[image: image1.png]OASIS )




Processing Modes Appendix
For Messaging Services 3.0 
Working Draft 05, September 6, 2006
Document identifier:  


ebms-3.0_adjuncts-wd-05
Location:


http://www.oasis-open.org/committees/documents.php?wg_abbrev=ebxml-msg
Technical Committee:

OASIS ebXML Messaging Services TC
Editors:

Hamid Ben Malek, Fujitsu Software hbenmalek@us.fujitsu.com
Jacques Durand, Fujitsu Software <jdurand@us.fujitsu.com>
Table of Contents

1Processing Modes Appendix


1For Messaging Services 3.0


31
Processing Modes (Appendix)


31.1.
Model for Processing Modes (or P-Modes)


51.2.
P-Mode parameters





1 Processing Modes (Appendix)
1.1.  Model for Processing Modes (or P-Modes)
A P-Mode (or Processing Mode) is a collection of parameters that determine how messages are exchanged between a pair of MSHs w/r to quality of service, transmission mode, and error handling. A P-Mode is usually associated with a class of messages that is defined by some user-defined header values – eb:Service, eb:Action, eb:PartyInfo/eb:To. It may also be associated in a more dynamic way with messages, e.g. associated with a message at the time the message is submitted for sending, e.g. with a proper API parameter.  
A P-Mode may be considered as an agreement between two MSHs on how messages must be processed, both on sending and receiving sides. Both MSHs must be able to associate the same P-Mode to a message, as this is necessary for a consistent processing (security, reliability, message exchange pattern…) end-to-end. A representation of a P-Mode may be used for configuring sending and receiving MSH. More abstractly, a P-Mode is said to be deployed on an MSH when it is governing the processing of the associated class of messages on this MSH. Several P-Modes may be deployed on an MSH.

A P-Mode or set of P-Modes may in turn derive from (be a subset of) a CPA document, although it does not have to. A mapping of P-Mode to CPA is out of scope of this appendix.
P-Mode parameters are grouped in five functional categories, also called P-Mode features (See section 4):

· Protocol: defines protocol-related parameters necessary for interoperating.
· UserInfo: defines parameters that are related to the business headers of User messages (PartyInfo, CollaborationInfo) as well as high-level communication parameters (MPF). Usually set by users on a per-message basis, the set of P-Modes deployed on an MSH indicates the acceptable values and value combinations for these header fields. 
· ErrorHandling: defines the mode of handling and of reporting of errors.
· Reliability: defines the reliability contracts and their parameters, applying to this class of messages.
· Security: defines the security level expected for the messages, and provides related security context data.
To be more precise, a P-Mode governs the transmission of all the messages involved in an ebMS MEP. Because messages in the same MEP may be subject to different requirements - e.g. the reliability, security and error reporting of a response may not be same as for a request – the P-Mode will be divided in “legs”. Each user message label in an ebMS MEP is associated with a P-Mode leg. Each P-Mode leg has a full set of parameters of the five above categories, even though in many cases parameters will have same value across the MEP legs. 
The following figure illustrates the general structure of a P-Mode for a Two-Way / Push-and-Pull MEP, for example a PurchaseOrder business transaction that includes a pair PurchaseOrderRequest + PurchaseOrderConfirm. Its binding channel is “Push-and-Pull” e.g. because the buyer cannot receive incoming requests.

[image: image2.png]Overall P-Mode structure for a Two-Way / Push-and-Pull MEP

*PMode.Name="PurchaseOrderF romACME “
*PMode. MEP="“Two-Way”
*PMode. MEPbinding="Push-and-Pull”

Label: request

«Protocol «Protocol «Protocol

*ErrorHandling
*Reliability
«Security

*ErrorHandling| *ErrorHandling|
*Reliability *Reliability
«Security «Security

«Userlnfo «Userinfo «Userinfo





In the above illustration, each leg of the MEP may have different P-Mode parameters, although in many cases these parameters will be identical from one leg to the other. Because the P-Mode specifies the MEP channel binding, it may also specify a set of parameters for the Pull signal, which may be subject to specific requirements (reliability, security). 
Note: In general a Pull signal cannot be precisely targeted to a particular MEP, but instead to an MPF. For this reason, all Pull signals for a particular MPF will usually share similar P-Mode parameters. 
Notation:
Consider a PurchaseOrder business transaction as defined above. 
· The P-Mode associated with this type of transaction between two partners, may be called: PurchaseOrder.PMode.

· The part of the P-Mode that relates to Leg 1 of the PurchaseOrder MEP (“request” label), will be called: PurchaseOrder.PMode[1]
· In case there are two sets of P-Mode parameters associated with a leg, like for the “reply”, the part of the P-Mode that concerns the user message in leg 2 is noted: PurchaseOrder.PMode[2][u], while the part of the P-Mode that concerns the signal message in leg 2 is noted: PurchaseOrder.PMode[2][s].
1.2.  P-Mode parameters
As a P-Mode applies to a class of messages, not every one of these parameters has to be instantiated when defining a P-Mode: multiple authorized values may be associated with a parameter in a P-Mode (e.g. multiple MPF values), or some parameter may be left undefined (meaning no restriction on its value). In both cases it is expected that the parameter value to be used at run-time will be specified when submitting the message, and that the receiving MSH does not need to be aware of this value prior to the exchange – and is able to resolve this value when receiving the message, e.g. when the value appear the header (this is the case for the MPF, specified in @mpf attribute).
The general P-Mode parameters are:

· PMode.Name: the identifier for the P-Mode, e.g. the name of the business transaction: PurchaseOrderFromACME.
· PMode.MEP: the type of ebMS MEP (One-way, Two-way,…) associated with this P-Mode. 
· PMode.MEPbinding: the channel binding assigned to the MEP (push, pull, sync, push-and-push, push-and-pull, pull-and-push, pull-and-pull…). 
The P-Mode parameters that are specific to a P-Mode leg are (here, associated with leg 1 of an MEP):
1. PMode[1].Protocol:
· PMode[1].Protocol.Address: the value of this parameter represents the address (endpoint URL) of the Receiver MSH (or Receiver Party) to which User Messages under this P-Mode are to be sent. Note that a URL automatically determines the transport protocol (for example if the address is an email address, then the transport protocol must be SMTP. If the address scheme is “http”, then the transport protocol must be HTTP.)
· PMode[1].Protocol.SOAPVersion: this parameter indicates the SOAP version to be used (1.1 or 1.2).

2. PMode[1].UserInfo:
· PMode[1].UserInfo.FromParty: Describes the originating party. Its content should map to eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From element.

· PMode[1].UserInfo.ToParty: Describes the destination party. Its content should map to eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:To element.

· PMode[1].UserInfo.Service: Name of the service the User message is intended to. Its content should map to the element eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Service

· PMode[1].UserInfo.Action: Name of the action the User message is intended to. Its content should map to the element eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Action

· PMode[1].UserInfo.Properties: the value of this parameter is a list of properties. A property is a data structure that consists of four values: the property name, the property description, the property data type, and a Boolean value indicating whether the property is expected or optional, within the User message. This parameter controls the contents of the element eb:Messaging/eb:UserMessage/eb:MessageProperties.
· PMode[1].UserInfo.PayloadProfile: This parameter allows for specifying some constraint or profile on the payload. It specifies a list of payload parts. A payload part is a data structure that consists of four properties: name (or Contentent-ID), mime data type (text/xml, application/pdf, etc…), name of XML schema file if the mime data type if text/xml, and a Boolean value indicating whether the part is expected or optional, within the User message. The message payload(s) must match this profile.  

· PMode[1].UserInfo.MPF: the value of this parameter is the identifier of the MPF (message partition flow) the message is assigned to. It maps to the attribute eb:Messaging/eb:UserMessage/@eb:mpf.
3. PMode[1].ErrorHandling:
NOTE: this P-Mode group concerns errors generated by the reception of the message (for either a User message or a Signal message, unless indicated otherwise) sent over leg 1 of the MEP. 
· PMode[1].ErrorHandling.Report.SenderErrorsTo: this parameter indicates the address where to send ebMS errors generated by the MSH that was trying to send the message in error. 
· PMode[1].ErrorHandling.Report.ReceiverErrorsTo: this parameter indicates the address where to send ebMS errors generated by the MSH that receives the message in error. E.g. this may be the address of the MSH sending the message in error.

· PMode[1].ErrorHandling.Report.AsResponse: this Boolean parameter indicates whether (case “true”) errors generated from receiving a message in error are sent over the back-channel of the underlying protocol, associated with the message in error or not.
· PMode[1].ErrorHandling.Report.NotifyConsumerLocalErrors: this boolean parameter indicates whether (case “true”) the Consumer (application/party) of a User Message should be notified when an error occurs in the Receiving MSH, about the received User message.
· PMode[1].ErrorHandling.Report.NotifyProducerLocalErrors: this boolean parameter indicates whether (case “true”) the Producer (application/party) of a User Message should be notified when an error occurs in the Sending MSH, about the User message to be sent.

· PMode[1].ErrorHandling.Report.NotifyProducerDeliveryFailures: this boolean parameter indicates whether (case “true”) the Producer (application/party) of a User Message must always be notified when the delivery to Consumer failed or whether in some cases it is sufficient to notify the Consumer only (Report.NotifyConsumerLocalErrors=”true”). This assumes that Reliability.AtLeastOnce.Contract is “true”. This also assumes that the Sending MSH implementation has the ability to determine or to be made aware of all cases of non-delivery that occur after the message has been received by Receiving MSH. 
4. PMode[1].Reliability:
· PMode[1].Reliability.AtLeastOnce.Contract: this Boolean parameter indicates whether the “At-Least-Once” reliability contract is to be used (Guaranteed Delivery).

· PMode[1].Reliability.AtLeastOnce.ReplyPattern: this parameter indicates whether a reliability acknowledgement is to be sent as a callback, synchronously in the response (back-channel of underlying protocol), or as response of separate ack pulling. Three values are possible for this parameter, when using WS-Reliability: Response, Callback, Poll.

· PMode[1].Reliability.AtMostOnce.Contract: this boolean parameter indicates whether duplicate elimination (“At-Most-Once”) should be enforced when receiving a User Message.

· PMode[1].Reliability.InOrder.Contract: the value this parameter is a Boolean value that indicates whether this message is part of an ordered sequence.

· PMode[1].Reliability.InOrder.Scope: this parameter is a string that defines the set of messages that must be ordered, if appropriate. For example, a value of “{eb:ConversationId}” means that all messages that share the same ConversationId in a conversation initiated by a message such as those subject to this P-Mode leg (typically, with Service/Action as specified in PMode[1].UserInfo), must be ordered. A value of “{eb:ConversationId, eb:Service, eb:Action}” would mean that messages that belong to the same conversation as the one initiated by a message that conforms to this PMode, and that shares same Service and Action as specified in this PMode, belong to the same ordered sequence.
5. PMode[1].Security:
· PMode[1].Security.Version: this parameter has two possible values (1.0 and 1.1). The value of this parameter represents the version of WSS being used.
· PMode[1].Security.PublicCertificate: the value of this parameter is the filename or URL of the public certificate to use when encrypting data.
· PMode[1].Security.UsernameToken.username: the value of this parameter indicates the username to use inside a WSS Username Token
· PMode[1].Security.UsernameToken.password: the value of this parameter indicates which the password to use inside a WSS Username Token

· PMode[1].Security.UsernameToken.Digest: the boolean value of this parameter indicates whether a digest password should be used with the UsernameToken WSS element. 

· PMode[1].Security.UsernameToken.Nonce: the boolean value of this parameter indicates whether the UsernameToken WSS element should have a Nonce element.

· PMode[1].Security.UsernameToken.Created: the boolean value of this parameter indicates whether the UsernameToken WSS element should have a Created timestamp element.

· PMode[1].Security.Encrypt: the value of this parameter a list of the names of XML elements (inside a SOAP envelope) that should be encrypted as well as whether attachments should also be encrypted or not. An element within this list could be specified either by its XML name or by its qualified name (pair of XML name and the namespace to which it belongs).
· PMode[1].Security.Sign: the value of this parameter is a list of the names of XML elements (inside a SOAP envelope) that should be signed as well as whether attachments should also be signed or not. An element within this list could be specified either by its XML name or by its qualified name (pair of XML name and the namespace to which it belongs). 

ebms-3.0_adjuncts-wd-04
 
 18 April, 2006

Copyright © OASIS Open 2005-2006. All Rights Reserved.
 
Page 3 of Error! Reference source not found.

