RSA-SHA1</tp:SignatureAlgorithm>

<tp:SigningSecurityDetailsRef securityId="CompanyB_MessageSecurity"/>

</tp:ReceiverNonRepudiation>

<tp:ReceiverDigitalEnvelope>

<tp:DigitalEnvelopeProtocol version="2.0">EDIINTSMIME</tp:DigitalEnvelopeProtocol>

<tp:EncryptionAlgorithm oid="1.2.840.113549.3.7">DES-EDE3-CBC</tp:EncryptionAlgorithm>

<tp:EncryptionCertificateRef certId="CompanyB_EncryptionCert"/>

</tp:ReceiverDigitalEnvelope>

<tp:ReceiverCompression mechanismType="zlib" version="1.0"/>

<tp:ReceiverAcceptedMDNStyle receiptType="signed" mdnDestination="http://CompanyB.com" mdnRequested="always">

<tp:HashFunction>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>

</tp:ReceiverAcceptedMDNStyle>

</tp:EdiintReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

<!-- SimplePart for BPSS BusinessDocument and MessageDispositionNotification -->

<tp:SimplePart id="X12SimplePart" mimetype="application/EDI-X12"/>

<tp:SimplePart id="MdnText" mimetype="text/plain"/>

<tp:SimplePart id="MdnMessage" mimetype="message/disposition-notification"/>

<!-- SimplePart corresponding to the SOAP Envelope -->

<tp:SimplePart id="SOAPEnvelope" mimetype="text/xml">

<tp:NamespaceSupported location="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd" version="2.0">

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 </tp:NamespaceSupported>

</tp:SimplePart>

<!-- An ebXML message with a SOAP Envelope only -->

<tp:Packaging id="MshSignalPackage">

<tp:ProcessingCapabilities parse="true" generate="true"/>

<tp:CompositeList>

<tp:Composite id="CompanyB_MshSignal" mimetype="multipart/related" mimeparameters="type=text/xml">

<tp:Constituent idref="SOAPEnvelope"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An EDIINT message in the clear-->

<tp:Packaging id="ClearX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="X12CompositePart" mimetype="application/edI*">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="0"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An EDIINT signed message -->

<tp:Packaging id="SignedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Encapsulation id="SignedEncapsulation0" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Composite id="DefaultComposite1" mimeparameters="protocol="application/pkcs7-signature"" mimetype="multipart/signed">

<tp:Constituent excludedFromSignature="false" idref="SignedEncapsulation0" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An EDIINT encrypted message -->

<tp:Packaging id="EncryptedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Encapsulation id="DefaultEncapsulation" mimetype="application/pkcs7-mime" mimeparameters="smime-type=enveloped-data; name=smime.p7m">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

</tp:CompositeList>

</tp:Packaging>

<!-- An EDIINT compressed message -->

<tp:Packaging id="CompressedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="DefaultComposite2" mimeparameters="smime-type=compressed-data; name=smime.p7m" mimetype="application/pkcs7-mime">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<!-- An EDIINT signed and compressed message -->

<tp:Packaging id="SignedCompressedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="CompressedComposite0" mimeparameters="smime-type=compressed-data; name=smime.p7m" mimetype="application/pkcs7-mime">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

<tp:Encapsulation id="SignedEncapsulation1" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="CompressedComposite0" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Composite id="DefaultComposite3" mimeparameters="protocol="application/pkcs7-signature"" mimetype="multipart/signed">

<tp:Constituent excludedFromSignature="false" idref="SignedEncapsulation1" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="SignedAndEncryptedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Encapsulation id="SignatureEncapsulation1" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Encapsulation id="EncryptionEncapsulation" mimetype="application/pkcs7-mime" mimeparameters="smime-type=enveloped-data; name=smime.p7m">

<tp:Constituent excludedFromSignature="true" idref="SignatureEncapsulation1" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="CompressedSignedAndEncryptedX12Package">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="CompressedComposite1" mimeparameters="smime-type=compressed-data; name=smime.p7m" mimetype="application/pkcs7-mime">

<tp:Constituent excludedFromSignature="false" idref="X12SimplePart" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

<tp:Encapsulation id="SignatureEncapsulation2" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="CompressedComposite1" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Encapsulation id="EncryptionEncapsulation1" mimetype="application/pkcs7-mime" mimeparameters="smime-type=enveloped-data; name=smime.p7m">

<tp:Constituent excludedFromSignature="true" idref="SignatureEncapsulation2" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="SignedMdn">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="MdnComposite" mimeparameters="report-type=disposition-notification" mimetype="multipart/report">

<tp:Constituent excludedFromSignature="false" idref="MdnText" maxOccurs="1" minOccurs="1"/>

<tp:Constituent excludedFromSignature="false" idref="MdnMessage" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

<tp:Encapsulation id="DefaultEncapsulation3" mimetype="application/pkcs7-signature">

<tp:Constituent excludedFromSignature="false" idref="MdnComposite" maxOccurs="1" minOccurs="1"/>

</tp:Encapsulation>

<tp:Composite id="DefaultComposite4" mimeparameters="protocol="application/pkcs7-signature"" mimetype="multipart/signed">

<tp:Constituent excludedFromSignature="false" idref="DefaultEncapsulation3" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Packaging id="UnsignedMdn">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:CompositeList>

<tp:Composite id="DefaultComposite5" mimeparameters="report-type=disposition-notification" mimetype="multipart/report">

<tp:Constituent excludedFromSignature="false" idref="MdnText" maxOccurs="1" minOccurs="1"/>

<tp:Constituent excludedFromSignature="false" idref="MdnMessage" maxOccurs="1" minOccurs="1"/>

</tp:Composite>

</tp:CompositeList>

</tp:Packaging>

<tp:Comment xml:lang="en-US">EDIINT AS2 Collaboration Protocol Agreement example</tp:Comment>

</tp:CollaborationProtocolAgreement>

26 Alternative Collaboration Protocol DocExchange Illustration for WSDL

Two CPPs for the Sender and Receiver Roles.

1. Sender
<?xml version="1.0"?>

<tp:CollaborationProtocolProfile xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd /Schemas/cpp-cpa-2_x.xsd " cppid="uri:companyA-cpp" version="2_x">

<!-- Party info for CompanyA (one way) wsdl -->

<tp:PartyInfo partyName="CompanyA" defaultMshChannelId="ChannelB1" defaultMshPackageId="PlainSOAP">

<tp:PartyId type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

<tp:PartyRef xlink:href="http://CompanyA.com/about.html"/>

<tp:CollaborationRole>

<tp:ProcessSpecification version="1.0" name="WebService" xlink:type="simple" xlink:href="WSDLBPSS.xml" uuid="urn:webservice"/>

<tp:Role name="WebClient" xlink:type="simple" xlink:href=""/>

<tp:ServiceBinding>

<tp:Service>urn:webservice</tp:Service>

<tp:CanSend>

<tp:ThisPartyActionBinding id="companyB_TPAB3" action="OneWay" packageId="PlainSOAP">

<tp:BusinessTransactionCharacteristics

isNonRepudiationRequired="false"

 isNonRepudiationReceiptRequired="false"

 isConfidential="none"

 isAuthenticated="none"

 isTamperProof="none"

 isAuthorizationRequired="false"/>

<tp:ChannelId>ChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

</tp:CanSend>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Delivery channel -->

<tp:DeliveryChannel channelId="ChannelB1" transportId="transportB2" docExchangeId="docExchangeB1">

<tp:MessagingCharacteristics syncReplyMode="none" ackRequested="never" ackSignatureRequested="never" duplicateElimination="never"/>

</tp:DeliveryChannel>

<tp:Transport transportId="transportB2">

<tp:TransportSender>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

</tp:TransportSender>

</tp:Transport>

<tp:DocExchange docExchangeId="docExchangeB1">

<tp:WSReceiverBinding version="2.1">

 <tp:WSDLOperation version="1.1"/>

</tp:WSReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

 <!-- SimplePart corresponding to the SOAP Envelope -->

 <tp:SimplePart id="SOAPEnvelope" mimetype="text/xml"/>

<!-- Convert this to new2.x and 3.x syntax -->

<tp:Packaging id="PlainSOAP">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:Constituent excludedFromSignature="false" idref="SOAPEnvelope" maxOccurs="1" minOccurs="1"/>

 </tp:Packaging>

<tp:Comment xml:lang="en-US">Client WS Collaboration Protocol Profile</tp:Comment>

</tp:CollaborationProtocolProfile>
2. Receiver (server)

<?xml version="1.0"?>

<tp:CollaborationProtocolProfile xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd /Schemas/cpp-cpa-2_x.xsd " cppid="uri:companyA-cpp" version="2_x">

<!-- Party info for CompanyA (one way) WSDL -->

<tp:PartyInfo partyName="CompanyA" defaultMshChannelId="ChannelA1" defaultMshPackageId="PlainSOAP">

<tp:PartyId type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

<tp:PartyRef xlink:href="http://CompanyA.com/about.html"/>

<tp:CollaborationRole>

<!-- Process specification needed when not using choreography? -->

<tp:ProcessSpecification version="1.0" name="WebService" xlink:type="simple" xlink:href="WSDLBPSS.xml" uuid="urn:webservice"/>

<tp:Role name="WebService" xlink:type="simple" xlink:href=""/>

<tp:ServiceBinding>

<tp:Service>urn:w3c:wsd:hello</tp:Service>

<tp:CanReceive>

<tp:ThisPartyActionBinding id="companyA_TPAB2" action="OneWay" packageId="PlainSOAP">

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="false"

 isNonRepudiationReceiptRequired="false"

 isConfidential="none" isAuthenticated="none"

 isTamperProof="none" isAuthorizationRequired="false"/>

<tp:ChannelId>ChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

</tp:CanReceive>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Basdelivery channel -->

<tp:DeliveryChannel channelId="ChannelA1" transportId="transportA1" docExchangeId="docExchangeA1">

<tp:MessagingCharacteristics syncReplyMode="none" ackRequested="nev" ackSignatureRequested="never" duplicateElimination="never"/>

</tp:DeliveryChannel>

<tp:Transport transportId="transportA1">

<tp:TransportReceiver>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:Endpoint uri="http://www.CompanyA.com/soap/hello" type="allPurpose"/>

</tp:TransportReceiver>

</tp:Transport>

<tp:DocExchange docExchangeId="docExchangeA1">

<tp:WSReceiverBinding version="2.1">

 <tp:WSDLOperation version="1.1">

 <wsdl:definitions xmlns:tns="http://hello.org/hello1"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 targetNamespace="http://hello.com/hello1" name="HelloWorld">

 <types/>

 <message name="Hello">

<part name="String_1" type="xsd:string"/>

 </message>

 <wsdl:portType name="Hello">

 <operation name="sayHello" parameterOrder="String_1">

 <input message="tns:Hello"/>

 </operation>

 </wsdl:portType>

 </wsdl:definitions>

 </tp:WSDLOperation>

</tp:WSReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

 <!-- SimplePart corresponding to the SOAP Envelope -->

 <tp:SimplePart id="SOAPEnvelope" mimetype="text/xml"/>

<tp:Packaging id="PlainSOAP">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:Constituent excludedFromSignature="false" idref="SOAPEnvelope" maxOccurs="1" minOccurs="1"/>

 </tp:Packaging>

<tp:Comment xml:lang="en-US">sayHello server (one way) Collaboration Protocol Profile</tp:Comment>

</tp:CollaborationProtocolProfile>
A CPA for the agreement for the one-way, WSDL-defined service.

<?xml version="1.0"?>

<tp:CollaborationProtocolAgreement xmlns:tp="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-cppa/schema/cpp-cpa-2_x.xsd /Schemas/cpp-cpa-2_x-sep23.xsd " cpaid="urn:companyA-CompanyB-cpa:wsdl:sayHello" version="2_x">

 <tp:Status value="proposed"/>

<tp:Start>2005-05-20T07:21:00Z</tp:Start>

<tp:End>2010-05-20T07:21:00Z</tp:End>

<tp:ConversationConstraints invocationLimit="100" concurrentConversations="10"/>

<!-- Party info for CompanyA (one way) WSDL -->

<tp:PartyInfo partyName="CompanyA" defaultMshChannelId="ChannelA1" defaultMshPackageId="PlainSOAP">

<tp:PartyId type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

<tp:PartyRef xlink:href="http://CompanyA.com/about.html"/>

<tp:CollaborationRole>

<tp:ProcessSpecification version="1.0" name="WebService" xlink:type="simple" xlink:href="WSDLBPSS.xml" uuid="urn:webservice"/>

<tp:Role name="WebService" xlink:type="simple" xlink:href=""/>

<tp:ServiceBinding>

<tp:Service>urn:w3c:wsd:hello</tp:Service>

<tp:CanReceive>

<tp:ThisPartyActionBinding id="companyA_TPAB2" action="OneWay" packageId="PlainSOAP">

<tp:BusinessTransactionCharacteristics isNonRepudiationRequired="false"

 isNonRepudiationReceiptRequired="false"

 isConfidential="none" isAuthenticated="none"

 isTamperProof="none" isAuthorizationRequired="false"/>

<tp:ChannelId>ChannelA1</tp:ChannelId>

</tp:ThisPartyActionBinding>

<tp:OtherPartyActionBinding >companyB_TPAB3</tp:OtherPartyActionBinding>

</tp:CanReceive>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Basdelivery channel -->

<tp:DeliveryChannel channelId="ChannelA1" transportId="transportA1" docExchangeId="docExchangeA1">

<tp:MessagingCharacteristics syncReplyMode="none" ackRequested="nev" ackSignatureRequested="never" duplicateElimination="never"/>

</tp:DeliveryChannel>

<tp:Transport transportId="transportA1">

<tp:TransportReceiver>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

<tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:Endpoint uri="http://www.CompanyA.com/soap/sayHello" type="allPurpose"/>

</tp:TransportReceiver>

</tp:Transport>

<tp:DocExchange docExchangeId="docExchangeA1">

<tp:WSReceiverBinding version="2.1">

 <tp:WSDLOperation version="1.1" operationRef="http://hello.org/hello1#operation(Hello/sayHello)" >

 <wsdl:definitions xmlns:tns="http://hello.org/hello1"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 targetNamespace="http://hello.org/hello1" name="HelloWorld">

 <types/>

 <message name="Hello">

<part name="String_1" type="xsd:string"/>

 </message>

 <wsdl:portType name="Hello">

 <operation name="sayHello" parameterOrder="String_1">

 <input message="tns:Hello"/>

 </operation>

 </wsdl:portType>

 </wsdl:definitions>

 </tp:WSDLOperation>

</tp:WSReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

<tp:PartyInfo partyName="CompanyA" defaultMshChannelId="ChannelB1" defaultMshPackageId="PlainSOAP">

<tp:PartyId type="urn:oasis:names:tc:ebxml-cppa:partyid-type:duns">123456789</tp:PartyId>

<tp:PartyRef xlink:href="http://CompanyA.com/about.html"/>

<tp:CollaborationRole>

<tp:ProcessSpecification version="1.0" name="WebService" xlink:type="simple" xlink:href="WSDLBPSS.xml" uuid="urn:webservice"/>

<tp:Role name="WebClient" xlink:type="simple" xlink:href=""/>

<tp:ServiceBinding>

<tp:Service>urn:webservice</tp:Service>

<tp:CanSend>

<tp:ThisPartyActionBinding id="companyB_TPAB3" action="OneWay" packageId="PlainSOAP">

<tp:BusinessTransactionCharacteristics

isNonRepudiationRequired="false"

 isNonRepudiationReceiptRequired="false"

 isConfidential="none"

 isAuthenticated="none"

 isTamperProof="none"

 isAuthorizationRequired="false"/>

<tp:ChannelId>ChannelB1</tp:ChannelId>

</tp:ThisPartyActionBinding>

 <tp:OtherPartyActionBinding >companyA_TPAB2</tp:OtherPartyActionBinding>

</tp:CanSend>

</tp:ServiceBinding>

</tp:CollaborationRole>

<!-- Delivery channel -->

<tp:DeliveryChannel channelId="ChannelB1" transportId="transportB2" docExchangeId="docExchangeB1">

<tp:MessagingCharacteristics syncReplyMode="none" ackRequested="never" ackSignatureRequested="never" duplicateElimination="never"/>

</tp:DeliveryChannel>

<tp:Transport transportId="transportB2">

<tp:TransportSender>

<tp:TransportProtocol version="1.1">HTTP</tp:TransportProtocol>

</tp:TransportSender>

</tp:Transport>

<tp:DocExchange docExchangeId="docExchangeB1">

<tp:WSReceiverBinding version="2.1">

 <tp:WSDLOperation version="1.1"/>

</tp:WSReceiverBinding>

</tp:DocExchange>

</tp:PartyInfo>

 <!-- SimplePart corresponding to the SOAP Envelope -->

 <tp:SimplePart id="SOAPEnvelope" mimetype="text/xml"/>

<tp:Packaging id="PlainSOAP">

<tp:ProcessingCapabilities generate="true" parse="true"/>

<tp:Constituent excludedFromSignature="false" idref="SOAPEnvelope" maxOccurs="1" minOccurs="1"/>

 </tp:Packaging>

<tp:Comment xml:lang="en-US">Buyer's Collaboration Protocol Profile</tp:Comment>

</tp:CollaborationProtocolAgreement>
27 Alternative Collaboration Protocol Process Specification Illustration

� EMBED Word.Picture.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

87
Collaboration-Protocol Profile and Agreement Specification

Page 98 of 132

Copyright © OASIS, 2002. All Rights Reserved

[image: image6.wmf]Figure 4: Overview of Working Architecture of CPP/CPA with

ebXML

 Registry

Registry

 Party

 B

(Buyer,Server)

 Party

 A

(Seller,Server)

CPP(A)

CPP

(B)

CPP

(X)

CPP

(Y)

CPP

(Z)

CPP

(A)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

1. Any

Party

 may register its

CPPs

to an

ebXML

 Registry.

2.

Party

 B discovers trading partner

A (Seller) by searching in the

Registry and downloads

CPP

(A) to

Party

B’s server.

3.

Party

 B creates

CPA

(A,B) and

sends

CPA

(A,B) to

Party

 A.

4.

Parties

 A and B negotiate and

store identical copies of the

completed

CPA

 as a document in

both servers. This process is done

manually or automatically.

5.

Parties

 A and B configure their

run-time systems with the

information in the

CPA

.

6.

Parties

A and B

do business under

the new

CPA.

2.

6.

5.

5.

3.

4.

1.

1.

[image: image7.wmf]Delivery Channel

DC1

Transport

T1

Doc.

Exch

.

X1

Delivery Channel

DC2

Transport

T2

Doc.

Exch

.

X2

Delivery Channel

DC3

Transport

T2

Doc.

Exch

.

X1

Figure 5: Three Delivery Channels

[image: image8.wmf]Delivery Channel

DC1

Transport

T1

Doc.

Exch

.

X1

Delivery Channel

DC2

Transport

T2

Doc.

Exch

.

X2

Delivery Channel

DC3

Transport

T2

Doc.

Exch

.

X1

Figure 5: Three Delivery Channels

[image: image9.wmf]Figure 4: Overview of Working Architecture of CPP/CPA with

ebXML

 Registry

Registry

 Party

 B

(Buyer,Server)

 Party

 A

(Seller,Server)

CPP(A)

CPP

(B)

CPP

(X)

CPP

(Y)

CPP

(Z)

CPP

(A)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

CPA

(A,B)

CPA

(A,B)

(Document)

(Exe. Code)

1. Any

Party

 may register its

CPPs

to an

ebXML

 Registry.

2.

Party

 B discovers trading partner

A (Seller) by searching in the

Registry and downloads

CPP

(A) to

Party

B’s server.

3.

Party

 B creates

CPA

(A,B) and

sends

CPA

(A,B) to

Party

 A.

4.

Parties

 A and B negotiate and

store identical copies of the

completed

CPA

 as a document in

both servers. This process is done

manually or automatically.

5.

Parties

 A and B configure their

run-time systems with the

information in the

CPA

.

6.

Parties

A and B

do business under

the new

CPA.

2.

6.

5.

5.

3.

4.

1.

1.

[image: image10.wmf]Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What

Business

capabilities

it can perform

when conducting a

Business

Collaboration

 with

other parties

Party

 A

Party’s

 information

-

Party

 name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process-

Specification document

Time out/Retry

-etc.

CPP

Describe

Build

[image: image11.wmf]Figure 3: Overview of

Collaboration-Protocol Agreements

 (

CPA

)

CPA

 ID

Party’s

 information

-

 Party

 A

-

Party

 B

Transport Protocol

Transport Security

DocExchange

 Protocol

Link to Process-

Specification Doc.

Retry

-etc.

CPP

For

Party

 A

CPP

For

Party

 B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-

ment

 on

CPA

 has

arrived.

3

Agree-

ment

 on

CPA

 has

arrived.

4 Start Business activities with each other

[image: image12.wmf]Figure 1: Structure of CPP & Business Process Specification in

an

ebXML

Registry

Repository

Business

Collaboration

<PartyInfo PartyId=“N01”>

 <

ProcessSpecification xlink

:href=“http://

<

PartyInfo

 PartyId=“N02”>

 <

ProcessSpecification xlink

:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business

Collaboration

_1080652599.doc
[image: image1.png]Creating A Single Global Electronic Market

_1154246645.doc
[image: image1.png]Creating A Single Global Electronic Market

_1049141757.ppt

Figure 2: Overview of Collaboration-Protocol Profiles (CPP)

What Business capabilities

it can perform

when conducting a Business Collaboration with other parties

Party A

Party’s information

- Party name

- contact info

Transport Protocol

Transport Security Protocol

Messaging Protocol

Link to Process- Specification document

Time out/Retry

-etc.

CPP

Describe

Build

_1049203152.ppt

Figure 1: Structure of CPP & Business Process Specification in an ebXML Registry

Repository

Business Collaboration

<PartyInfo PartyId=“N01”>

 <ProcessSpecification xlink:href=“http://

<PartyInfo PartyId=“N02”>

 <ProcessSpecification xlink:href=“http://

CPP(A)

Process Specification(A1)

Process Specification(A2)

Business Collaboration

_1050907418.ppt

Figure 4: Overview of Working Architecture of CPP/CPA with ebXML Registry

Registry

 Party B

(Buyer,Server)

 Party A

(Seller,Server)

CPP(A)

CPP(B)

CPP(X)

CPP(Y)

CPP(Z)

CPP(A)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

CPA(A,B)

CPA(A,B)

(Document)

(Exe. Code)

1. Any Party may register its CPPs to an ebXML Registry.

2. Party B discovers trading partner A (Seller) by searching in the Registry and downloads CPP(A) to Party B’s server.

3. Party B creates CPA(A,B) and sends CPA(A,B) to Party A.

4. Parties A and B negotiate and store identical copies of the completed CPA as a document in both servers. This process is done manually or automatically.

5. Parties A and B configure their run-time systems with the information in the CPA.

6. Parties A and B do business under the new CPA.

2.

6.

5.

5.

3.

4.

1.

1.

_1047740132.ppt

Figure 3: Overview of Collaboration-Protocol Agreements (CPA)

CPA ID

Party’s information

- Party A

- Party B

Transport Protocol

Transport Security DocExchange Protocol

Link to Process- Specification Doc.

Retry

-etc.

CPP

For

Party A

CPP

For

Party B

CPA

Agreed

CPA

Agreed

CPA

1

negotiate

2

negotiate

3

Agree-ment on CPA has arrived.

3

Agree-ment on CPA has arrived.

4 Start Business activities with each other

_1046370057.ppt

Delivery Channel

DC1

Delivery Channel

DC2

Delivery Channel

DC3

Figure 5: Three Delivery Channels

Transport

T1

Doc.Exch.

X1

Transport

T2

Doc.Exch.

X2

Transport

T2

Doc.Exch.

X1

