Choosing a Message Creation/Manipulation Language for the ebXML MS Conformance Test Suite

Author: Michael Kass, NIST

Date: 11/25/2002
Purpose

Provide an “easy to use” and “easy to implement” approach to ebXML message creation that minimizes the technical hurdles and maximizes speed and efficiency for implementations of an ebXML MS Test Driver.

Technical Issues

In order to facilitate adoption of the ebXML IIC Conformance/Interoperability Test Framework, we must minimize the technical hurdles for its implementation. This includes both the Test and the Test Driver components of the framework.

While the Test Service component of the Test Framework is specified in a generalized way that allows implementers to use their own API to provide the Service Actions necessary to conform to the Test Framework Requirements, the Test Driver Specification is not “implementation neutral”.

As currently specified in the ebXML Test Framework document, the Test Driver utilizes “templates”, (in memory or in files) as a base message, and a “template manipulation language” to modify the message prior to sending it over the wire.

One of the barriers of such an approach is the requirement for all implementations to adopt a standard template language and technology, such as XUpdate or XSLT. Availability of the technologies (IP and licensing issues) add a hurdle to adoption of the IIC Test Framework specification. An ebXML implementer can better re-use their own existing ebXML MS API for building a Test Driver if they are not constrained by external technology requirements such as a template tool.

In addition, such template technology is less efficient from a processing standpoint, as both cases would require the additional overhead of a transform engine in order to build the message, as opposed to “on the fly” document construction through the use of an API approach.

To speed up adoption of ebXML IIC Testing Framework, I propose that we adopt a declarative, “API-driven” approach to message construction in our Test Driver. By using an XML syntax that closely resembles the actual ebXML Messaging schema syntax, Test Driver implementations can use any underlying API for building their MIME, SOAP and ebXML message content, without the need to “lock into” any particular template technology.

Conformance Issues

Adoption of this proposal will have no impact on the approach to Conformance Testing, only its implementation.

Interoperability

Adoption of this proposal will have no impact on the approach to Interoperability Testing, only its implementation.

Example Cases

Attached is an “Executable Test Suite” (as opposed to an Abstract Test Suite) that uses the proposed XML syntax. The new syntax can be found in the “Message Expression” column of the ebXML MS Executable Test Suite file.

The syntax is straight-forward. For example, to send a basic “Dummy” message would require the following:

<MIME:Message>

<MIME:Container>

<SOAP:Envelope>

<SOAP:Header>

<eb:MessageHeader Action="Dummy">

<eb:CPAId>cpa_basic</eb:CPAId>
[mm1: Suggest we are more generic, in that a CPPA may not be used – future accommodation for general purpose usage.]
</eb:MessageHeader>

</SOAP:Header>

</SOAP:Envelope>

</MIME:Container>

</MIME:Message>

A <MIME:Message/> element directs the Test Driver to construct a “default” MIME message container, with default values for Content-Type=”multipart/related”, start=”myStartValue” and other MIME parameters.

A <MIME:Container/> directs the Test Driver to construct the MIME container for the SOAP message, with default values for Content-Type=”text/xml” and charset=”UTF-8” etc..

A <SOAP:Envelope/> and <SOAP:Header> directive creates those two elements in the message, with the appropriate namespace declarations.

If I wish to override values, for example MIME Message and Container defaults, then I would specify:

<MIME:Message content-type=”text/xml” start=”MyNewStartValue” >

<MIME:Container charset=”ASCII”>

ebXML message content would follow the same type of rule, with “default document object constructors” for each element, which can be “overridden” by explicit declaration of attribute or sub-element content.

For example a “default” eb:MessageHeader element would direct the Test Driver to construct a MessageHeader element with system supplied defaults for most values. In addition, if content is not provided by “sub-elements” (such as From/PartyId), default values are provided by the Test Driver:

· id (Test Driver generated default)
· version attribute (Test Driver generated default of “2.0”)

· a SOAP mustUnderstand (Test Driver generated default of “1”)

· From (Test Driver generated default)
· To (Test Driver generated default)
· CPAId (supplied by Test Case)
· ConversationId (Test Driver generated default)
· Service (Test Driver generated default = “ebXML:IIC:TestService”)
· Action (supplied by Test Case)
· MessageData (Test Driver generated default)
· DuplicateElimination (Test Driver generated default = “false”)
The same approach can be taken with generating Manifest, ErrorList and other Core Extension Elements.

For the “SetPayload” operation the same approach also works:

<MIME:Container content-id="cid:payload_1" fileRef="mpld_basic.xml" />

The above element would direct the Test Driver to construct a second MIME container, with default MIME header values, plus overriding the default content-id and telling the Test Driver where to get the actual payload for inclusion in the MIME container.

Test Case #3 in the attached “ebXML Conformance Executable Test Suite” html document shows an example of combining the syntax for both message and payload.

Action Items:
In order to implement this approach, the following actions must occur:

1. Modify the current ebXMLTestSuite.xsd schema to define this new syntax

2. Modify the ebXML Conformance Test Suite document to reflect changes in documentation describing the new syntax, and its functionality

3. Update the ebXML Conformance Executable Test Suite.xml file to reflect the new syntax

4. Update the ebXML Test Framework Document (cut and paste) to reflect these changes

[mm1: Would this be included in our first draft release, or a subsequent version?]
