[image: image10.jpg]
OASIS ebXML Testing Procedures

April 2002

ebXML Messaging Service (2.0) Conformance Test Suite

Version 0.5

OASIS ebXML Implementation, Interoperability and Conformance Technical Committee

November 25, 2002

	3Status of this Document

3ebXML Participants

4Introduction

41
Summary of Contents of this Document

41.1.1
Document Conventions

41.1.2
Audience

41.1.3
Caveats and Assumptions

41.1.4
Related Documents

51.2
Concept of Operation

51.2.1
Scope

51.3
Minimal Requirements for Conformance

52
Harness for MS Conformance Testing

52.1
Architecture

62.2
Test Service Requirements

72.3
The Conformance Test Driver Requirements

83
Driving the Test Harness

83.1
The Conformance Test Profile XML Document

93.1.1
Definition of content

93.2
The Test Requirements XML Document

93.2.1
Definition of content

103.2.2
Metadata

103.2.3
Definition of content

103.3
The Conformance Test Suite XML Document

103.3.1
Definition of content

103.3.2
The ConfigurationGroup

113.3.3
Definition of content

113.3.4
Default Test Driver Configuration

113.3.4
Metadata

123.3.5
Definition of content

123.4
Structure of the Conformance Test Case

12A Test Case evaluates an MSH implementation against a particular Conformance Test Requirement. The OASIS/ebXML MS Conformance Test Suite contains one or more Test Cases for each Test Requirement in [MSConfTestReq]. Conformance Test Cases “point to” a Conformance Test Requirement using that Requirements’ unique ID value.

123.4.1
Elements of a Test Case

123.4.2
Test Case Metadata

123.4.3
Test Steps

133.4.4
Message Operations

163.4.5
About the Test Requirement Coverage

174
Test Cases for MS Conformance

174.1
Test Cases Specification

174.1.1
Test Case: R0.1.1 [SchemaValidation]

184.1.2
Test Case: R1.1.2.1 [GenerateConformantSOAPWithAttachMIMEHeaders]

194.1.3
Test Case: R1.2.5 [ReportInconsistentPartyIdContent]

204.2
Test Data Material

204.2.1
MSH Config

204.2.2
CPA Data

214.2.3
Message Header Templates

234.2.4
Message Payloads

234.2.5
Message Envelope Templates

26Part II. Appendices

26Appendix A
(Normative) The ebXML Test Profile Schema

26Appendix B
(Normative) The ebXML Test Requirements Schema

29Appendix C The ebXML Test Suite Schema

29Appendix D
Terminology

31References

31Non-Normative References

32Contact Information

32Acknowledgments

32The OASIS ebXML-MS Technical Committee would like to thank …

33Disclaimer

33Copyright Statement

33Intellectual Property Rights Statement

	

Status of this Document

This document specifies ebXML Testing Procedures for the eBusiness community. Distribution of this document is limited to OASIS ebXML TC members only.

The document formatting is based on the Internet Society’s Standard RFC format converted to Microsoft Word 2000 format.

Note: Implementers of this specification should consult the OASIS Implementation, Interoperability and Conformance Technical Committee web site for current status and revisions to the specification
(http://www.oasis-open.org/committees/ebxml-iic/).

Specification
This is a DRAFT version of the specification.

This version

V0.4
This specification addresses conformance of the MS specification in:

V2.0 – http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
Errata to this version

None
Previous version

None
ebXML Participants

The authors wish to acknowledge the support of the members of the Messaging Services Team who contributed ideas, comments and text to this specification by the group’s discussion eMail list, on conference calls and during face-to-face meetings.

(main authors:)

	Michael Kass
	NIST

	Mathew McKenzie
	XMLGlobal

	
	

	
	

 (contributors/reviewers:)

	Monica Martin
	DrakeCertivo

	Jacques Durand
	Fujitsu Software

	
	

	
	

	Michael Wang
	TIBCO

Introduction

1 Summary of Contents of this Document

· This specification defines the Test Suite for ebXML Messaging conformance testing. The Test Suite includes Conformance Test Requirements, Abstract Test Cases and Test Material to describe how to test the conformance of implementations of the ebXML Messaging Services V2.0 Specification. The testing procedure design and naming conventions follow the format specified in the Standard for Software Test Documentation IEEE Std 829-1998.

1.1.1 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms [ebGLOSS]. Terms listed in Bold Italics represent the element and/or attribute content. Terms listed in Courier font relate to MIME components. Notes are listed in Times New Roman font and are informative (non-normative). Attribute names begin with lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119] as quoted here:

· MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

· MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

· SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed before choosing a different course.

· SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

· MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides).

1.1.2 Audience

The target audience for this specification is:

· The community of software developers who implement the ebXML Messaging Service [ebMS],

· The testing or verification authority, which will implement and deploy conformance testing for ebXML Messaging implementations.

1.1.3 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Messages with Attachments and security technologies.

1.1.4 Related Documents

The following set of related specifications are developed independent of this specification as part of the ebXML initiative:

· ebXML Collaboration Protocol Profile and Agreement Specification (CPPA) – CPP defines one business partner's technical capabilities to engage in electronic business collaborations with other partners by exchanging electronic messages. A CPA documents the technical agreement between two (or more) partners to engage in electronic business collaboration. The MS Test Requirements and Test Cases will refer to CPA documents or data as part of their material, or context of verification.

· ebXML Messaging Service Specification (MS) – defines the messaging protocol and service for ebXML, which provide a secure and reliable method for exchanging electronic business transactions using the Internet.

· ebXML Test Framework – describes the test architecture, procedures and material that are used to implement the MS conformance Test Suite, as well as the test harness for this suite.

· ebXML MS Conformance Test Requirements – describes the structure and semantics of conformance testing requirements for implementation of the ebXML Messaging Service v2.0 Specification

1.2 Concept of Operation

1.2.1 Scope

The Test Framework described here has been designed to achieve the following objectives:

· The MS conformance Test Suite can be run entirely and validated from one component of the framework, called the Test Driver. This means that all test outputs will be generated - and test conditions verified - by one component, even if the test harness involves several – possibly remote – components of the framework.

· The verification of each Test Case can be done at run-time by the Test Driver itself [ebXMLTestFramework] , as soon as the test case is completed. The outcome of the verification can be obtained immediately as the Test Suite has completed, and a validation report be generated.

1.3 Minimal Requirements for Conformance

An implementation of this specification MUST satisfy ALL of the following conditions to be considered a conforming implementation:

· It supports all the mandatory syntax, features and behavior (as identified by the [RFC2119] key words MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 – Document Conventions.

2 Harness for MS Conformance Testing

2.1 Architecture

This section describes how to configure the Test Framework elements for testing implementations of the ebXML Messaging Service specification (2.0).

The components of the framework that are involved in MS conformance testing are:

· An instance of the Test Driver component, coupled with a Wire Adapter for the transport being used, which will process and drive all test cases.

· An instance of the Test Service component, which will react to initiatives from the Driver.
· A transport Driver Adapter (also called Wire Adapter), for the transport being used (e.g. HTTP). Will allow the Test Driver to process and drive all Test Cases by generating and receiving messages directly “on the wire”, i.e. without using an MSH.
The Test Driver actually simulates a second-party MSH, yet does not have most of the capability of an MSH: it is a simulation device that directly works at transport level, by generating and receiving messages formatted according to this transport. Figure 7 shows the general architecture of the MS conformance test harness.

[image: image1.wmf]

Figure 1 – MS Conformance Test Driver

The typical conformance test case procedure will consists of:

· Configuring the MSH for the message conversation(s) that will be generated by the Test Case(s), with CPA data. In most Test Cases, a “default” CPA configuration will be used. If a different CPA configuration is required, the Test Driver will send a message to the Configurator action of the Test Service, with a CPAId value, along with possible modifications departing from the referenced CPA-based configuration data set.

· Sending messages, whose content is specified in the test case, to a pre-defined Action of the Test Service.

· Receiving messages from the Test Service.

· Analyzing the content of received messages, possibly in correlation with other message data, received or sent during the same test case, in order to validate the requirement of the test case.

· Reporting on the Test Case outcome.

2.2 Test Service Requirements

The Test Service component of the ebXML Testing Framework consists of a pre-defined ebXML Service and a collection of Actions, each of which performs a unique function on the Implementation Under Test (or candidate MSH), and returns (or in some cases, does not return) a pre-defined message.

These Action names are included in the test messages sent by the Test Driver, and are used to elicit a specific response message from the candidate MSH. Evaluation of the returned message by the Test Driver results in a “pass/fail” test result for the candidate MSH.

In the following Action descriptions, the “requestor” represents the party that originates the message. The sent message triggers the Action invocation by the receiving (or responder) MSH. The requestor is generally the party where the Test Driver resides. Note that some test Actions may send a response message that is intended to in-turn elicit a response action. Because a Test Service does not exist on the requestor (Test Driver) side, such action is irrelevant. The test actions are:

· Mute Action. This is a “dummy” action, which does not generate any response message back. This action will report invocations and their content to the local Test Driver (if the Test Service is coupled with a Test Driver). It may optionally generate a trace file. Notification to Test Driver: (only when this Test Service is in driver mode) Message contains both header and payload material. A returned Mute response payload must validate to the ebXMLMuteResponsePayload.xsd schema in Appendix XX.

· Dummy Action. This is a “dummy” action, used by messages that do not need any specific response, and the sending of which only needs to cause some side-effect in the MSH, such as generating an error. On invocation, this action will however generate a pre-canned response message back (without a payload), referring to the previous MessageID (for correlation) in the RefToMessageId header attribute. This notice serves as proof that the message has reached the test service, although no assumption can be made on the integrity of its content. Optionally, it generates a trace (log) item. Notification to Test Driver: (only when this Test Service is in driver mode) Message contains both header and payload material. Destination of response message: the Mute Action of the requestor’s Test Service. (only when this Test Service is NOT in driver mode.)

· Reflector (or Responder) Action. On invocation, this action generates a response to a received message, by using the same message material, with minimal changes in the header: (1) swapping of the to/from parties so that the “to” is now the initial requestor. (2) setting RefToMessageId to the ID of the received message, (3) remove any Acknowledgement elements. All other header elements (except for time stamps) are unchanged. The conversation ID remains unchanged, as well as the CPAId. The returned payload(s) is the same as in the received message, i.e. same attachment(s). This action acts as a reflector for the requesting party. Notification to Test Driver: (only when this Test Service is in driver mode) Messzge contains both header and payload(s) material. Destination of response message: the Mute action of the requestor’s Test Service. (only when this Test Service is NOT in driver mode.)

· Initiator Action. On invocation, this action generates a new message, totally unrelated to the received message. The new message material (payload and header) is provided in a pre-convened way in the payload of the received message. The header of the new message can be anything that is specified. For example, this action would be used to generate a "first" message of a new conversation, different from the conversation ID specified in the invoking message. Note: unlike in the Reflector action, MSH-controlled header attributes will not be determined by the invoking message header (messageID, RefToMessageId, timestamps...). So if the response needs to refer to the previous MessageID (for correlation), the RefToMessageId must be explicitly pre-set in the message material. Notification to Test Driver: (only when this Test Service is in driver mode) both header and payload(s) material. Destination of response message: any service/action of the sender, specified with message material (by default: the Mute action of the requestor’s Test Service.)

· PayloadValidate Action. On invocation, this action will compare the payload(s) of the received message, with reference payloads (files) pre-installed on the Test Service host. This action will test the service contract (application – MSH), as errors may originate either on the wire, or at every level of message processing in the MSH until message data is passed to the application. The action responds with a notification message to the requestor, about the outcome of the comparison. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response. Notification to Test Driver: (only when this Test Service is in driver mode) both header and payload(s) material. Destination of response message: the Mute action of the requestor’s Test Service. (only when this Test Service is NOT in driver mode.)

· ErrorAppNotify Action. This action will capture specific error notifications from the MSH to its using application. It is not triggered by reception of an error message, but it is directly triggered by the internal error module of the MSH local to this Test Service. If the MSH implementation does not support such direct notification of the application (e.g. instead, it writes such notifications to a log), then an adapter needs to be written to read this log and invoke this action whenever such an error is notified. Such errors fall into two categories: (a) MSH errors that need to be directly communicated to its application – and not to any remote party, e.g. failure to send a message (no Acks received after maximum retries). (b) In case regular errors are generated by an MSH with a severity level set to “Error” – as opposed to “Warning” – the MSH is supposed to (SHOULD) also notify its application. The ErrorAppNotify action is intended to support both types of notifications. The action will make such notifications visible to the other party (typically the driver party), by generating a “report” message back to the requestor, which can check and report on the notified error. Notification to Test Driver: notice of error (only when this Test Service is in driver mode). Destination of response message: the Mute action of the requestor’s Test Service. (only when this Test Service is NOT in driver mode.)

· ErrorURLNotify Action. This action will capture error messages, assuming that an adapter has been written for invoking this action. The adapter must have same URI as the ErrorURI specified in the CPA. The adapter will pass the entire message as is (in its ebXML envelope) to the action. The action extracts the ErrorCode and Severity elements, and sends then a notification message back to the originator. The action will make such notifications visible to the other party (typically the driver party), by generating a “report” message back to the requestor. Notification to Test Driver: header material (only when this Test Service is in driver mode). Destination of response message: the Mute action of the requestor’s Test Service. (only when this Test Service is NOT in driver mode.)

· Configurator Action. This action is called to (re)configure the candidate MSH. As an argument, it has a CPAId value. The action is calling the conversation (CPA) configuration function of the MSH (via adapter code to its API), in order to set or change the collaboration agreement for the conversation related to a test case or a set of test cases. A response is generated back to the requestor. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response. Destination of response message: the Mute action of the requestor’s Test Service. (only when this Test Service is NOT in driver mode.)

Note: As previously mentioned, these actions are predefined and part of the test framework, and will require some integration code with the MSH implementation, in form of three adapters, to be provided by the MSH development (or user) team. These adapters are:

(1) Reception adapter, which is specific to the MSH call-back interface. This code invokes in turn the above predefined actions of the Test Service.

(2) API adapter, which will be invoked by Test Service actions, and will invoke in turn the MSH-specific Message Service Interface (API). Examples of such invocations are for sending messages (e.g. by actions which send response messages), and MSH configuration changes (done by the Configurator action).

· Error URL adapter, which is actually independent from the candidate MSH. This adapter will catch error messages, and invoke the ErrorURLNotify action of the Test Service which should normally be associated with the Test Driver (driver mode).

2.3 The Conformance Test Driver Requirements

In order to execute Conformance Test Cases, the Test Driver component of the ebXML Test Framework MUST have the following capabilities:

· Self Configuration - Based upon supplied Test Case configuration parameters specified in the ebXML TestSuite.xsd schema (Appendix XX), Test Driver configuration is done at startup, and MAY be modified at the TestCase and TestStep levels as well.

· ebXML Message Construction – Includes MIME, SOAP and ebXML portions of the message

· Received Message Persistence – Persisted received messages MUST persist for the life of a Test Case. Persistent messages MUST validate to the ebXMLPersistentMessage.xsd schema in Appendix XX.

· Parse and query received persistent messages – Test Driver MUST use XPath query syntax to query MIME, SOAP and ebXML persistent message content

· Parse and query received message payloads – Test Driver MUST support XPath query syntax to query XML message payloads

· Repeat previously executed Test Steps – Test Driver MUST be capable of repeating previously executed Test Steps for the current Test Case

· Perform discreet message content validation – Test Driver MUST be capable of performing discreet validation of Time, URI, Signature and the entire XML message

· Perform discreet payload content validation – Test Driver MUST be capable of performing discreet validation of Time, URI, Signature and an XML payload

· Report Conformance Test Results – Test Driver MUST generate an XML conformance report for all executed tests in the profile. Conformance reports MUST validate to the ebXMLConformanceReport.xsd schema in Appendix XX

[mm1: Specify that actions of the Test Service are outside of scope of the Test Driver. In addition, indicate the ancillary adapter functions are outside of the scope of the Test Driver.]
3 Driving the Test Harness

The ebXML Test Harness (in particular, the Test Driver) is driven by a Test Profile XML document. The current Conformance Testing Profiles defined by the ebXML IIC are:

Profile 1: Core Functionality

· Packaging Specification – A description of how to package an ebXML Message and its associated parts into a form that can be sent using a communications protocol such as HTTP or SMTP

· ebXML SOAP Envelope Extensions – A specification of the structure and composition of the information necessary for an ebXML Message Service to generate or process an ebXML message (that may or may not include a payload).
· Error Handling – A description of how one ebXML Message Service reports errors it detects to another ebXML Message Service [mm1: This is a function of the adapter and is therefore outside of the scope of the Test Driver, correct? I understand that the adapter and Test Driver will interact, but is this not an implementation issue?]
· Security – Provides a specification of the security semantics for ebXML Messages (section 4.1 of [ebMS])

· SyncReply – Indicates to the Next MSH whether or not replies are to be returned synchronously

Profile 2: Reliable Messaging (requires Profile 1)

· Reliable Messaging – The Reliable Messaging function defines an interoperable protocol where any two Message Service implementations can reliably exchange messages sent using once-and-only-once delivery semantics

Profile 3: Additional Features (Requires Profile 2)

· Message Status Service – A description of services enabling one service to discover the status of another Message Service Handler (MSH) or an individual message
· Message Order – The Order of message receipt by the To Party MSH can be guaranteed
Profile 4: Multi-Hop (Requires Profile 1)
· Multi-Hop – Messages may be sent through intermediary MSH

3.1 The Conformance Test Profile XML Document

The Test Profile XML document drives the Test Harness by providing the Test Driver with a list of unique reference IDs of Conformance Test Requirements for a particular Test Profile. The Test Driver reads this document, and executes all Conformance Test Cases (located in another document) that contain a reference to each of the test requirements. A Test Profile driver file MUST validate against the ebXMLTestProfile.xsd file found in Appendix XX A list of conformance Test Profile example files can be found in Appendix XX.

[image: image2.jpg]
Figure 2 – Graphic representation of ebXMLTestProfile.xsd schema

3.1.1 Definition of content

	Name
	Description

	TestProfile
	Container for all references to test requirements

	requirementsLocation
	Filename or URL of test requirements XML file

	name
	Name of profile

	description
	Description of profile

	Dependency
	Prerequisite profile reference container

	name
	Name of the required prerequisite profile

	profileRef
	Identifier of prerequisite profile to be loaded by Test Driver

	TestRequirementRef
	Conformance Test Requirement reference container

	id
	Identifier of Test Requirement

	conformanceType
	Enumerated Requirement descriptor (REQUIRED, OPTIONAL…etc.)

	Comment
	Profile author’s comment for a particular requirement

3.2 The Test Requirements XML Document

The Test Requirements XML document provides metadata describing the Conformance Testing Requirements, their location in the specification, and their conformance type (REQUIRED, HIGHLY RECOMMENDED, RECOMMENDED, or OPTIONAL) . A Test Profile driver file MUST validate against the ebXMLTestRequirements.xsd file found in Appendix XX The ebXML MS Conformance Test Requirements file can be found in Appendix XX

[image: image3.jpg]
Figure 3 – Graphic representation of ebXMLTestRequirements.xsd schema

3.2.1 Definition of content

	Name
	Description

	Requirements
	Container for all conformance test requirements

	MetaData
	Container for requirements metadata, including Description, Version, Maintainer, Location, Publish Date and Status

	Test Requirement
	Container for all info for a single test requirement

	description
	Description of profile

	id
	Unique identifier for each Test Requirement

	name
	Name of test requirement

	specRef
	Pointer to location in specification where requirement is found

	functionalType
	Generic classification of function to be tested

	SemanticRequirement
	Sub-requirement for the main Test Requirement

	id
	Unique ID for the sub-requirement

	name
	Short descriptor of Semantic Requirement

	specRef
	Pointer to location in specification where sub-requirement is found

	Clause
	Condition that must be met in order for the Asssertion to be valid

	Assertion
	Axiom expressing expected behavior of an MSH implementation

	conformanceType
	Enumerated Assertion descriptor (REQUIRED, OPTIONAL…etc.)

[mm1: Shouldn’t we have an id, name and reference for the condition, as this also is referenced many times in the baseline specification? Note, I understand that the reference may very well be the same as the semantic requirement.]
3.2.2 Metadata

Documentation for the ebXML MS Conformance Test Requirements is done through the Metadata element. It is a container element for general documentation.

3.2.3 Definition of content

	Name
	Description

	Description
	General description of the Test Suite

	SourceControlInfo
	Self descriptive

	Maintainer
	Name of person(s) maintaining the Test Suite

	Location
	URL or filename of this test suite

	PublishDate
	Date of publication

	Status
	Status of this test suite

3.3 The Conformance Test Suite XML Document

The Conformance Test Suite XML document is a collection of configuration data, documentation and executable conformance Test Cases. Configuration data provide basic Test Driver parameters used to modify the configuration of the Test Driver. Metadata provides author information, functional description and versioning and other general information. Test Cases are a collection of discreet Test Steps. Each Test Step can execute any number of test Operations (including sending, receiving, and examining returned messages). An ebXML MS Conformance Test Suite document MUST validate against the ebXMLTestSuite.xsd file found in Appendix XX

[image: image4.jpg]
Figure 4 – Graphic representation of basic view of ebXMLTestSuite.xsd schema

3.3.1 Definition of content

	Name
	Description

	TestSuite
	Container for all conformance configuration, documentation and tests

	cfg:ConfigurationGroup
	Container for “bootstrap” configuration of the Test Driver

	Metadata
	Container for general documentation of the entire Test Suite

	TestCase
	Container for an individual Test Case

3.3.2 The ConfigurationGroup

The ConfigurationGroup provides the Test Driver with the necessary information it needs to modify its “base configuration” before executing a Test Case. Because the Test Driver is not a true MSH, ConfigurationItem names and values are defined for test execution purposes only.

[image: image5.jpg]
Figure 5 – Graphic representation of expanded view of the ConfigurationGroup element

3.3.3 Definition of content

	Name
	Description

	ConfigurationGroup
	Container for any number of ConfigurationItems

	id
	Unique identifier for the ConfigurationGroup

	ConfigurationItem
	Individual name/value pair used by the Test Driver for configuration

	id
	Unique identifier for the ConfigurationItem

	ref
	Reference to another ConfigurationItem in the document

	type
	Short descriptor of the type of item

	name
	Short name for the ConfigurationItem

	value
	Value of the ConfigurationItem

	Namespace
	Container for namespace information for the ConfigurationGroup

	prefix
	Namespace prefix for all ConfigurationItems

	value
	Namespace value for all ConfigurationItems

3.3.4 Default Test Driver Configuration

By default, certain ConfigurationItems MUST be set for the Test Driver, and MUST be modifiable through the ConfigurationItem elements of the Test Suite document. They are:

	Name
	Default Value
	Description

	TestCaseTimeout
	10 seconds
	Maximum time for a Test Case to complete all Test Steps

	MaxMessagesAccepted
	100
	Maximum number of accepted messages for a Test Case

	AckRequested
	false
	Parameter stored by Test Driver, used in returned message tests

	DuplicateElimination
	false
	Parameter stored by Test Driver, used in returned message tests

	SyncReplyMode
	false
	Parameter stored by Test Driver, used in returned message tests

	Retries
	1
	Parameter stored by Test Driver, used in returned message tests

	RetryInterval
	1 second
	Parameter stored by Test Driver, used in returned message tests

3.3.4
Metadata

Documentation for the ebXML MS Test Suite is done through the Metadata element. It is a container element for general documentation.

[image: image6.jpg]
Figure 6 – Graphic representation of expanded view of the Metadata element

3.3.5 Definition of content

	Name
	Description

	Description
	General description of the Test Suite

	SourceControlInfo
	Self descriptive

	Maintainer
	Name of person(s) maintaining the Test Suite

	Location
	URL or filename of this test suite

	PublishDate
	Date of publication

	Status
	Status of this test suite

3.4 Structure of the Conformance Test Case

A Test Case evaluates an MSH implementation against a particular Conformance Test Requirement. The OASIS/ebXML MS Conformance Test Suite contains one or more Test Cases for each Test Requirement in [MSConfTestReq]. Conformance Test Cases “point to” a Conformance Test Requirement using that Requirements’ unique ID value.
[image: image7.jpg]
Figure 6 – Graphic representation of expanded view of the TestCase element
[mm1: Should we acknowledge that a specification requirement may be verified by one or more test cases in the suite? The possibility exists that multiple test cases will be required to validate the function.]
3.4.1 Elements of a Test Case

A Executable Test Case tests a Test Requirement assertion, and is executed by the Test Harness (both Test Driver and Test Service). It consists of the following components:

· Test Case Metadata – documentation for the Test Case, including Test Case name, author, reference to Conformance Test Requirement in the specification and classification of the requirement (REQUIRED, OPTIONAL, etc.)

· Test Steps – containers for message Operations

· Message Operations – include message construction, transmission, retrieval and verification and validation

3.4.2 Test Case Metadata

Metadata is required for each Test Case to provide documentation for the Conformance Test Report generated after completion of Conformance Test Suite execution. Providing such information permits easy trace-ability back to a particular Test Requirement, Specification Location and Author of the Test Case. Such completeness strengthens the integrity of the Conformance Test Suite, and provides quicker resolution of problems that may result from Test Case failure due to improper Test Case design, non-conformant MS implementation or specification ambiguity or error.

3.4.3 Test Steps

Test Steps are classes that MUST evaluate to a Boolean value of “true/false” or (semantically) a “pass/fail”. The aggregated result of all Test Steps in a Test Case MUST be ‘true’ for a Test Case result to be considered “Conformant” or ‘false’ for a ‘Non-conformant’ Test Case Instance result.

Prior to executing a Test Step, any configuration data necessary to modify the “default” configuration of the Test Driver MUST be included as content in the Test Step.

Unless the CPA reference is dynamically altered in a “PutMessage” Message Operation (see below), Test Steps will be executed under a pre-defined Collaboration Profile Protocol Agreement, as defined in [ebXML CPPA]. This agreement will provide configuration information to the candidate ebXML implementations involved in the testing, or the collaborations that execute on these implementations.

[mm1: In order to accommodate than other than a CPPA could be used (future with WS), would suggest we generalize this statement and then reference CPPA.]
In addition, the Test Driver itself will also require configuration. However, because the Test Driver is not a true MSH and is a testing component, the Test Driver MUST be configured initially for the Test Suite prior to executing its first Test Case. The configuration of the Test Driver MAY be modified at the Test Case or Test Step level through the use of individual Configuration Item modifications defined in the ebXMLTestSuite.xsd schema described in Appendix XX.[mm1: One business caveat, the terms and conditions of the agreement whereby the CPPA, delivery criteria, etc are defined may restrict what configuration modifications should be made. I realize that the test is against software at this point, but in the future it is possible that the requirements will be executed against a trading partner implementation (therefore the concern about the potential modification of the criteria derived from those terms and conditions).]
3.4.4 Message Operations

Within a Test Step, 3 main operations may be performed:

· PutMessage – Construct and send an ebXML Message in its entirety (including its MIME, SOAP and ebXML portions)

· GetSyncMessage – Retrieve synchronous ebXML Message(s) in its entirety (including its MIME, SOAP and ebXML portions) from the Persistent Store

· GetASyncMessage – Retrieve a asynchronous ebXML Message(s) in its entirety (including its MIME, SOAP and ebXML portions) Persistent Store

The GetSyncMessage and GetAsyncMessage Operation MAY invoke an additional Operation to retrieve a payload specific to the message:

· GetPayload – Retrieve a particular payload from the current message

Within a GetSyncMessage, GetAsycMessage or GetPayload Operation the Test Driver MAY perform additional operations to verify and/or validate returned XML content. These operations are:

· TestPreCondition – Using an XPath expression, evaluate the content of a message to determine if a condition is met to allow evaluation of a ConformanceCondition

· TestConformanceCondition – Using an XPath expression, evaluate the content of a message to determine if a conformance condition is met
Within a TestPreCondition or ConformanceCondition Operation, additional discreet validation of message content, or validation of the entire SOAP/ebXML message is possible through the use of the following self-descriptive operations:

· ValidateURI – Verify that a valid URI exists at the specified XPath
· ValidateTime - Verify that a valid date/time exists at the specified XPath
· ValidateSignature - Verify that a valid Signature exists at the specified XPath

· ValidateMessage –Verify that the entire current message is valid

· ValidatePayload –Verify that the entire payload message is valid

All ebXML message operations described above MUST use the syntax described in the ebXMLTestSuite.xsd schema described in Appendix XX.
3.4.4.1 The PutMessage Operation

Test Steps may require the construction of message data. This message data is a modification to a basic message envelope, for illustrative purposes only represented by a message envelope template (see Appendix XX). The message components that can be referenced and modified by a Test Case include:

· MIME header data: MIME headers MUST be created or modified using the declarative syntax described in the ebXMLTestSuite.xsd schema in Appendix XX. Default message MIME header data is illustrated in the message envelope template in Appendix XX. How the MIME headers are actually constructed in the Test Driver component is implementation dependent. MIME message content MUST be created or modified using the declarative syntax described in the ebXMLTestSuite.xsd schema described in Appendix XX.
· SOAP header and body data: SOAP message content MUST be created or modified using the declarative syntax described in the ebXMLTestSuite.xsd schema described in Appendix XX. Default message SOAP content is illustrated in the message envelope template in Appendix XX. How the actual SOAP message is constructed in the Test Driver is implementation dependent.
· ebXML Message data: ebXML message content MUST be created or modified using the declarative syntax described in the ebXMLTestSuite.xsd schema described in Appendix XX. Default message ebXML content is illustrated in the message envelope template in Appendix XX. How the actual ebXML message is constructed in the Test Driver is implementation dependent.

· ebXML payload data: ebXML message payload content MUST be created or modified using the syntax described in the ebXMLTestSuite.xsd schema described in Appendix XX. ebXML payloads are created through file or XML template inclusion into a message, and MAY be modified (if the payload is XML), through any implementation-specific declarative language. [mm1: ADD Note, it is recognized that the ebXML Message data MAY or MAY not include a payload.]
3.4.4.2 The GetAsyncMessage Operation

Test Steps may require correlation of returned asynchronous messages. The message components that may be queried by this operation include all MIME headers, all SOAP and ebXML message content. In order to provide a uniform query syntax for correlating message content, all persistently stored messages MUST validate to the ebXMLPersistentMessage.xsd schema in Appendix XX.

[mm1: Can we dictate persistence or just a mechanism to compare messages to the schema? It may be adequate to indicate that the comparison has to occur and the vehicle is not specified (inferred though). I understand your concept of a persistent store and its use, but can we dictate that?]
3.4.4.3 The GetSyncMessage Operation

Test Steps may require correlation of returned synchronous messages. The message components that may be queried by this operation include all MIME headers, all SOAP and ebXML message content. In order to provide a uniform query syntax for correlating message content, all persistently stored messages MUST validate to the ebXMLPersistentMessage.xsd schema in Appendix XX.

[mm1: See previous comment and reference this with our assumptions on Persistence.]
3.4.4.4 The TestPreCondition Operation

The TestPreCondition Operation evaluates the current message(s) or payload retrieved from the Persisten tStore, using a REQUIRED XPath expression. A result of ‘true’ (or semantically “pass”) occurs when the resulting Node Set returned by the evaluation is not empty. A result of ‘false’ (or semantically “fail”) occurs when the resulting Node Set returned by the evaluation is empty.

Multiple TestPreCondition Operations MAY exist within a GetSyncMessage or GetAsyncMessage Operation.

3.4.4.5 The TestConformanceCondition Operation

The TestPreCondition Operation evaluates the current message(s) or payload retrieved from the Persistent Store using a REQUIRED XPath expression. A result of ‘true’ (or sematically “pass”) occurs when the resulting Node Set returned by the evaluation is not empty. A result of ‘false’ (or semantically “fail”) occurs when the resulting Node Set returned by the evaluation is empty.

[mm1: Spell check throughout – ‘sematically’ is wrong throughout.]
Multiple TestConformanceCondition Operations MAY exist within a GetSyncMessage or GetAsyncMessage Operation.

3.4.4.6 The ValidateURI Operation

The ValidateURI Operation validates the discreet node identified in the XPath expression to determine if a valid URI exists at that included XPath. A result of ‘true’ (or sematically “pass”) occurs when the element or attribute value is a valid URI. A result of ‘false’ (or semantically “fail”) occurs when the element or attribute value is NOT a valid URI.

Only one ValidateURI Operation MUST exist within a TestPreCondition or TestConformanceCondition Operation.

3.4.4.7 The ValidateTime Operation

The ValidateTime Operation validates the discreet node identified in the XPath expression to determine if a valid date/time exists at the included XPath. A result of ‘true’ (or sematically “pass”) occurs when the element or attribute value is a valid date/time. A result of ‘false’ (or semantically “fail”) occurs when the element or attribute value is NOT a valid date/time.

Only one ValidateTime Operation MUST exist within a TestPreCondition or TestConformanceCondition Operation.

[mm1: Could time parameters apply to the condition and then to the conformance condition – indicating we will have two ValidateTime operations? I infer that is true by looking at the sentence above. This would apply to any such reference.]
3.4.4.8 The ValidateSignature Operation

The ValidateURI Operation validates the discreet Reference node identified in the XPath expression to determine if a valid Signature exists at that included XPath. A result of ‘true’ (or sematically “pass”) occurs when the Reference points to a validly Signed portion of the message. A result of ‘false’ (or semantically “fail”) occurs when the Signature Reference is NOT a validly Signed.

Only one ValidateSignature Operation MUST exist within a TestPreCondition or TestConformanceCondition Operation.

3.4.4.9 The ValidateMessage Operation

The ValidateMessage Operation validates the entire ebXML message. A result of ‘true’ (or sematically “pass”) occurs when the message validates against the ebXML messaging schema . A result of ‘false’ (or semantically “fail”) occurs when the message does not validate against the schema.

Only one ValdateMessage Operation MUST exist within a TestPreCondition or TestConformanceCondition Operation.

3.4.4.10 The ValidatePayload Operation

The ValidatePayload Operation validates the entire XML payload. A result of ‘true’ (or sematically “pass”) occurs when the payload validates against its schema(s). A result of ‘false’ (or semantically “fail”) occurs when the payload does not validate against its schema(s).

Only one ValidatePayload Operation MUST exist within a TestPreCondition or TestConformanceCondition Operation.
[mm1: Just for reference and real-world use, we can not assume the payload is XML. In Europe, and ebXML pilot, the participants are actually packaging an EDIFACT payload in an ebXML message. We should acknowledge that regardless if we specifically accommodate it. If this is implemented by the Test Service, just make a reference.]
[image: image8.png]
An example of a sequence of Test Steps associated with an MS Conformance Test Case is:

· Step 1: Test driver - coupled with a Wire Adapter - sends configuration data (CPA subset and test specific configuration if applicable, e.g. transport-related) to the Configurator action of the Test Service. This data is included in the payload of the message.

· Step 2: Test driver receives response message from Configurator action. The configuration was successful.

· Step 3: Test driver sends a sample message to the Reflector action of the Test Service. Message header data is obtained from message template XYZ, and message payload from ABC file. [mm1: Change if we are not using a template any longer. Revise text.]
· Step 4: Test driver receives the response message and adds it to the stored sequence for this Test Case instance (correlation with Step 3 is done based on the RefToMessageID attribute, which should be identical to the MessageId of Step 3.)

· Step 5: Test driver verifies the test condition on response message, for example that the SOAP envelope and extensions are well-formed.

Note: All test steps of a Test Case represent events that occur in the Test Driver, as it is where the execution of the Test Case is controlled. Events or actions that occur on other components of the test harness are not mentioned (e.g. reception of a message by a remote party). In case such actions are relevant to the execution of a Test Case, they should generate a recording (message) in the Test Driver.

3.4.5 About the Test Requirement Coverage

Some Test Requirements may be difficult or impossible to verify in a satisfactory manner. The reason for this generally resides in an inability to satisfy the pre-condition. When processing a Test Case, the Test Harness will attempt to generate an operational context or situation that intends to satisfy the pre-condition, and that is supposed to be representative enough of real operational situations. The set of such real-world situations that is generally or functionally covered by the pre-condition of the Test Requirement is called the run-time coverage of this test Requirement. This happens in the following cases:

· Partial run-time coverage: Technically, it is of course in general impossible to generate all the situations that should verify a test. It is however expected that the small subset of run-time situations generated by the Test Harness, is representative enough of all real-world situations that are relevant to the pre-condition. However, it is in some cases obvious that the Test Case definition (and its processing) will not generate a representative-enough (set of) situation(s). It could be that a significant subset of situations identified by the pre-condition of a Test Requirement cannot be practically set-up and verified. For example, this is the case when some combinations of events or of configurations of the implementation will not be tested due to the impracticality to address the combinatorial nature of their aggregation. Or, some time-related situations cannot be tested under expected time constraints.

· Contingent run-time coverage: It may happen that the test harness has no complete control in producing the situation that satisfies the pre-condition of a Test Requirement. This is the case for Test Requirements that only concern optional features that an implementation may or may not decide to exhibit, depending on factors under its own control and that are not understood or not easy to control by the test developers. An example is: “ IF the implementation chooses to bundle together messages [e.g. under some stressed operation conditions left to the appreciation of this implementation] THEN the bundling must satisfy condition XYZ”.

When a set of Test Cases is written for a particular set of Test Requirements, the coverage of these Test Requirements SHOULD also be specified. The Test Requirements coverage – not to be confused with the Specification Coverage - is represented by a list of the Test Requirements Ids, which associates with each Test Requirement :

(1) the Test Case (or set of Test Cases) that cover it,

(2) the degree to which the Test Requirement is covered (full, partial, none).

The coverage degree may be:

· Full: the Test Requirement item is fully covered by the set of Test Cases.

· Partial: the Test Requirement item is only partially covered by the associated set of Test Cases.

· None: the Test Requirement item is not covered at all: there is no associated Test Case.

The same Test Case may consolidate several Test Requirement items, i.e. a successful outcome of its execution will verify the associated set of Test Requirement items. This is usually the case when each of these Test Requirement items can make use of the same sequence of operations, varying only in the final test condition. When several Test Requirement items are covered by the same Test Case, the processing of the latter SHOULD produce separate verification reports (i.e. not all fail or not all pass)

4 Test Cases for MS Conformance

4.1 Test Cases Specification

4.1.1 Test Case: R0.1.1 [SchemaValidation]

Name: SchemaValidation
	r0.1.1
	SchemaValidation
	full
	ebMS-2#1.3
	
	REQUIRED:For each generated message, supports all mandatory syntax defined in Core plus Additional Features

Test Data Material:

CPAId: basic_A1

MSH-configuration: mshc_1

Message Payloads: mpld_1

Message Header Templates: mhdr_1

Message Envelope Templates: mtpl_1

Note1: these are identifiers of test material that is predefined and can be shared. The material identified is supposed to be available on each component of the test framework (here, to all actions of the Test Service, as well as to the Test Driver.)

Note2: initially, the MSH has a default configuration (and CPA), that allows for an initial message to be received from the test Driver, and correctly processed. It is RECOMMENDED that an initial “configuration” step is performed (as shown below), so that the test driver gets a confirmation that the MSH is well configured, and that the expected CPA for the test case is available. This assumes that the “Configurator” service/action maintains or has access to a list of installed CPAs, as well as to the current configuration status for the MSH.

Note3: The set of CPA entities needed for the Test Suite is supposed to be installed/accessible to the candidate MSH.

Note4: A conversation Id specific to each test case is suggested (number value= 10000+ testcase#). In case some configuration Steps are used at the beginning, these do not belong to this conversation, as they operate under the standard CPA, which may be different from the Test Case required CPA.

Test Steps:

· Step 1: Test Driver sends an initial message M0 to the Configurator action of the Test Service, containing expected configuration data.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_config).

· Step 2: Test Driver receives within time limit a response message M1 from Configurator action. Correlation: (M1.RefToMessageId = M0.MessageId). M1 reports that the expected configuration is in effect.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_response (result=OK)).

· Step 3: Test Driver sends a sample message M2 to the Reflector action of the Test Service.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_1).

· Suggested Conversation ID: 10110.

· Step 4: Test Driver receives within time limit a response message M3. Correlation: (M3.RefToMessageID = M2.MessageId).

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_1).

· Step 5: Verification. Test Case succeeds if: (Step 2 successful) AND (Step 4 successful) AND (M3 satisfies: Message envelope validates against the ebXML SOAP Extension Elements Schema.)

Test Case definition (XML):

4.1.2 Test Case: R1.1.2.1 [GenerateConformantSOAPWithAttachMIMEHeaders]

Name: GenerateConformantSOAPWithAttachMIMEHeaders
	r1.1.2.1
	GenerateConformantSOAPWithAttachMIMEHeaders
	partial
	ebMS-2#2.1.2
	(For each generated mesage, if it is multipart MIME or not text/xml)
	REQUIRED:The primary SOAP message is carried in the root body part of the message.

Test Data Material:

CPAId: basic_A1

MSH-configuration: mshc_1

Message Payloads: mpld_1, mpld_2

Message Header Templates: mhdr_1, mhdr_2

Message Envelope Templates: mtpl_1, mtpl_2

Test Steps:

· Step 1: Test Driver sends an initial message M0 to the Configurator action of the Test Service, containing expected configuration data.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_config).

· Step 2: Test Driver receives within time limit a response message M1 from Configurator action. Correlation: (M1.RefToMessageId = M0.MessageId). M1 reports that the expected configuration is in effect.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_response (result=OK)).

· Step 3: Test Driver sends a sample message M2 to the Reflector action of the Test Service, with several payloads (here 2, though 1 is enough for this test).

· Message Template: mtpl_2 (M-Header: mhdr_2, M-Payloads: mpld_1, mpld_2).

· Suggested Conversation ID: 11121.

· Step 4: Test Driver receives within time limit a response message M3. Correlation: (M3.RefToMessageID = M2.MessageId).

· Message Template: mtpl_2 (M-Header: mhdr_2, M-Payloads: mpld_1, mpld_2).

· Step 5: Verification. Test Case succeeds if: (Step 2 successful) AND (Step 4 successful) AND (M3 satisfies: primary SOAP message is in root body part.)

Test Case definition (XML):

4.1.3 Test Case: R1.2.5 [ReportInconsistentPartyIdContent]

Name: ReportInconsistentPartyIdContent
	ReportInconsistentPartyIdContent
	full
	ebMS-2#3.1.1.1
	(For each received message, PartyId does not contain a type attribute AND PartyId text node is not a URI)
	STRONGLY RECOMMENDED:MSH responds with an error (Inconsistent/Error)
	ReportInconsistentPartyIdContent

Test Data Material:

CPAId: basic_A1

MSH-configuration: mshc_1

Message Payloads: mpld_1

Message Header Templates: mhdr_1

Message Envelope Templates: mtpl_1

Test Steps:

· Step 1: Test Driver sends an initial message M0 to the Configurator action of the Test Service, containing expected configuration data.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_config).

· Step 2: Test Driver receives within time limit a response message M1 from Configurator action. Correlation: (M1.RefToMessageId = M0.MessageId). M1 reports that the expected configuration is in effect.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_response (result=OK)).

· Step 3: Test Driver sends a sample message M2 to the Mute action of the Test Service.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_1).

· Suggested Conversation ID: 11250.

· M-Header updates: PartyId (both): no type attr, no URI content.

· Step 4: Test Driver receives error message M3 within time limit. Correlation: (M3.RefToMessageID = M2.MessageId).

· Step 5: Verification. Test Case succeeds if: (Step 2 successful) AND (Step 4 successful) AND (M3 Error: severity=”Error”, code=”Inconsistent”.)

Test Case definition (XML):

Step 1: (recommended) …

Step 2: (recommended) …

Step 3:

<ebTest:step name=”s3”>
<ebTest:SetMessage>

<ebTest:M-template name="mtpl_1">

<!— ***** header set up -- >

<ebTest:M-Header name="mhdr_1">

<ebTest:Update type="xpath">Action = ‘Mute’</ebTest:Update>

<ebTest:Update type="xpath"> To/PartyId = 'null'</ebTest:Update>

<ebTest:Update type="xpath"> CPAId = 'basic_A1'</ebTest:Update>

<ebTest:Update type="xpath">ConversationId = ‘11250’ </ebTest:Update>

<ebTest:Update type="xpath">MessageData/MessageId = '123456' </ebTest:Update>

</ebTest:M-Header>

<!— ***** payload set up -- >

<ebTest:M-Payload name="mpld_1"/>

</ebTest:M-template>
<!— NOTE: the template mhdr_1 has no type attr for To and From PartyIds elt (
<!— NOTE: this template also does not have RefToMessageId elt, which is

added by Update statements that override default. (
<!— NOTE: the MessageId is decided by us, as Test Driver simulates an MSH (
</ebTest:SetMessage>

</ebTest:step>
Step 4:

<ebTest:step name=”s4”>

<ebTest:GetMessage>
<ebTest:M-Header>
<ebTest:Select part=”header” type="xpath"> MessageData/RefToMessageId = '123456' </ebTest: Select>
</ebTest:M-Header>
</ebTest:GetMessage>
</ebTest:step>

Step 5:

<ebTest:step name=”s5”>

<ebTest:Verification>

<ebTest:SuccessCond name=”C1”>
<ebTest:M-Header>
<ebTest:Select type="xpath">//Error/@errorCode = 'Inconsistent'

</ebTest:Select>

<ebTest:Select type="xpath">//Error/@severity = “Error”</ebTest:Select>
</ebTest:M-Header>

</ebTest:SuccessCond>

<!-- the general test condition: -- >

<… an expression style Schematron? (S2) AND (S4) AND (C1)…>

</ebTest:Verification >

</ebTest:step>

4.2 Test Data Material

4.2.1 MSH Config

4.2.1.1 mshc_1 (default)

Transport:

Protocol

HTTP 1.1

Timeout

300 sec
Security:

No support required

4.2.2 CPA Data

4.2.2.1 basic_A1 (default)

Transport:

 Protocol

HTTP 1.1

SyncReplyMode:

None
Reliability:

Retry/Timeout

Receipt Acknowledgement:
Not required

Response:

Not required

Response Acknowledgement:
Not required

Duplicate Check :

None
Order:

No
Security:

Encryption:

No

Signature:

No

Non-Repudiation

Origin

Not required

Receipt

Not required
Multi Hop:

No
Error:

ErrrorURI:

<URI of driver party>

4.2.3 Message Header Templates

4.2.3.1 mhdr_0

(used for generating messages with no payload)

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>urn:duns:123456789</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>urn:duns:912345678</eb:PartyId>

</eb:To>

<eb:CPAId>basic_A1</eb:CPAId>

<eb:ConversationId>20001209-133003-28572</eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>Mute</eb:Action>

<eb:MessageData>

<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>

<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

</SOAP:Body>

</SOAP:Envelope>

Note: underlined fields are usually most subject to modifications.

4.2.3.2 mhdr_1

(used for generating messages with one payload)

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>urn:duns:123456789</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>urn:duns:912345678</eb:PartyId>

</eb:To>

<eb:CPAId>basic_A1</eb:CPAId>

<eb:ConversationId>20001209-133003-28572</eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>Mute</eb:Action>

<eb:MessageData>

<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>

<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:mpld_1"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

Note: underlined fields are usually most subject to modifications.

4.2.3.3 mhdr_2

(used for generating messages with two payloads)

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>urn:duns:123456789</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>urn:duns:912345678</eb:PartyId>

</eb:To>

<eb:CPAId>basic_A1</eb:CPAId>

<eb:ConversationId>20001209-133003-28572</eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>Mute</eb:Action>

<eb:MessageData>

<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>

<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:mpld_1"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:mpld_2"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 2</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

Note: underlined fields are usually most subject to modifications.

4.2.4 Message Payloads

4.2.4.1 mpld_1

(a small XML payload)

<purchase_order>

<po_number>1</po_number>

<part_number>123</part_number>

<price currency="USD">500.00</price>

</purchase_order>

(here, URL referencing a real file for download)

4.2.4.2 mpld_2

(another small XML payload)

<purchase_order>

<po_number>2</po_number>

<part_number>456</part_number>

<price currency="USD">1500.00</price>

</purchase_order>

(here, URL referencing a real file for download)

4.2.4.3 mpld_config

This payload is used to communicate configuration data.

<testservice operation=”configuration”>

<MSH_configuration>mshc_1</MSH_configuration>

<CPA_configuration>basic_A1</CPA_configuration>

</testservice>

4.2.4.4 mpld_response

This payload is used to notify the outcome of an operation.

<testservice operation=”configuration”>

<result>OK</result>

<comment></comment>

</testservice>

4.2.4.5 mpld_2

(here, URL referencing a real file for download)

4.2.5 Message Envelope Templates

4.2.5.1 mtpl_0a

POST /servlet/ebXMLhandler HTTP/1.1

Host: www.example2.com
SOAPAction: "ebXML"

Content-type: multipart/related; boundary="BoundarY"; type="text/xml";

 start="<ebxml_iic_testing_mheader@testing.com>"

--BoundarY

Content-ID: <ebxml_iic_testing_mheader@testing.com>

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MHeader_Reference name=”mhdr_0”/>

--BoundarY––

Note: underlined fields are usually most subject to modifications.

4.2.5.2 mtpl_0b

<here, a non-multipart message envelope: just SOAP, no payload>

4.2.5.3 mtpl_1

POST /servlet/ebXMLhandler HTTP/1.1

Host: www.example2.com
SOAPAction: "ebXML"

Content-type: multipart/related; boundary="BoundarY"; type="text/xml";

 start="<ebxml_iic_testing_mheader@testing.com>"

--BoundarY

Content-ID: <ebxml_iic_testing_mheader@testing.com>

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MHeader_Reference name=”mhdr_1”/>

--BoundarY

Content-ID: <ebxml_iic_testing_mpayload_1@testing.com>

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MPayload_Reference name=”mpld_1”/>

--BoundarY––

Note: underlined fields are usually most subject to modifications.

4.2.5.4 mtpl_2

This template allows for two payloads.

POST /servlet/ebXMLhandler HTTP/1.1

Host: www.example2.com
SOAPAction: "ebXML"

Content-type: multipart/related; boundary="BoundarY"; type="text/xml";

 start="<ebxml_iic_testing_mheader@testing.com>"

--BoundarY

Content-ID: <ebxml_iic_testing_mheader@testing.com>

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MHeader_Reference name=”mhdr_2”/>

--BoundarY

Content-ID: <ebxml_iic_testing_mpayload_1@testing.com>

Content-Type: text/xml
<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MPayload_Reference name=”mpld_1”/>

--BoundarY

Content-ID: <ebxml_iic_testing_mpayload_2@testing.com>

Content-Type: text/xml
<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MPayload_Reference name=”mpld_2”/>

--BoundarY––

Part II. Appendices

Appendix A
(Normative) The ebXML Test Profile Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Profile schema using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification [XMLSchema].
<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-->

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/test-profile"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/test-profile"

>

<!-- $Id: TestProfile.xsd,v 1.2 2002/07/02 15:28:27 matt Exp $ -->

<element name = "TestProfile">

<complexType>

<sequence>

<element ref = "tns:Dependency" minOccurs = "0" maxOccurs = "unbounded"/>

<element ref = "tns:TestRequirementRef" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "requirementsLocation" use = "required" type = "anyURI"/>

<attribute name = "name" use = "required" type = "string"/>

<attribute name = "description" use = "required" type = "string"/>

</complexType>

</element>

<element name = "Dependency">

<complexType>

<attribute name = "name" use = "required" type = "string"/>

<attribute name = "profileRef" use = "required" type = "anyURI"/>

</complexType>

</element>

<element name = "TestRequirementRef">

<!-- To overide the conformance type of the underlying requirement ... -->

<complexType>

<sequence>

<element name = "Comment" type = "string" minOccurs = "0" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "id" use = "required" type = "string"/>

<attribute name = "conformanceType" use = "required" type = "tns:requirement.type"/>

</complexType>

</element>

<simpleType name = "requirement.type">

<restriction base = "string">

<enumeration value = "required"/>

<enumeration value = "strongly recommended"/>

<enumeration value = "recommended"/>

<enumeration value = "optional"/>

</restriction>

</simpleType>

</schema>

Appendix B
(Normative) The ebXML Test Requirements Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Requirements schema using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification [XMLSchema].
<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2001/XMLSchema-->

<schema xmlns = "http://www.w3.org/2001/XMLSchema"

 targetNamespace = "http://www.oasis-open.org/tc/ebxml-iic/conformance/reqs"

 xmlns:tns = "http://www.oasis-open.org/tc/ebxml-iic/conformance/reqs"

>

<group name = "SemanticRequirementGroup">

<sequence>

<element ref = "tns:SemanticRequirement"/>

</sequence>

</group>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2000/10/XMLSchema-->

<!-- OASIS/ebXML Test Suite Framework

 Description: Schema used to define ebXML Test Requirements instance document

Author: Michael Kass

 Organization: NIST

Author: Matthew MacKenzie

Organization: XML Global

Date: 03/31/2002

 Version 1.0

 -->

<!-- CHANGES:

Version 1.0 (Matt):

- added attributes conformanceType and name to Level.

- added other to functional.type enumeration.

-->

<element name = "TestRequirement">

<complexType>

<sequence maxOccurs = "unbounded">

<group ref = "tns:SemanticRequirementGroup"/>

</sequence>

<attribute name = "id" use = "required" type = "ID"/>

<attribute name = "name" use = "required" type = "string"/>

<attribute name = "specRef" use = "required" type = "string"/>

<attribute name = "functionalType" use = "required" type = "tns:functional.type"/>

</complexType>

</element>

<element name = "SemanticRequirement">

<complexType>

<sequence>

<element ref = "tns:Clause" minOccurs = "0"/>

<element ref = "tns:Assertion" maxOccurs = "unbounded"/>

</sequence>

<attribute name = "id" use = "required" type = "ID"/>

<attribute name = "name" use = "required" type = "string"/>

<attribute name = "specRef" use = "required" type = "string"/>

</complexType>

</element>

<element name = "Clause" type = "string"/>

<element name = "CONNECTIVEPREDICATE" type = "string"/>

<element name = "Condition">

<complexType>

<simpleContent>

<extension base = "string">

<attribute name = "conformanceType" use = "required" type = "tns:requirement.type"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name = "ConditionRef">

<complexType>

<attribute name = "id" use = "required" type = "IDREF"/>

</complexType>

</element>

<element name = "And" type = "string"/>

<element name = "Or" type = "string"/>

<element name = "Assertion">

<complexType>

<simpleContent>

<extension base = "string">

<attribute name = "conformanceType" use = "required" type = "tns:requirement.type"/>

</extension>

</simpleContent>

</complexType>

</element>

<element name = "MetaData">

<complexType>

<sequence>

<element ref = "tns:Description"/>

<element ref = "tns:Version"/>

<element ref = "tns:SourceControlInfo"/>

<element ref = "tns:Maintainer"/>

<element ref = "tns:Location"/>

<element ref = "tns:PublishDate"/>

<element ref = "tns:Status"/>

</sequence>

</complexType>

</element>

<element name = "Description" type = "string"/>

<element name = "Version" type = "string"/>

<element name = "SourceControlInfo" type = "string"/>

<element name = "Maintainer" type = "string"/>

<element name = "Location" type = "anyURI"/>

<element name = "PublishDate" type = "string"/>

<element name = "Status" type = "tns:pubStatus.type"/>

<simpleType name = "pubStatus.type">

<restriction base = "string">

<enumeration value = "DRAFT"/>

<enumeration value = "FINAL"/>

<enumeration value = "RETIRED"/>

</restriction>

</simpleType>

<simpleType name = "requirement.type">

<restriction base = "string">

<enumeration value = "required"/>

<enumeration value = "strongly recommended"/>

<enumeration value = "recommended"/>

<enumeration value = "optional"/>

</restriction>

</simpleType>

<simpleType name = "testLevel.type">

<restriction base = "string">

<enumeration value = "full"/>

<enumeration value = "most"/>

<enumeration value = "partial"/>

<enumeration value = "none"/>

</restriction>

</simpleType>

<simpleType name = "functional.type">

<restriction base = "string">

<enumeration value = "security"/>

<enumeration value = "reliable messaging"/>

<enumeration value = "packaging"/>

<enumeration value = "other"/>

</restriction>

</simpleType>

<simpleType name = "layerList">

<list itemType = "string"/>

</simpleType>

<element name = "Requirements">

<complexType>

<sequence>

<element ref = "tns:MetaData"/>

<element ref = "tns:TestRequirement" maxOccurs = "unbounded"/>

</sequence>

</complexType>

</element>

</schema>

Appendix C The ebXML Test Suite Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Suite schema using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification [XMLSchema].
It was necessary to craft a schema for the XLINK [XLINK] attribute vocabulary to conform to the W3C XML Schema Recommendation [XMLSchema].

[image: image9.png]
This schema is referenced from the ebXML SOAP extension elements schema and is available from the following URL:

Xlink - http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd
Appendix D
Terminology

MSH: Message Service Handler, an implementation of ebXML Messaging Services.
· Candidate Implementation (or Implementation Under test): The implementation (realization of a specification) used as a target of the testing (e.g. conformance testing).

· Conformance: Fulfillment of an implementation of all requirements specified; adherence of an implementation to the requirements of one or more specific standards or specifications.

· Conformance Profiles and Levels: Often implementations do not use all the features within a specification. In order to accommodate these implementations it may be desirable to divide a specification into sets of functions. Implementers would still be conforming if they implemented one or more of these sets rather than the entire standard. These sets are commonly implemented as profiles or levels. Profiles are used as a method for defining subsets of a specification by identifying the functionality, parameters, options, and /or implementation requirements necessary to satisfy the requirements of a particular community of users. Levels are used to indicate nested subsets of functionality, ranging from minimal or core functionality to full or complete functionality. Typically, Level 1 is the core of the specification that must be implemented by all products.

· Conformance Testing: Process of verifying the adherence or non-adherence of an implementation to a specification. Assumes black box testing. This means that the internal structure of the source code of a candidate implementation is not available to the tester.

· Test Assertions: A specification may include Test Assertions as part of the specification. A Test Assertion is a statement of behavior, action or condition that can be measured or tested. It is derived from the specification’s requirements and bridges the gap between the narrative of the specification and the test cases. Each test assertion is an independent, complete, testable statement for requirements in the specification. Each test assertion results in one or more test Cases. Examples of specifications that included test assertions as part of their specification include several IEEE (e.g. POSIX) and ISO standards (e.g. STEP).

· Test Case: Consists of a set of a test tool(s), software or files (data, programs, scripts, or instructions for manual operations) that checks a particular requirement in the specification to determine whether the results produced by the implementation match the expected results, as defined by the specification. Each Test Case includes: (1) a description of the test purpose (what is being tested - the conditions / requirements / capabilities which are to be addressed by a particular test, (2) the pass/fail criteria, (3) a reference to the requirement or section in the standard from which the test case is derived (traceability back to the specification).

· Test Material: Includes Test Suites, Test Cases (including test tools), Test Procedures.

· Test Procedures: Procedures to be followed when applying a Test Suite to a product for the purpose of Conformance Testing.

· Test Report: Document that presents the results of the testing effort, along with additional information required by the Certification Authority, if certification exists. The test report should provide enough information that if necessary, the testing effort could be duplicated. The test report should contain at least the following information: (1) a complete description of the implementation under test, (2) the date of testing, (3)name and version number of the test suite, (4) the results of executing the test suite, including any errors that may have been detected.

· Test Suite (or Conformance Test Suite): A combination of Test Cases and Test documentation. Is used to check whether an implementation satisfies the requirements in the standard. The test documentation describes how the testing is to be done and the directions to follow (Test Procedures). A test suite does not assess the performance of an implementation, unless performance requirements are specified in the specification.

[mm1: On the three terms below, I suggest we use ISO level definitions to be consistent with Guide 2 – see at end of this document – I have provided.]
· Validation of a Test Case: The process of determining if the Test Case correctly indicates conformance to the corresponding specification material.
· Verification of a Test Case: The process of determining if the Test Case assertion or condition is satisfied by some implementation material.

· Validation Process: Process of testing for conformance. The validation process consists of the steps necessary to perform testing by using an official test suite in a prescribed manner.

References

Non-Normative References

[ebTESTREQ]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebTESTSUITE]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.
 [ebRS]
ebXML Registry Services Specification, version 2.0, published 6 December 2001
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf,
published, 5 December 2001.
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf

[XMLSchema]
W3C XML Schema Recommendation,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[ebCPP]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebBPSS]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.

[ebMS] ebXML Messaging Service Specification, Version 2.0 http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service_Specification_v0-21.pdf
Contact Information

Team Leader
	Name
	

	
	

	
	

	
	

	
	

	
	

Vice Team Leader
	Name
	

	
	

	
	

	
	

	
	

	
	

Team Editor

	Name
	Michael Kass

	
	

	
	

	
	

	
	

	
	

Acknowledgments

The OASIS ebXML-MS Technical Committee would like to thank …

Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Copyright Statement

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
January 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

Intellectual Property Rights Statement

"OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director."
"OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director."
"OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights."
Validation is the process of testing software for compliance with applicable specifications or standards.

As indicated from Carnegie Mellon Software Engineering Institute (SEI), validation determines if the requirements and final system or software fulfills its specified use. “The Validation process determines whether the requirements and the final, as built system or software fulfills [sic] its specific intended use. This involves developing, documenting and implementing a validation plan for the project, preparing selected test requirements, test cases and test specifications for analyzing test results and testing the software as appropriate in selected areas of the target environment.”

Verification

verification: 1. In information assurance, comparing an activity, a process, or a product with the corresponding requirements or specifications. Note: Examples of verification are comparing a specification with a security policy model or comparing object code with source code. [2382-pt.8] 2. [The] process of comparing two levels of an information system (IS) specification for proper correspondence (e.g., security policy model with top-level specification, top-level specification with source code, or source code with object code). [INFOSEC-99]

As indicated from Carnegie Mellon SEI, the verification process determines whether the requirements for a system or software are complete and correct.

� Carnegie Mellon SEI, � HYPERLINK "http://www.sei.cmu.edu/iso-15504/resources/part2100.pdf" ��http://www.sei.cmu.edu/iso-15504/resources/part2100.pdf�

(Software Process Assessment – Part 2: A model for process management, Version 1.00)

� For verification, the definition can be found at:

http://www.its.bldrdoc.gov/projects/t1glossary2000/_verification.html

� Carnegie Mellon SEI, � HYPERLINK "http://www.sei.cmu.edu/iso-15504/resources/part2100.pdf" ��http://www.sei.cmu.edu/iso-15504/resources/part2100.pdf�

(Software Process Assessment – Part 2: A model for process management, Version 1.00)

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.
ebXML Testing Procedures Specification 0.0

Page 4 of 48
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

_1099674061.doc
[image: image1.png]

