[image: image17.jpg]Creating A Single Global Electronic Market

OASIS ebXML Testing Specification

December 2002

ebXML Messaging (2.0) Interoperability Test Suite

Version 0.6

(DRAFT)

OASIS ebXML Implementation, Interoperability and Conformance Technical Committee

December 1, 2002

	4Status of this Document

4ebXML Participants

5Introduction

51
Summary of Contents of this Document

51.1.1
Document Conventions

51.1.2
Audience

61.1.3
Caveats and Assumptions

61.1.4
Related Documents

61.2
Concept of Operation

61.2.1
Driving the Tests

71.2.2
Interoperability vs. Conformance

71.2.3
Asymmetric Testing

71.2.4
Application Contract

81.3
Minimal Requirements for Conformance to this Specification

92
Harness for MS Interoperability Testing

92.1
Architecture

102.2
The Test Service and its Actions

102.2.1
Test Service Actions

132.3
Structure of a Test Case

132.3.1
Elements of a Test Case

163
Test Cases for MS Basic Interoperability Profile

163.1
Basic Interoperability Profile Objectives

163.2
MS-BIP Test Cases Specification

163.2.1
Test Case 1.1: No payload basic exchange

173.2.2
Test Case 1.2: Basic exchange with one payload

193.2.3
Test Case 1.3: Basic exchange with three payloads

203.2.4
Test Case 1.4: Basic exchange with Error message

213.2.5
Test Case 1.5: Signed Message With Key Info

223.2.6
Test Case 1.6: Signed Message Without Key Info

233.2.7
Test Case 1.7: Synchronous Basic Exchange with one payload

243.2.8
Test Case 1.8: Acknowledgment exchange: Unsigned Data, Unsigned Ack

263.2.9
Test Case 1.9: Acknowledgment exchange: Signed Data, Signed Ack

273.2.10
Test Case 1.10: Synchronous Unsigned Acknowledgment exchange

283.3
Test Data Material

283.3.1
MSH Config

283.3.2
CPA Data

293.3.3
Message Header Templates

323.3.4
Message Payloads

333.3.5
Message Envelope Templates

36Appendix A – Terminology

40Appendix B – The ebXML Test Suite Schema

41Appendix C – Implementations of the Test Harness

41The “Point-to-point” Test Harness Implementation:

42The “Hub Driver” Test Harness Implementation:

43References

43Non-Normative References

44Contact Information

44Acknowledgments

44The OASIS ebXML-MS Technical Committee would like to thank …

45Disclaimer

45Copyright Statement

45Intellectual Property Rights Statement

Status of this Document

This document specifies ebXML interoperability testing specification for the eBusiness community. Distribution of this document is limited to OASIS ebXML Technical Committee (TC) members only.

The document formatting is based on the Internet Society’s Standard RFC format converted to Microsoft Word 2000 format.

Note: Implementers of this specification should consult the OASIS ebXML Implementation, Interoperability and Conformance Technical Committee (ebXML IIC TC) web site for current status and revisions to the specification
(http://www.oasis-open.org/committees/ebxml-iic/).

Specification
This is a DRAFT version of the specification.

This version

V0.6
This specification addresses conformance of the MS specification in:

V2.0 – http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
Errata to this version

None
Previous version

None
ebXML Participants

The authors wish to acknowledge the support of the members of the OASIS ebXML IIC who contributed ideas, comments and text to this specification by the group’s discussion eMail list, on conference calls and during face-to-face meetings.

(Co-authors and editors:)

	Steve Yung
	Sun Microsystems

	Sinha Prakash
	IONA

	Matt MacKenzie
	XML Global

	Hatem El-Sebaaly
	IPNetSolutions

	Monica Martin
	DrakeCertivo

	Jacques Durand
	Fujitsu Software

	Michael Kass
	NIST

(Contributors/reviewers:)

	Rik Drummond
	DGI

	Eric VanLydegraf
	Kinzan

	Christopher Frank
	SEEBURGER

The OASIS ebXML IIC TC would like to especially thank the Drummond Group for their contribution to the test cases.

Introduction

1 Summary of Contents of this Document

This specification defines ebXML Messaging interoperability testing. The testing procedure design and naming conventions follow the format specified in the Standard for Software Test Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

· Interoperability testing architecture

· Test cases for basic interoperability

· Test data materials

1.1.1 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms [ebGLOSS]. Terms listed in Bold Italics represent the element and/or attribute content. Terms listed in Courier font relate to test data. Notes are listed in Times New Roman font and are informative (non-normative). Attribute names begin with lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119] as quoted here:

· MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

· MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

· SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed before choosing a different course.

· SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

· MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides).

1.1.2 Audience

The target audience for this specification is:

· The community of software developers who implement and/or deploy the ebXML Messaging Service (ebMS),

· The testing or verification authority, which will implement and deploy conformance or interoperability testing for ebXML Messaging implementations.

1.1.3 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Messages with Attachments and security technologies.

1.1.4 Related Documents

The following set of related specifications are developed independent of this specification as part of the ebXML initiative, they can be found on the OASIS web site (http://www.oasis-open.org).

· ebXML Collaboration Protocol Profile and Agreement Specification (CPPA) – CPP defines one business partner's technical capabilities to engage in electronic business collaborations with other partners by exchanging electronic messages. A CPA documents the technical agreement between two (or more) partners to engage in electronic business collaboration. The MS Test Requirements and Test Cases will refer to CPA documents or data as part of their material, or context of verification.

· ebXML Messaging Service Specification (MS) – defines the messaging protocol and service for ebXML, which provide a secure and reliable method for exchanging electronic business transactions using the Internet.

· ebXML Test Framework – describes the test architecture, procedures and material that are used to implement the MS Interoperability Test Suite, as well as the test harness for this suite.

· ebXML MS Conformance Test Suite – describes the Conformance test suite and material for Messaging Services.

1.2 Concept of Operation

1.2.1 Driving the Tests

The Test Framework described here has been designed to achieve the following objectives:

· The MS Interoperability Test Suite can be run entirely and validated from one component of the framework [ebXMLTestFramework], called the Test Driver. This means that all test outputs will be generated - and test conditions verified - by the Test Driver, even if the test harness involves several – possibly remote – components of the framework
. Significant events occurring in such components are supposed to be communicated in some way to the Test Driver.

· The verification of each Test Case can be done at run-time by the Test Driver itself, as soon as the test case is completed. The outcome of the verification can be obtained immediately as the Test Suite has completed, and a report be generated.

1.2.2 Interoperability vs. Conformance

It is expected that some level of conformance testing be done prior to interoperability testing. For example, the interoperability test does not verify or diagnose the following:

· Invalid SOAP header and message

· Invalid ebXML information in SOAP header and message

· CPA Error and Resolution

· Unrecognized service

· Duplicate messages

· Simple error handling

All the tests above are defined in the ebXML Messaging conformance test suite, and are supposed to be passed prior to undergoing interoperability tests. If only from a logistic perspective, it is preferable to do as much verifications as possible during conformance testing, which typically involves a single message service handler (MSH), and is much easier to set-up than interoperability testing.

In other words, any MSH behavior that can be verified in a test harness that includes a single MSH (plus a test driver simulating another MSH) is relevant to conformance. Any MSH behavior that requires an exchange between two MSH’s for verification is relevant to interoperability. Since the team recognizes the high cost associated with organizing interoperability tests (administration and logistics), only those tests that are really essential to interoperability will be considered here.

1.2.3 Asymmetric Testing

The basic interoperability test suite defined here is intended to be driven from one party (or node) of the network, called the “driver party” (this is the party that includes the Test Driver). As it involves two parties, it is called a “binary” test suite.

The test suite is asymmetric. It means that, when run between two parties A and B, the same test suite may produce different results when driven from A (driver party = A) than when driven from B (driver party = B). This is because the test cases in this suite do not intend to verify exactly the same capability on each side.

In order to achieve a well-rounded interoperability testing, a binary, asymmetric interoperability test suite is supposed to be run twice. At each run, a different party acts as the driver party.

1.2.4 Application Contract

The test suites described here – in their current version - are testing interoperability at application level only, not at “wire” level. This means that the combination:

 { MSH1 + communication medium(transport) + MSH2 }

is treated as a black box. The test cases only verify that the contract Application1 – Application2 is satisfied. For example, no “sniffing” on the wire is needed in order to process these test cases, as everything related to the internal behavior of an MSH, or message conformance at transport level, is supposed to have been verified by conformance testing.

For example, when verifying that a digital signature is (a) well inserted by the sender, when the CPA requires so, and (b) that the recipient is able to validate it, should not require monitoring the wire or the internal behavior of an MSH, during interoperability tests. Testing for well insertion (a) should have occurred during conformance tests, which involve monitoring the “wire” for conformance of message elements such as a well-formed signature. As for recipient validation (b), only the effect of the “Service” behavior (application contract) will be checked: i.e. the received signed message is passed to the application, and no error is generated. The other aspect of recipient validation (b), which consists of verifying the ability of the receiver to detect bad signatures and to act appropriately, is supposed to have been verified during conformance testing. However, because there is an interoperability element to it, it can be reproduced in an interoperability suite. In that case, the external behavior (i.e. the expected “service”) will be checked: a message will be sent signed with the wrong key. On the receiver side, the effect should be that the message is not passed to the application, and an error will be generated.

1.3 Minimal Requirements for Conformance to this Specification

An implementation of this specification MUST satisfy ALL of the following conditions to be considered a conforming implementation:

· It supports all the mandatory syntax, features and behavior (as identified by the [RFC2119] key words MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 – Document Conventions.

<mm1: Need to add a basic set of requirements for core functionality if appropriate. Given that, please notify the CEN-ISSS team which has asked about this.>
2 Harness for MS Interoperability Testing

2.1 Architecture

This section describes how to configure the Test Framework elements for testing interoperability between implementations of the ebXML Messaging Service specification (2.0).

As mentioned above, interoperability testing will be asymmetrical: one party – called the driver – will drive the test cases, the other party – called the responder – will respond to messages initiated by the driver party. With this test harness, the Test Suite will be controlled from the “driver” party, and does not necessarily verifies the same capabilities on both sides. In order to get a full interoperability test between Party A and Party B, the test suite should be repeated after both parties have swapped the (driver/responder) roles.

The components of the framework that are involved in interoperability testing are:

On the driver party:

· An instance of the Test Driver component, coupled with a Test Service. This coupling consists of: (1) the ability for the Test Driver to trigger an action of the Test Service (typically, the Initiator action), (2) the ability for the Test Driver to be notified of actions triggered in the Test Service by received messages. The driver party will initiate and process all test cases.

· An instance of the Test Service component, which will directly interact with the driver party’s MSH Service Interface. Note that the Test Driver does not need to interact directly with the MSH.
On the responder party:

· An instance of the Test Service component (same as in the driver party), which will support test actions invoked by messages received by the responder MSH.
Figure 8 illustrates the test harness for MS interoperability testing.

[image: image1.png](optional)
Test Trace

Test Cases

Test Test

_ _ e |
Service Service THher

/ Test Repotts
z E T +Toeee

(000

Candidate |- Candidate
MSH 2 '0’ MSH 1
(responder party) (driver party)

Fig 8. MS Interoperability Test Harness

The typical Interoperability test case procedure will consists of a sequence of test steps. The Test Driver will control each of these steps. These steps will:

· Sending messages – the content of which is specified in the test case – to some action of the responder’s Test Service.

· Receiving messages from the responder’s Test Service.

· Analyzing the content of received messages, possibly in correlation with other message data, received or sent during the same test case, in order to validate the requirement of the test case.

· Reporting on the test case outcome.

· Optionally (and prior to executing a test case), configure the MSH(s) for the message conversation(s) that will be generated by the Test Case(s), with CPA data. Normally, the installation of CPAs to be used for a test suite is supposed to be done prior to executing the test suite. However, the Configurator action of a Test Service may be invoked – either directly by the Test Driver on driver party, or remotely by a message on responder party-, with new CPA data. The expected effect is the dynamic creation and installation of a new CPA, on the MSH associated with this Test Service. <mm1: Need to put more specifics around this assumption.>
Appendix C illustrates how this test harness can be implemented.

2.2 The Test Service and its Actions

The Test Service name is: ebXML_IIC_Testing.

A Test Case is described as a sequence of Test Steps. These Test Steps will consist of atomic operations executed by the components of the test Framework, e.g. sending a message, verifying a condition on a received message, etc. Most operations about messages are supported by the Test Service component, described in the Test Framework specification.

In the following, the “requestor” represents the party that originates the message that triggers the action in the remote (or responder) MSH. The requestor is usually the driver party, where the Test Driver resides. Note that some test actions may send a response message that is intended to a response action. In case no Test Service is used on requestor side (e.g. in case there is only a Test Driver generating messages directly on the wire), such an action is irrelevant to the recipient.

2.2.1 Test Service Actions

The standard test actions are:

2.2.1.1 Mute action
Description: This is a “dummy” action, which does not generate any response message back. This action will report invocations and their content to the local Test Driver (if the Test Service is coupled with a Test Driver).

In driver mode: will notify the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“mute”) and the instance ID of the Test Service.

2.2.1.2 Dummy action
Description: This is a “dummy” action, used by messages that do not need any specific response, and the sending of which only needs to cause some side-effect in the MSH, like generating an error. On invocation, this action will however generate a pre-canned response message back (no payload), referring to the previous MessageID (for correlation) in the RefToMessageId header attribute.

Destination: the Mute action of the requestor’s Test Service. This notice serves as proof that the message has reached the responder’s Test Service, although no assumption can be made on the integrity of its content.

In driver mode: will notify the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“dummy”) and the instance ID of the Test Service.

2.2.1.3 Reflector (or Responder) action
Description: On invocation, this action generates a response to a received message, by using the same message material, with minimal changes in the header:

· Swapping of the to/from parties so that the “to” is now the initial requestor.

· Setting RefToMessageId to the ID of the received message.

· All other header elements (except for time stamps) are unchanged. The conversation ID remains unchanged, as well as the CPAId. The payload is the same as in the received message, i.e. same attachment(s).

Destination: the Mute action of the requestor’s Test Service. This action acts somehow as a reflector for the requesting party.

In driver mode: notifies the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“reflector”) and the instance ID of the Test Service.

2.2.1.4 Initiator action
Description: On invocation, this action generates a new message, totally unrelated to the received message. The new message material (payload and header) is provided in a pre-convened way in the payload of the received message. The header of the new message can be anything that is specified. For example, this action would be used to generate a "first" message of a new conversation, different from the conversation ID specified in the invoking message. Note: unlike in the Reflector action, MSH-controlled header attributes will not be determined by the invoking message header (messageID, RefToMessageId, timestamps...). So if the response needs to refer to the previous MessageID (for correlation), the RefToMessageId must be explicitly pre-set in the message material.

Destination: any service/action of the sender, specified with message material (by default: the Mute action of the requestor’s Test Service.)

In driver mode: in addition to generating the message, notifies the associated Test Driver, with header and payload(s) material. The notification will report the action name (“initiator”) and the instance ID of the Test Service.

2.2.1.5 PayloadVerify action
Description: On invocation, this action will compare the payload(s) of the received message, with reference payloads (files) pre-installed on the Test Service host. This action will test the service contract (application – MSH), as errors may originate either on the wire, or at every level of message processing in the MSH until message data is passed to the application. The action responds with a notification message to the requestor, about the outcome of the comparison. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response. The payload will contain an XML document of the form: <testservice><payload>…</ payload >< /testservice>. The payload element may have values: “validated” or “not-validated”. Destination: the Mute action of the requestor’s Test Service.

In driver mode: will notify the associated Test Driver, with received header and payload(s) material. The notification will report the action name (“payloadvalidate”) and the instance ID of the Test Service.

2.2.1.6 ErrorAppNotify action
Description: This action will capture specific error notifications from the MSH to its using application. It is not triggered by reception of an error message, but it is directly triggered by the internal error module of the MSH local to this Test Service. If the MSH implementation does not support such direct notification of the application (e.g. instead, it writes such notifications to a log), then an adapter needs to be written to read this log and invoke this action whenever such an error is notified. Such errors fall into two categories:

· MSH errors that need to be directly communicated to its application – and not to any remote party, e.g. failure to send a message (no Acks received after maximum retries).

· In case regular errors are generated by an MSH with a severity level set to “Error” – as opposed to “Warning” – the MSH is supposed to (SHOULD) also notify its application. The ErrorAppNotify action is intended to support both types of notifications. The action will make such notifications visible to the other party (typically the driver party), by generating a “report” message back to the requestor, which can check and report on the notified error.

Destination: the Mute action of the requestor’s Test Service.

In driver mode: will notify an error to the associated Test Driver.

2.2.1.7 ErrorURLNotify action
Description: This action will capture error messages, assuming that an adapter has been written for invoking this action. The adapter must have same URI as the ErrorURI specified in the CPA. The adapter will pass the entire message as is (in its ebXML envelope) to the action. The action extracts the ErrorCode and Severity elements, and sends then a notification message back to the originator. The action will make such notifications visible to the other party (typically the driver party), by generating a “report” message back to the requestor.

Destination: the Mute action of the requestor’s Test Service.

In driver mode: only notifies the associated Test Driver, with received header material (no report message generated). The notification will report the action name (“ErrorURLNotify”) and the instance ID of the Test Service.

2.2.1.8 Configurator action
Description: This action is called to either dynamically (re)configure the receiver party, or to verify that the receiver party has the right configuration set-up. Configuration may concern:

· MSH internals assumed by a test case (if applicable),

· CPA set-up assumed by a test case,

· Test Service parameters (e.g. ID, response-URL, mode of operation). In the case of CPA, the action can verify that the collaboration agreement for a conversation related to a test case or a set of test cases, is available. If the payload only contains a CPAId, this action will verify that the corresponding CPA is accessible. If the payload contains a CPA document, this CPA will be added to the available CPAs that the MSH can use. One way this can be done is by calling a configuration function of the MSH (via adapter code to its API). A response is generated back to the requestor. The previous MessageID is reported (for correlation) in the RefToMessageId header attribute of the response. When used to set some internal state of the Test Service, the message payload must contain an XML document of the form: <testservice><mode>…</mode><responseURL>…</responseURL>< /testservice>. The mode element can have values: “driver” or “non-driver”. The optional responseURL element specified the URL to which response messages must be sent. This action will be used in case the Test Service needs to be remotely and dynamically configured. For example, several remote Test Service instances may be started, and which one belongs to the driver party may be decided afterward. Or, the roles of two Test Service instances may need to be switched during an interoperability test, yet the switching be controlled from the same location.

Destination of response: the Mute action of the requestor’s Test Service.

In driver mode: notifies the associated Test Driver, e.g. with received CPAId. The notification will report the action name (“configurator”) and the instance ID of the Test Service.

Note: As previously mentioned, these actions are predefined and part of the test framework, and will require some integration code with the MSH implementation, in form of three adapters, to be provided by the MSH development (or user) team. These adapters are:

· Reception adapter, which is specific to the MSH call-back interface. This code allows for invocation of the actions of the Test Service, on reception of a message.

· MSH control adapter, which will be invoked by some Test Service actions, and will invoke in turn the MSH-specific Message Service Interface (or API). Examples of such invocations are for sending messages (e.g. by actions which send response messages), and MSH configuration changes (done by the Configurator action).

· Error URL adapter, which is actually independent from the candidate MSH. This adapter will catch error messages, and invoke the ErrorURLNotify action of the Test Service which should normally be associated with the Test Driver (driver mode).

<mm1: Need to reference back to the alternate condition for the ErrorURLNotify that provides an alternative path of a log available to the application for verification rather than the use of an adapter. See Section 2.1.1.6.>
2.3 Structure of a Test Case

2.3.1 Elements of a Test Case

A test case is a sequence of Test Steps. A Test Step is an atomic operation that is performed by one of the components of the Test Framework. A Test Case instance is an execution of a particular Test Case, identified by some specific message attribute values. For example, two instances of the same Test Case will be distinguished by distinct MessageID values in the generated messages.

A Test Case is the translation of a Test Requirement, in an executable form, for a particular Test Harness. It is made of the following parts:

· Test Harness reference.

· Test Requirement reference.

· Sequence of Test Steps.

· Condition of success or of failure.

Some Test Steps will require message data. This message data will be identified by a message envelope template, which can be modified for this particular Test Case (e.g. change in references, change in element value). The message elements that can be referenced by a Test Case are:

· Message header data: it is represented in form of message header templates, that are XML documents analogous to a regular message header. The template is a list of template elements, each element being a pair < path (XMLPath) inside the header, value>. A message header template can be modified, i.e. either extended by adding new template elements, or modified by overriding elements of the template with new ones with different values, or yet modified by removing template elements. Message header templates can be converted into regular, conforming ebXML message header documents, or can be passed as arguments of a request to an MSH API adapter, which will convert it into a proprietary API call.

· Message payload data: it is represented in form of payload files, that can hold any kind of MIME content (XML or not). The content of a payload file will be inserted as a MIME part in a message.

· Message envelope data: describes the MIME envelope to be used for packaging header and payload(s).

Test Cases will be executed under a pre-defined agreement, as defined in CPA [ebXML CPPA]. This agreement will configure the ebXML implementations involved in the testing, or the collaborations that execute on these implementations. Each Test Case will therefore reference a Test Configuration document.

· Test Configuration document: it contains (1) a CPA (or CPA-like) document, (2) MSH configuration data, expressed at an abstract level and expected to be general enough to most MSH implementations, even if not specified.

Figure 6 illustrates how a Test Case references message data and configuration data.

[image: image2.png]Test Case

refersnces
references
Test
Steps
references
An XML document

Test Cases
Database

ML and data
artifacts

| Test
Cases

Test configuration
sets
(MSH+ CPA)

| Message
payloads

Message header
templates

Fig 6. Test Case Document and Database

An example of a sequence of Test Steps associated with an MS Interoperability Test Case is:

· Step 1: Test driver sends a sample message M1 to the Reflector action of responder party (via the Initiator action of the Test Service of the driver party). Message header data is obtained from message template XYZ, and message payload from PurchaseOrder123 file.

· Step 2: Test driver receives the response message M2 from responder party, and adds it to the stored sequence for this Test Case instance (correlation with message of Step 1 is done based on the RefToMessageID attribute, which should be identical to the MessageId of Step 1.)

· Step 3: Test driver verifies the test condition on response message, for example that the received payload (PurchaseOrder123) in M2 is identical to the sent payload in M1.

Notes:

· All test steps of a Test Case represent events that occur in the Test Driver, as it is where the execution of the Test Case is controlled. Events or actions that occur on other components of the test harness are not mentioned (e.g. reception of a message by a remote party). In case such actions are relevant to the execution of a Test Case, they should generate a recording (message) in the Test Driver.

· The set of CPA entities needed for the all the Test Cases of a Test Suite is supposed to be installed/accessible to both MSHs on each party, prior to executing the test cases.

<mm1: Since this is at an interoperability level – need to identify how or where the Test Service sees these conditions or the after-affect.>
3 Test Cases for MS Basic Interoperability Profile

3.1 Basic Interoperability Profile Objectives

The Basic Interoperability Profile is intended to be the baseline of business interoperability (with a focus on basic ebXML MS core services and reliable messaging). This profile may not be sufficient to address specific business requirements of a user community: this is not its objective. Specific requirements will be addressed by additional, more specific profiles (e.g. large payloads, use of encryption, etc.).

Users will design these additional interoperability profiles, if these are not already specified in the IIC test suites. In order to be conforming to the IIC test framework specification and the MS test suites, any new profile should:

· Include the Basic Interoperability Profile (i.e. extend it)

· Be described using the test material (test case scripting, test architecture) specified in the ebXML Test Framework.

The ebXML MS basic interoperability profile (MS-BIP) intends to provide a common interoperability standard across ebXML user communities. Like the ebXML MS specification, it is intended to be protocol independent. However, for interoperability, the protocol must be specified. MS-BIP is parameterized by the transport protocol. Considering either HTTP or SMTP as protocols, we have two instances of the Basic Interoperability Profile:

· MS-BIP-HTTP, for HTTP

· MS-BIP-SMTP, for SMTP

In a nutshell, the MS-BIP is verifying:

· Various types of messages are exchanged: no payloads, multiple payloads, different types of payloads.

· Asynchronous responses (as well as Synchronous over HTTP connections).

· All signals normally expected from an MSH (Acks and Errors) are tested for interoperability, i.e. making sure the other MSH will “understand” them properly. (the “conformance” semantics of these signals has already been tested during conformance testing, e.g. they manifest as well-formed envelope elements, or they are generated when they should.)

· When digital signatures are used, they must be properly understood and validated on each side, especially with various combinations and options that may affect interoperability (about key info, about signature of signals such Ack.)

3.2 MS-BIP Test Cases Specification

3.2.1 Test Case 1.1: No payload basic exchange

Rationale:

The test case verifies that an incoming message is well received and triggers the right action on Responder side. There is no check of the integrity of the received message, except its ability to trigger the Dummy action of the responder Test Service. A predefined response message (no payload) is generated by the Test Service of responder. There is no check on this message, except its ability to trigger the Mute action of the driver Test Service, which will record the reception.

Test Data Material:

· CPAId: basic_A1

· MSH-configuration: mshc_1

· Message Payloads: none

· Message Header Templates: mhdr_0

· Message Envelope Templates: mtpl_0a

Note: these are identifiers of test material that is predefined and can be shared. The material identified is supposed to be available on each component of the test framework (here, to both driver and responder parties.)

Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Dummy action of the Test Service of the responder party. This is done by invoking the Initiator action of the driver party Test Service.

· Message Template: mtpl_0a (M-Header: mhdr_0).

· Suggested Conversation ID: 10101 (101 = 1.1)

2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (from Dummy action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful within time limit) <mm1: Shouldn’t the verification be at the point of the driver party Test Service?>

[image: image3.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify

Verification condition:

•

M2 received before timeout, correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(no payload)

M2

Diagram for Test Case 1.1

Test Case definition (XML):

3.2.2 Test Case 1.2: Basic exchange with one payload

Rationale:

The test case verifies that an incoming message is well received, triggers the right action on Responder side, and passes its payload to application (Reflector action of Test Service). A response message is generated by the Test Service of responder (Reflector action), sending back the same message - except for expected changes in header - with same payload. The received message triggers the Mute action of the driver Test Service, which will record the reception. The received payload is compared with the payload initially sent.

Test Data Material:

· CPAId: basic_A1

· MSH-configuration: mshc_1

· Message Payloads: mpld_1

· Message Header Templates: mhdr_1

· Message Envelope Templates: mtpl_1

Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Reflector action of the Test Service of the responder party.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_1).

· Suggested Conversation ID: 10102. (102 = 1.2)

2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (from Reflector action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful) AND (M2.payload = M1.payload)

[image: image4.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.2

M2

(one payload)

Test Case definition (XML):

<mm1: Again are we not verifying at the Driver Test Service? This would be the invocation not the actual notification itself right? Similar question on all these – at what point are we verifying the service function?>
3.2.3 Test Case 1.3: Basic exchange with three payloads

Rationale:

The test case verifies that an incoming message with multiple payloads of different types (two XML, one binary) is well received, triggers the right action on Responder side, and passes its payload to application (Reflector action of Test Service). A response message is generated by the Test Service of responder (Reflector action), sending back the same message - except for expected changes in header - with same payloads. The received message triggers the Mute action of the driver Test Service, which will record the reception. The received payloads are compared with the initially sent payloads.

Test Data Material:

· CPAId: basic_A1

· MSH-configuration: mshc_1

· Message Payloads: mpld_1, mpld_2, mpld_3

· Message Header Templates: mhdr_3

· Message Envelope Templates: mtpl_3

Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Reflector action of the Test Service of the responder party.

· Message Template: mtpl_1 (M-Header: mhdr_3, M-Payloads: mpld_1, mpld_2, mpld_3).

· Suggested Conversation ID: 10103

2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (from Reflector action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful) AND (M2.payload1 = M1.payload1) AND (M2.payload2 = M1.payload2) AND (M2.payload3 = M1.payload3)

[image: image5.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Diagram for Test Case 1.3

M1

(three payload)

M2

(three payload)

Test Case definition (XML):

3.2.4 Test Case 1.4: Basic exchange with Error message

Rationale:

The test case verifies that error messages are well received by the driver party. The driver party should provide its URL as ErrorURL, as mandated by the CPA “basic_A1”. The test does not cover that errors are generated with the right code: that is done by conformance tests. A “bad” message is sent to the Dummy action of the responder Test Service. The responder MSH should send back an Error, which should be notified to the sender (driver party) via its ErrorURLNotify action, which will record the reception.

Test Data Material:

· CPAId: basic_A1

· MSH-configuration: mshc_1

· Message Payloads: mpld_1

· Message Header Templates: mhdr_1

· Message Envelope Templates: mtpl_1

Test Steps:
1. Test Driver (driver party) sends a sample message M1 to the wrong action of the Test Service of the responder party. In the message header, the Service/Action fields are set to inexisting Service/Action values.

· Header modified: mhdr_1’ <here, introduce the error by modifying header mhdr_1>

· Message Template: mtpl_1 (M-Header: mhdr_1’, M-Payloads: mpld_1).

· Suggested Conversation ID: 10104

2. Test Driver (driver party) receives within time limit an error message M2 via the ErrorURLNotify action of its local Test Service. Correlation: (M2.RefToMessageID = M1.MessageId).

3. Verification. Test Case succeeds if: (Step 2 successful)

[image: image6.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

wrong

action

ErrorURL

Notify

Action

invoked

Notify Error

Verification condition:

•

Error received before timeout

•

correlates with M1

Step 1

Step 2

Step 3

Diagram for Test Case 1.4

M1

(one payload)

Error

Test Case definition (XML):

3.2.5 Test Case 1.5: Signed Message With Key Info

Rationale:

The test case verifies message exchange with digital signature (with key info). The key info is embedded in the message. Note: the response does not have to be signed (the ability to sign messages from the other party, will be tested when running the same test case from the other party, as the test suite is asymmetric, see Section 1).

Test Data Material:

· CPAId: basic_A1 (with Signature set to Yes)

· MSH-configuration: mshc_2

· Message Payloads: mpld_1

· Message Header Templates: mhdr_1

· Message Envelope Templates: mtpl_1 (add in digital signature info)

Test Steps:
· “Initiator” on driver side sends signed message to Reflector action of recipient.

· “Mute” action on driver side receives (unsigned) notification message from Reflector, with same payload.

· Verification: (payloads are same) and (no error message received)

[image: image7.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.5

M2 (unsigned)

(one payload)

Unsign

Using

Cert.

3.2.6 Test Case 1.6: Signed Message Without Key Info

Rationale:

The test case verifies message exchange with digital signature (without key info). The key info is NOT embedded in the message, it is available on recipient side from a certificate. Note: the response does not have to be signed (the ability to sign messages from the other party, will be tested when running the same test case from the other party, as the test suite is asymmetric, see Section 1).

Test Data Material:

· CPAId: basic_A1 (with Signature set to Yes)

· MSH-configuration: mshc_2

· Message Payloads: mpld_1

· Message Header Templates: mhdr_1

· Message Envelope Templates: mtpl_1

Test Steps:
· “Initiator” on driver side sends signed message to Reflector action of recipient. The entire message is signed.

· “Mute” action on driver side receives (unsigned) notification message from Reflector, with same payload.

· Verification: (payloads are same) and (no error message received)

<mm1: Would this be another adapter function that may be used to implement this test – certificate testing?>

[image: image8.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.6

M2 (unsigned)

(one payload)

Unsign

Using

Key info.

3.2.7 Test Case 1.7: Synchronous Basic Exchange with one payload

Rationale:

This is the synchronized version of Test Case 1.2 (SyncReply element is present in sent message). This test case is for synchronous transport only (HTTP).

Test Data Material:

· CPAId: basic_A1 (with syncReplyMode set to “signalsAndResponse”)

· MSH-configuration: mshc_1

· Message Payloads: mpld_1

· Message Header Templates: mhdr_1

· Message Envelope Templates: mtpl_1

Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Reflector action of the Test Service of the responder party.

· Message Template: mtpl_1 (M-Header: mhdr_1, M-Payload: mpld_1).

· Suggested Conversation ID: 10102. (102 = 1.2)

2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (from Reflector action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful) AND (M2.payload = M1.payload)

<mm1: How do you verify that this is over the same delivery channel for sync?>

[image: image9.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.7

M2

(one payload)

Synchronized

3.2.8 Test Case 1.8: Acknowledgment exchange: Unsigned Data, Unsigned Ack

Rationale:

Test the ability of two MSHs to exchange and understand each other’s ack signals.

Test Data Material:

· CPAId: basic_A1
(At sending MSH: Retry turned ON,)
(At receiver MSH: No duplicate check)

· MSH-configuration: mshc_1

· Message Payloads: mpld_1

· Message Header Templates: mhdr_1 (add Acknowledge element)

· Message Envelope Templates: mtpl_1

Test Steps:

· “Initiator” on driver side sends unsigned message to Dummy action of recipient, with AckRequested element.

· “Mute” action on driver side receives a single (unsigned) response message from Dummy. NOTE: in case Ack is not received or understood, driver MSH will resend message of step 1, and several responses from Dummy will be observed.

· Verification: (exactly ONE response message from Dummy is received in Step 2) and (no error message received)

<mm1: Step to verify that the Ack is understood.>

[image: image10.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

Only one correlating M2 received before timeout

•

correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.8 (pass)

M2

(one payload)

Ack

Note: because Acknowledgements are MSH-level signals, it is not possible to observe them from the application side. However, this is not the objective of this test to verify the proper generation of well-formed Ack signals: this must have been verified using conformance tests before.

The objective of this test only consists of verifying that Acks generated by an MSH are well interpreted by the other MSH implementation. In order to do this verification, it is sometimes necessary to check the log of the sender MSH, to verify if an Ack was received. In case the Ack was not well received or understood by the sender, two situations may occur:

The sender MSH will resend the same original message (M1), causing multiple invocations of the Dummy action on receiver side, which in turn will cause several responses (M2) to be notified to the Test Driver. This would be detected at application level (Test Service of the driver), as in figure below.

The sender retry mechanism is not working properly, so no multiple invocations of the Dummy action on receiver side will occur – only the initial invocation. In that case, a single response will be observed on sender side, which is also the observed effect in case of successful verification. Therefore, the only way to detect such a failure, is to “manually” access the log of the MSH to ensure the Ack was well received. It must be noted that this case should be considered as exceptional, since the ability to resend is supposed to have been checked by conformance testing.

The failure case (a) above will translate into the following exchange:

[image: image11.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Notify M2

Verification condition (failure):

•

More than one M2 received before timeout, correlating with M1

OR: no

Ack

logged by MSH1 (manual check)

OR: error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.8 (failure)

M2

(one payload)

Ack

M1 (resend)

Dummy

Action

invoked

Message to

Mute

action

M2

(one payload)

Mute

invoked

Mute

invoked

Notify M2

3.2.9 Test Case 1.9: Acknowledgment exchange: Signed Data, Signed Ack

Rationale:

Test the ability of two MSHs to exchange and understand each other’s signed ack signals (for non-repudiation), while the business messages are signed.

Test Data Material:

· CPAId: basic_A1
(At sending MSH: Retry turned ON, set Signature to Yes)

· MSH-configuration: mshc_1

· Message Payloads: mpld_1

· Message Header Templates: mhdr_1 (add Acknowledge element)

· Message Envelope Templates: mtpl_1

Test Steps:

· “Initiator” on driver side sends unsigned message to Dummy action of recipient, with AckRequested element.

· “Mute” action on driver side receives a single (unsigned) response message from Dummy. NOTE: in case Ack is not received or understood, driver MSH will resend message of step 1, and several responses from Dummy will be observed.

· Verification: (exactly ONE response message from Dummy is received in Step 2) and (no error message received)

[image: image12.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

Only one correlating M2 received before timeout

•

correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.9

M2

(one payload)

Ack

3.2.10 Test Case 1.10: Synchronous Unsigned Acknowledgment exchange
Rationale:

Test the ability of two MSHs to exchange and understand each other’s ack signals, in a synchronous set-up. The CPA will have SyncReplyMode set to “signals only”, so there is not overlap with Test Case 1.7. This is a fairly common case where the HTTP connection is not kept open for business messages (for which response time may be long), but is kept open for MSH signals, for efficiency purpose. So the Ack is immediately sent back on the same connection as the message. . NOTE: The actual ability of the responder to send Acks on a same HTTP connection, based on CPA requirement, is assumed to have been tested by conformance tests. Only the interoperability aspect of it is tested here.

Test Data Material:

· CPAId: basic_A1
(At sending MSH: Retry turned ON)
(At receiver MSH: No duplicate check)
(At both MSH, set Signature to Yes)

· MSH-configuration: mshc_1

· Message Payloads: mpld_1

· Message Header Templates: mhdr_1 (add Acknowledge element)

· Message Envelope Templates: mtpl_1

Test Steps:

· “Initiator” on driver side sends unsigned message to Dummy action of recipient, with AckRequested element.

· “Mute” action on driver side receives a single (unsigned) response message from Dummy. NOTE: in case Ack is not received or understood, driver MSH will resend message of step 1, and several responses from Dummy will be observed.

· Verification: (exactly ONE response message from Dummy is received in Step 2) and (no error message received)

[image: image13.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

Only one correlating M2 received before timeout

•

correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.10

M2

(one payload)

Ack

Synchronized

3.3 Test Data Material

3.3.1 MSH Config

3.3.1.1 mshc_1 (default)

Transport:

Protocol

HTTP 1.1

Timeout

300 sec
Security:

No support required

3.3.1.2 mshc_2

Transport:

Protocol

HTTP 1.1

Timeout

300 sec
Security:

Supported

3.3.2 CPA Data

3.3.2.1 basic_A1 (default)

Transport:

 Protocol

HTTP 1.1

SyncReplyMode:

None
Reliability:

Retry/Timeout

Receipt Acknowledgement:
Not required

Response:

Not required

Response Acknowledgement:
Not required

Duplicate Check :

None
Order:

No
Security:

Encryption:

No

Signature:

No

Non-Repudiation

Origin

Not required

Receipt

Not required
Multi Hop:

No
Error:

ErrrorURI:

<URI of driver party>

3.3.3 Message Header Templates

3.3.3.1 mhdr_0

(used for generating messages with no payload)

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>urn:duns:123456789</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>urn:duns:912345678</eb:PartyId>

</eb:To>

<eb:CPAId>basic_A1</eb:CPAId>

<eb:ConversationId>20001209-133003-28572</eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>Mute</eb:Action>

<eb:MessageData>

<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>

<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

</SOAP:Body>

</SOAP:Envelope>

Note: underlined fields are usually most subject to modifications.

3.3.3.2 mhdr_1

(used for generating messages with one payload)

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>urn:duns:123456789</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>urn:duns:912345678</eb:PartyId>

</eb:To>

<eb:CPAId>basic_A1</eb:CPAId>

<eb:ConversationId>20001209-133003-28572</eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>Mute</eb:Action>

<eb:MessageData>

<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>

<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:mpld_1"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

Note: underlined fields are usually most subject to modifications.

3.3.3.3 mhdr_2

(used for generating messages with two payloads)

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>urn:duns:123456789</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>urn:duns:912345678</eb:PartyId>

</eb:To>

<eb:CPAId>basic_A1</eb:CPAId>

<eb:ConversationId>20001209-133003-28572</eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>Mute</eb:Action>

<eb:MessageData>

<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>

<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:mpld_1"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:mpld_2"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 2</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

Note: underlined fields are usually most subject to modifications.

3.3.3.4 mhdr_3

(used for generating messages with three payloads)

<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>urn:duns:123456789</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>urn:duns:912345678</eb:PartyId>

</eb:To>

<eb:CPAId>basic_A1</eb:CPAId>

<eb:ConversationId>20001209-133003-28572</eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>Mute</eb:Action>

<eb:MessageData>

<eb:MessageId>20001209-133003-28572@example.com</eb:MessageId>

<eb:Timestamp>2001-02-15T11:12:12</eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:mpld_1"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:mpld_2"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 2</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:mpld_3"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 3</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

Note: underlined fields are usually most subject to modifications.

3.3.4 Message Payloads

3.3.4.1 mpld_1

(a small XML payload)

<purchase_order>

<po_number>1</po_number>

<part_number>123</part_number>

<price currency="USD">500.00</price>

</purchase_order>

(here, URL referencing a real file for download)

3.3.4.2 mpld_2

(another small XML payload)

<purchase_order>

<po_number>2</po_number>

<part_number>456</part_number>

<price currency="USD">1500.00</price>

</purchase_order>

(here, URL referencing a real file for download)

3.3.4.3 mpld_3

(A binary payload)

 (here, URL referencing a real file for download)

3.3.4.4 mpld_config

This payload is used to communicate configuration data.

<testservice operation=”configuration”>

<MSH_configuration>mshc_1</MSH_configuration>

<CPA_configuration>basic_A1</CPA_configuration>

</testservice>

3.3.4.5 mpld_response

This payload is used to notify the outcome of an operation.

<testservice operation=”configuration”>

<result>OK</result>

<comment></comment>

</testservice>

3.3.4.6 mpld_2

(here, URL referencing a real file for download)

3.3.5 Message Envelope Templates

3.3.5.1 mtpl_0a

POST /servlet/ebXMLhandler HTTP/1.1

Host: www.example2.com
SOAPAction: "ebXML"

Content-type: multipart/related; boundary="BoundarY"; type="text/xml";

 start="<ebxml_iic_testing_mheader@testing.com>"

--BoundarY

Content-ID: <ebxml_iic_testing_mheader@testing.com>

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MHeader_Reference name=”mhdr_0”/>

--BoundarY––

Note: underlined fields are usually most subject to modifications.

3.3.5.2 mtpl_0b

<here, a non-multipart message envelope: just SOAP, no payload>

3.3.5.3 mtpl_1

POST /servlet/ebXMLhandler HTTP/1.1

Host: www.example2.com
SOAPAction: "ebXML"

Content-type: multipart/related; boundary="BoundarY"; type="text/xml";

 start="<ebxml_iic_testing_mheader@testing.com>"

--BoundarY

Content-ID: <ebxml_iic_testing_mheader@testing.com>

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MHeader_Reference name=”mhdr_1”/>

--BoundarY

Content-ID: <ebxml_iic_testing_mpayload_1@testing.com>

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MPayload_Reference name=”mpld_1”/>

--BoundarY––

Note: underlined fields are usually most subject to modifications.

3.3.5.4 mtpl_2

This template allows for two payloads.

POST /servlet/ebXMLhandler HTTP/1.1

Host: www.example2.com
SOAPAction: "ebXML"

Content-type: multipart/related; boundary="BoundarY"; type="text/xml";

 start="<ebxml_iic_testing_mheader@testing.com>"

--BoundarY

Content-ID: <ebxml_iic_testing_mheader@testing.com>

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MHeader_Reference name=”mhdr_2”/>

--BoundarY

Content-ID: <ebxml_iic_testing_mpayload_1@testing.com>

Content-Type: text/xml
<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MPayload_Reference name=”mpld_1”/>

--BoundarY

Content-ID: <ebxml_iic_testing_mpayload_2@testing.com>

Content-Type: text/xml
<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MPayload_Reference name=”mpld_2”/>

--BoundarY––

3.3.5.5 mtpl_3

This template allows for three payloads of different kind.

POST /servlet/ebXMLhandler HTTP/1.1

Host: www.example2.com
SOAPAction: "ebXML"

Content-type: multipart/related; boundary="BoundarY"; type="text/xml";

 start="<ebxml_iic_testing_mheader@testing.com>"

--BoundarY

Content-ID: <ebxml_iic_testing_mheader@testing.com>

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MHeader_Reference name=”mhdr_3”/>

--BoundarY

Content-ID: <ebxml_iic_testing_mpayload_1@testing.com>

Content-Type: text/xml
<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MPayload_Reference name=”mpld_1”/>

--BoundarY

Content-ID: <ebxml_iic_testing_mpayload_2@testing.com>

Content-Type: text/xml
<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MPayload_Reference name=”mpld_2”/>

--BoundarY

Content-ID: <ebxml_iic_testing_mpayload_3@testing.com>

Content-Type: ????
<?xml version="1.0" encoding="UTF-8"?>

<ebXML_IIC_Testing_MPayload_Reference name=”mpld_3”/>

--BoundarY––

To be added

 Appendix A – Terminology

MSH: Message Service Handler, an implementation of ebXML Messaging Services.
· Candidate Implementation (or Implementation Under test): The implementation (realization of a specification) used as a target of the testing (e.g. conformance testing).

· Certificate of Validation (or Brand, or Claim of Conformance): document assessing the degree to which a candidate implementation satisfies the requirements of a specification, as resulting from a validation process. Is based on the testing results and established criteria for issuing the certificates. The criteria indicates the set of tests (or number, or percentage) that an implementation must pass in order to receive a certificate. A certificate might only state that an implementation was tested to completion and provide a list of the errors found. A successful validation does not warrant that the product is free of non-conformities, even if all tests passed.

· Certification: The acknowledgement that a validation has been completed and the criteria established by the certifying organization for issuing a certificate, has been met. Certification cannot exist without validation, but validation can exist without certification. [mm1: See note on verification.]
· Certification Authority (or Certificate Issuer): Organization responsible for issuing certificates for validated products whose functions have been verified. The Certification Authority may be a trade association, consortium, standard group, government agency or private sector company.

· Conformance: Fulfillment of an implementation of all requirements specified; adherence of an implementation to the requirements of one or more specific standards or specifications.

· Conformance Clause: Is a part or collection of parts of a specification that defines the requirements, criteria or conditions that must be satisfied by an implementation in order to claim conformance. The conformance clause identifies what must conform and how conformance can be met. Typically the conformance clause is a high-level description of what is required of implementers and applications. It may refer to other parts of the standard. It may specify sets of properties, which may take the form of profiles or levels. It may specify minimal requirements for certain functions and for implementation-dependent values. A conformance clause (1) promotes a common understanding of conformance and what is required to claim conformance to a specification, (2) facilitates consistent application of conformance within a specification, (3) promotes uniformity in the development of conformance test suites.

· Conformance Profiles and Levels: Often implementations do not use all the features within a specification. In order to accommodate these implementations it may be desirable to divide a specification into sets of functions. Implementers would still be conforming if they implemented one or more of these sets rather than the entire standard. These sets are commonly implemented as profiles or levels. Profiles are used as a method for defining subsets of a specification by identifying the functionality, parameters, options, and /or implementation requirements necessary to satisfy the requirements of a particular community of users. Levels are used to indicate nested subsets of functionality, ranging from minimal or core functionality to full or complete functionality. Typically, Level 1 is the core of the specification that must be implemented by all products.

· Conformance Testing: Process of verifying the adherence or non-adherence of an implementation to a specification. Assumes black box testing. This means that the internal structure of the source code of a candidate implementation is not available to the tester.

· Falsification: Test method that attempts to find errors in an implementation to determine if it correctly implements the requirements in a given specification. Falsification testing can only demonstrate non-conformance. If errors are found, the implementation does not conform. The absence of errors does not necessarily imply the converse.

· Interoperability Testing: Process of verifying that two implementations of the same specification, or that an implementation and its operational environment, can interoperate according to the requirements of an assumed agreement or contract. This contract does not belong necessarily to the specification, but its terms and elements should be defined in it with enough detail, so that such a contract, combined with the specification, will be sufficient to determine precisely the expected behavior of an implementation, and to test it.

· Test Assertions: A specification may include Test Assertions as part of the specification. A Test Assertion is a statement of behavior, action or condition that can be measured or tested. It is derived from the specification’s requirements and bridges the gap between the narrative of the specification and the test cases. Each test assertion is an independent, complete, testable statement for requirements in the specification. Each test assertion results in one or more test Cases. Examples of specifications that included test assertions as part of their specification include several IEEE (e.g. POSIX) and ISO standards (e.g. STEP).

· Test Case: Consists of a set of a test tool(s), software or files (data, programs, scripts, or instructions for manual operations) that checks a particular requirement in the specification to determine whether the results produced by the implementation match the expected results, as defined by the specification. Each Test Case includes: (1) a description of the test purpose (what is being tested - the conditions / requirements / capabilities which are to be addressed by a particular test, (2) the pass/fail criteria, (3) a reference to the requirement or section in the standard from which the test case is derived (traceability back to the specification).

· Testing Laboratory: Organization and its environment that tests an implementation, using the official conformance test suite. May be recognized by the consumer, implementer, and Certification Authority as qualified to perform testing for a given validation program. The Testing Laboratory produces a Test Report.

· Test Material: Includes Test Suites, Test Cases (including test tools), Test Procedures.

· Test Method or Methodology: Specified technical procedure to design a Test Suite for a given specification.

· Test Procedures: Procedures to be followed when applying a Test Suite to a product for the purpose of Conformance Testing.

· Test Report: Document that presents the results of the testing effort, along with additional information required by the Certification Authority, if certification exists. The test report should provide enough information that if necessary, the testing effort could be duplicated. The test report should contain at least the following information: (1) a complete description of the implementation under test, (2) the date of testing, (3)name and version number of the test suite, (4) the results of executing the test suite, including any errors that may have been detected.

· Test Suite (or Conformance Test Suite): A combination of Test Cases and Test documentation. Is used to check whether an implementation satisfies the requirements in the standard. The test documentation describes how the testing is to be done and the directions to follow (Test Procedures). A test suite does not assess the performance of an implementation, unless performance requirements are specified in the specification.

· Validation of a Test Case: The process of determining if the Test Case correctly indicates conformance to the corresponding specification material.

· Validation of an Implementation: Process of testing for conformance. The validation process consists of the steps necessary to perform testing by using an official test suite in a prescribed manner.
· Verification of a Test Case: The process of determining if the Test Case assertion or condition is satisfied by some implementation material. [mm1: See previous comments on verification.]
· Validation Process: Process of testing for conformance. The validation process consists of the steps necessary to perform testing by using an official test suite in a prescribed manner.

Appendix B – The ebXML Test Suite Schema

The OASIS ebXML Implementation and Interoperability Committee has provided a version of the ebXML Test Suite schema using the schema vocabulary that conforms to the W3C XML Schema Recommendation specification [XMLSchema].
It was necessary to craft a schema for the XLINK [XLINK] attribute vocabulary to conform to the W3C XML Schema Recommendation [XMLSchema].

[image: image14.png]¥ Temtsuite

¥ Tentane g

¥ Sepayload |

g |8 Comentocsting 5[8 Coment Transfer Encoiing

—

o[¥ PatdCard

¥ Garttes:

(Ereg

This schema is referenced from the ebXML SOAP extension elements schema and is available from the following URL:

Xlink - http://www.oasis-open.org/committees/ebxml-msg/schema/xlink.xsd
Appendix C – Implementations of the Test Harness

The test harness described in Section 2 could be implemented in different ways. For illustration purpose, we outline two of these.

The “Point-to-point” Test Harness Implementation:

This configuration is appropriate when two parties engage in interoperability testing without any third-party assistance, Each party will in turn play the driver party, and operate the Test Driver (install test cases, drive the executions, generate the reports.)

[image: image15.png]Host #2

Host #1

MSH 1
(driver party)

Candidate

Fig 9. Point-to-point implementation

In this configuration, the Test Driver invokes directly the Initiator action of the associated Test Service in order to trigger an exchange. The Test Driver is also directly notified by these. There is no need to generate messages on the wire for doing this, as both components reside on the same host.

The “Hub Driver” Test Harness Implementation:

This configuration is appropriate when two parties engage in interoperability testing with the help of a third-party, which facilitates the testing. Each party will still in turn play the driver party, but the third party will operate the Test Driver (install test cases, drive the executions, generate the reports.) The two candidate parties would only make sure their MSH and Test Service are up and running, and that the CPAs associated with the test suite are accessible.

[image: image16.png]Candidate
MSH 2
(driver party)

x

Candidate

Fig 10. Hub-driver implementation

10

In this configuration, the Test Driver invokes remotely the Initiator action of the Test Service of the driver party, in order to trigger an exchange. The Test Driver interfaces directly at transport level, generating message material as done in conformance testing. The notification from the actions of the Test Service (driver party side), will be done by messages sent to the Test Driver (Hub URL). Once an exchange is triggered, both end-points can send messages to each other, directly or through the Hub node, used as a simple route

References

Non-Normative References

[ebTESTREQ]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebTESTSUITE]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.
 [ebRS]
ebXML Registry Services Specification, version 2.0, published 6 December 2001
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf,
published, 5 December 2001.
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf

[XMLSchema]
W3C XML Schema Recommendation,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[ebCPP]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebBPSS]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.

[ebMS] ebXML Messaging Service Specification, Version 2.0 http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service_Specification_v0-21.pdf
Contact Information

Team Leader
	Name
	

	
	

	
	

	
	

	
	

	
	

Vice Team Leader
	Name
	

	
	

	
	

	
	

	
	

	
	

Team Editor

	Name
	Michael Kass

	
	

	
	

	
	

	
	

	
	

Acknowledgments

The OASIS ebXML-MS Technical Committee would like to thank …

Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Copyright Statement

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
January 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

Intellectual Property Rights Statement

"OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director."
"OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director."
"OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights."

� [Monica] The test driver is actually a component used in the test, the verification occurs as a separate step and not actually ‘in’ the test driver. Subtle but necessary to ensure the verification occurs independent of the test steps themselves (those prior to the verification step). This applies to both bullets – see conformance assumptions that are evolving that the verification is a separate step in the test case. [Steve] Need to get this resolved since this does not match the Test Harness picture.

� By PayloadVerify correct?

� Where is the step with the Certificate tested?

� As indicated from Carnegie Mellon SEI, the verification process determines whether the requirements for a system or software are complete and correct. From: Carnegie Mellon SEI, � HYPERLINK "http://www.sei.cmu.edu/iso-15504/resources/part2100.pdf" ��http://www.sei.cmu.edu/iso-15504/resources/part2100.pdf�

(Software Process Assessment – Part 2: A model for process management, Version 1.00)

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.
ebXML MS (2.0) Testing Specification V0.6

Page 4 of 29
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

_1100607672.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

wrong

action

ErrorURL

Notify

Action

invoked

Notify Error

Verification condition:

		Error received before timeout

		correlates with M1

Step 1

Step 2

Step 3

Diagram for Test Case 1.4

M1

(one payload)

Error

_1100607713.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.2

M2

(one payload)

_1100608143.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		 Only one correlating M2 received before timeout

		 correlates with M1

		 No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.9

M2

(one payload)

Ack

_1100608385.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		 Only one correlating M2 received before timeout

		 correlates with M1

		 No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.10

M2

(one payload)

Ack

Synchronized

_1100607727.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify

Verification condition:

		M2 received before timeout, correlates with M1

		No error message generated

Step 1

Step 2

Step 3

M1

(no payload)

M2

Diagram for Test Case 1.1

_1100607691.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

Diagram for Test Case 1.3

M1

(three payload)

M2

(three payload)

_1100607620.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.6

M2 (unsigned)

(one payload)

Unsign

Using

Key info.

_1100607650.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.5

M2 (unsigned)

(one payload)

Unsign

Using

Cert.

_1100607525.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		 Only one correlating M2 received before timeout

		 correlates with M1

		 No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.8 (pass)

M2

(one payload)

Ack

_1100607578.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		 No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.7

M2

(one payload)

Synchronized

_1100606718.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Notify M2

Verification condition (failure):

		 More than one M2 received before timeout, correlating with M1

OR: no Ack logged by MSH1 (manual check)

OR: error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.8 (failure)

M2

(one payload)

Ack

M1 (resend)

Dummy

Action

invoked

Message to

Mute

action

M2

(one payload)

Mute

invoked

Mute

invoked

Notify M2

