Note: Please refer to test driver architecture for details…

Testing interoperability architecture:

[image: image1.png]‘ Test Trace

MS Test
Service

Actions

e o [|

—_—

Candidate
MSH

Test Reports+ ‘
Trace

Application
Test
Driver

Test Case Data
(configuration +

Messages +

Test conditions)

Candidate
MSH

figuration
(CPA-level)

Message
templates

1. We assume the test harness for MS interoperability will require

(a) An application test driver, which will process and drive all test cases.

(b) A test service, which will react to invocations from the requesting MSH.

2. Part of a test case execution requires CPA-like configuration of the MSH. Such configuration sets should be agreed to between participants prior to running the tests, along with CPA Id values. The candidate MSH team will provide code to interpret such configuration sets, and configure their MSH with it. Each test case will reference or specify the CPA-like data that should be used.

3. The interoperability test suite(s) requires a corresponding test driver on MSH application side).

4. On the "application" side of MSH, the testing service will have a limited number of actions. We identify four actions that will/should be sufficient to run MS interoperability test cases:

(a) Responder action: on invocation, generate a response to a received message, by using same message material, with a minimal header changes: swap to/from parties, set RefToMsgId, and keep same conversation and CPA Id. The payload is same as in received message (same attachment(s)).

(b) Initiator action: on invocation, generate a new message, by using message material (payload and header) that is contained in the payload of the received

message. So the header of the new message can be anything that is specified. For example, used to generate a "first" message in a conversation. Note: MSH-controlled header attributes will not be determined by the invoking message (messageID, timestamps...)

(c) Error action: used for MSH notification of (some) errors to the application. These actions may generate a trace.

(d) Mute action: on invocation, does not generate any message back. Only acknowledge reception by generating (optionally) local trace.

(e) UnMute action: on invocation, does not generate any acknowledge but generates a message.

(f) AsyncResponder action: on invocation, generate an acknowledgement and later a response to a received message, by using same message material, with a minimal header changes: swap to/from parties, set RefToMsgId, and keep same conversation and CPA Id. The payload is same as in received message (same attachment(s)).

(g) Log action: on invocation of a message – usually by the recipient, log the received message (or any information provided.)

NOTE: In general, the actions fall into the following categories:

1) Suppress an acknowledgement (NoAcknowledge)

2) Send an acknowledgement to a received message followed by a message response (AsyncResponder)

3) Send a response (this implies acknowledgement as well – SyncReply) Responder
4) Send an acknowledgement, but don’t send a message response (Mute)

5) Skip the acknowledgement, but send a response (UnMute)

6) Error (Error)

7) Log (Log?)

8) Start a new message (Initiator)

5. The test verification (or validation) can be done at run-time, using test case input/output in-memory data (as opposed to analyzing a trace or log a-posteriori).

7. Correlation between message(s) sent and message(s) received is (by default) based on MessageID / RefToMesgID. Might correlate on conv ID on demand (in case manipulation of RefToMesgID required.)

8. The attached excel file defines the test cases used in the following section. These tests use HTTP as the primary transport and do not require a secondary transport. For other transport (SMTP), these tests may use SMTP as the primary transport.

The steps required for the above tests (in 8) are described below:

Test #1: One way ebXML message exchange

This scenario tests one-way ebXML message exchange between two MSH’s using HTTP as the transport protocol.

Test Type:

Positive
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required (specify)

Response:

Not required

Response Acknowledgement:
Not required

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

None required
Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
Test steps:

Step 1: Candidate and Target MSH set up their profiles based on the agreed CPA-like information. Note that this could be done manually.

Step 2: Candidate MSH sends a sample message to the Target MSH’s Mute action with a valid ebXML payload, and header schema using Candidate MSH’s Initiator action.

Step 3: Target MSH’s Mute action sends an acknowledgement message to the Candidate MSH.

Step 4: Candidate MSH receives and correlates acknowledgement message and reports. No failure is expected in this case. (How do we do just a simple logging?) – I have added a log action. Could we just use the Error action for this?
Test #2: Two way ebXML message exchange

This scenario tests two-way message exchange between two MSH’s using HTTP as the transport protocol. (How do I have the Target MSH send a MUTE action (ack), and then later send a RESPONSE? This is needed to differentiate between async and sync responses.) Do we need a new action? (Mute + Respond). I have added an AsyncResponder
Test Type:

Positive
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required (specify timeout?)

Response:

Required

Response Acknowledgement:
Required

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

Async, Required

Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
(These test steps currently assume sync reply. In reality, the response would be much later than the message acknowledgement for async responses)

Test steps:

Step 1: Candidate and Target MSH set up their profiles based on the agreed CPA-like information. Note that this could be done manually.

Step 2: Candidate MSH sends a sample message to the Target MSH’s AsyncResponder action with a valid ebXML payload, and header schema using Candidate MSH’s Initiator action.

Step 3: Target MSH’s AsyncResponder sends a message acknowledgement and then proceeds to process the received message.

Step 4: Candidate MSH receives and correlates acknowledgement message.

Step 5: Target MSH’s sends response message with same attachment(s), same conversation ID to the Candidate MSH’s Mute action.

Step 6: Candidate MSH’s Mute action sends sends a message acknowledgement.

Step 7: Target MSH’s correlates acknowledgement message. No error is expected.

Test #3: Two way ebXML message exchange with response required and no receipt acknowledgement received by the Sender.

This scenario tests two-way message exchange between two MSH’s using HTTP as the transport protocol. In this case a response is expected while the receiver does not send a receipt acknowledgement. The sender errors out after specified retries.
Test Type:

Negative
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required, but NOT sent by the target.

Response:

Required

Response Acknowledgement:
Required

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

Async, Required
Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
Do we need a new action? Suppress Ack but Respond. I have added an UnMute action.
Test steps:

Step 1: Candidate and Target MSH set up their profiles based on the agreed CPA-like information. Note that this could be done manually.

Step 2: Candidate MSH sends a sample message to the Target MSH’s UnMute action with a valid ebXML payload, and header schema using Candidate MSH’s Initiator action.

Step 3: Target MSH’s Responder action suppresses the acknowledgement.

Step 4: Candidate MSH retries to send the message according to the retry timeout (where is the #of attempts specified?). Then calls Error action.

Step 5: Target MSH ignores duplicates from the Candidate MSH. (Should this be a separate test? See Test #11)

Step 6: Target MSH’s UnMute action then sends a response message with same attachment(s), same conversation ID to the Candidate MSH.

Step 7: Target MSH does not receive an acknowledgement, retries and calls Error action.

Test #4: Two way ebXML message exchange with response required and no message response received by the Sender.

This scenario tests two-way message exchange between two MSH’s using HTTP as the transport protocol. In this case a response is expected while the receiver does not send a response. The sender errors out after specified retries.
Test Type:

Negative
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required

Response:

Required, but not sent by the target

Response Acknowledgement:
Required

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

Async, Required
Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
The target sends an acknowledgement, but suppresses response.
Test steps:

Step 1: Candidate and Target MSH set up their profiles based on the agreed CPA-like information. Note that this could be done manually.

Step 2: Candidate MSH sends a sample message to the Target MSH’s Mute action with a valid ebXML payload, and header schema using Candidate MSH’s Initiator action.

Step 3: Target MSH’s Mute action sends a message acknowledgement but suppresses the message response.

Step 4: Candidate MSH times out waiting for the response (where is the timeout specified?). Then calls Error action.

Test #5: Two way ebXML message exchange with response sent by target and no message acknowledgement received by the Target.

This scenario tests two-way message exchange between two MSH’s using HTTP as the transport protocol. In this case a message acknowledgement is expected by the target while the candidate MSH does not send it. The sender errors out after timeout.
Test Type:

Negative
Transport:

HTTP
CPA Information:

Retry/Timeout

Receipt Acknowledgement:
Required

Response:

Required

Response Acknowledgement:
Required, but not sent by Candidate.

Non-Repudiation

Origin

Not required

Receipt

Not required
Security:

Encryption:

No

Signature:

No
Request

Header (Schema):

Valid

Payload (ebXML MS):

Valid
Response

Type:

Async, Required
Attachments:

None
Duplicate Message (Receiver):

None
Out of Sequence (Receiver):

No
Attachments:

None
Multi Hop:

No
Error Expected:

None
The target sends a response message and times out waiting for an acknowledgement.
Test steps:

Step 1: Candidate and Target MSH set up their profiles based on the agreed CPA-like information. Note that this could be done manually.

Step 2: Candidate MSH sends a sample message to the Target MSH’s AsyncResponder action with a valid ebXML payload, and header schema using Candidate MSH’s Initiator action.

Step 3: Target MSH’s AsyncResponder sends a message acknowledgement and then proceeds to process the received message.

Step 4: Candidate MSH receives and correlates acknowledgement message.

Step 5: Target MSH’s sends response message with same attachment(s), same conversation ID to the Candidate MSH’s NoAcknowledge action.

Step 6: Candidate MSH’s NoAcknowledge action suppresses a message acknowledgement.

Step 7: Target MSH’s times out waiting for an acknlowledgement. (Should the target retry and candidate ignore the duplicate response messages?)

