[image: image16.jpg]
OASIS ebXML Testing Specification

December 2002

ebXML Messaging (2.0) Basic Interoperability Test Suite

Version 0.8
(DRAFT)

OASIS ebXML Implementation, Interoperability and Conformance Technical Committee

January 27, 2003

	4Status of this Document

4ebXML Participants

5Introduction

51
Summary of Contents of this Document

51.1.1
Document Conventions

51.1.2
Audience

61.1.3
Caveats and Assumptions

61.1.4
Related Documents

61.2
Objectives and Methodology

61.2.1
Interoperability Profiles

71.2.2
A Basic Interoperability Profile

71.2.3
Related Initiatives and Contributing Parties

81.3
Concept of Operation

81.3.1
Driving the Tests

81.3.2
Interoperability vs. Conformance

91.3.3
Asymmetric Testing

91.3.4
Application Contract

91.4
Minimal Requirements for Conformance to this Specification

102
Harness for MS Interoperability Testing

102.1
Architecture

112.2
The Test Service and its Actions

122.2.1
Test Service Actions

123
Test Cases for MS Basic Interoperability Profile

123.1
The Basic Interoperability Profile

123.2
MS-BIP Test Cases Specification

133.2.1
Test Case 1.1: No payload basic exchange

143.2.2
Test Case 1.2: Basic exchange with one payload

153.2.3
Test Case 1.3: Basic exchange with three payloads

163.2.4
Test Case 1.4: Basic exchange with Error message

173.2.5
Test Case 1.5: Signed Message With Key Info

183.2.6
Test Case 1.6: Signed Message Without Key Info

193.2.7
Test Case 1.7: Synchronous Basic Exchange with one payload

203.2.8
Test Case 1.8: Acknowledgment exchange: Unsigned Data, Unsigned Ack

223.2.9
Test Case 1.9: Acknowledgment exchange: Signed Data, Signed Ack

233.2.10
Test Case 1.10: Synchronous Unsigned Acknowledgment exchange

243.3
The two Basic Interoperability Profiles Variants and Test Suites

243.3.1
The HTTP Basic Interoperability Profile

253.3.2
The SMTP Basic Interoperability Profile

254
Details of Test Material

254.1
Configuration of the Test Harness and MSH Implementation

254.1.1
MSH Config

264.1.2
CPA Data

284.1.3
Default Message Headers

324.1.4
Message Payloads

324.2
BIP Test Suite Script

455
Appendix A – Implementations of the Test Harness

455.1
The “Point-to-point” Test Harness Implementation:

465.2
The “Hub Driver” Test Harness Implementation:

466
Appendix B – Test Suite XML Script

47References

47Non-Normative References

48Contact Information

48Acknowledgments

48The OASIS ebXML-MS Technical Committee would like to thank …

49Disclaimer

49Copyright Statement

49Intellectual Property Rights Statement

Status of this Document

This document specifies ebXML interoperability testing specification for the eBusiness community. Distribution of this document is limited to OASIS ebXML Technical Committee (TC) members only.

The document formatting is based on the Internet Society’s Standard RFC format converted to Microsoft Word 2000 format.

Note: Implementers of this specification should consult the OASIS ebXML Implementation, Interoperability and Conformance Technical Committee (ebXML IIC TC) web site for current status and revisions to the specification
(http://www.oasis-open.org/committees/ebxml-iic/).

Specification
This is a DRAFT version of the specification.

This version

V0.6
This specification addresses conformance of the MS specification in:

V2.0 – http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
Errata to this version

None
Previous version

None
ebXML Participants

The authors wish to acknowledge the support of the members of the OASIS ebXML IIC who contributed ideas, comments and text to this specification by the group’s discussion eMail list, on conference calls and during face-to-face meetings.

(Co-authors and editors:)

	Steve Yung
	Sun Microsystems

	Sinha Prakash
	IONA

	Matt MacKenzie
	XML Global

	Hatem El-Sebaaly
	IPNetSolutions

	Monica Martin
	DrakeCertivo

	Jacques Durand
	Fujitsu Software

	Michael Kass
	NIST

(Contributors/reviewers:)

	Rik Drummond
	DGI

	Eric VanLydegraf
	Kinzan

	Christopher Frank
	SEEBURGER

The OASIS ebXML IIC TC would like to especially thank the Drummond Group for their contribution to the test cases.

Introduction

1 Summary of Contents of this Document

This specification defines a test suite for ebXML Messaging basic interoperability. The testing procedure design and naming conventions follow the format specified in the Standard for Software Test Documentation IEEE Std 829-1998.

This specification is organized around the following topics:

· Interoperability testing architecture

· Test cases for basic interoperability

· Test data materials

1.1.1 Document Conventions

Terms in Italics are defined in the ebXML Glossary of Terms [ebGLOSS]. Terms listed in Bold Italics represent the element and/or attribute content. Terms listed in Courier font relate to test data. Notes are listed in Times New Roman font and are informative (non-normative). Attribute names begin with lowercase. Element names begin with Uppercase.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119] as quoted here:

· MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

· MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

· SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications MUST be understood and carefully weighed before choosing a different course.

· SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

· MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides).

1.1.2 Audience

The target audience for this specification is:

· The community of software developers who implement and/or deploy the ebXML Messaging Service (ebMS), including the user community
.
· The testing or verification authority, which will implement and deploy conformance or interoperability testing for ebXML Messaging implementations.

1.1.3 Caveats and Assumptions

It is assumed the reader has an understanding of communications protocols, MIME, XML, SOAP, SOAP Messages with Attachments and security technologies.

1.1.4 Related Documents

The following set of related specifications are developed independent of this specification as part of the ebXML initiative, they can be found on the OASIS web site (http://www.oasis-open.org).

· ebXML Collaboration Protocol Profile and Agreement Specification (CPPA) – CPP defines one business partner's technical capabilities to engage in electronic business collaborations with other partners by exchanging electronic messages. A CPA documents the technical agreement between two (or more) partners to engage in electronic business collaboration. The MS Test Requirements and Test Cases will refer to CPA documents or data as part of their material, or context of verification.

· ebXML Messaging Service Specification (MS) – defines the messaging protocol and service for ebXML, which provide a secure and reliable method for exchanging electronic business transactions using the Internet.

· ebXML Test Framework – describes the test architecture, procedures and material that are used to implement the MS Interoperability Test Suite, as well as the test harness for this suite.

· ebXML MS Conformance Test Suite – describes the Conformance test suite and material for Messaging Services.

1.2 Objectives and Methodology

1.2.1 Interoperability Profiles

It is in general impossible to test all combinations of messaging features and configuration features for interoperability between two message handler implementations: the combinations – and possible failure scenarios - are in much greater number than those occurring in conformance testing, which typically focuses on a single message handler.

<mm1: Test a basic set or minimal group of functions to ensure interoperability in key functions between end points.>
When testing interoperability, a small set of significant test cases must be selected. One way to do this selection is to observe what are the interoperability requirements of a user community, and to address them. Because of the “combinatorial” problem of features and scenarios, and also because it involves several business partners, interoperability testing usually must reflect the particular needs of a business community. This is in contrast with conformance testing, which mostly focuses on verifying adherence to the standard.

Interoperability tests must then focus on the kind of usage that is most meaningful for a business community. These forms – or modes - of interoperability are called profiles. An interoperability profile <should> verified by an appropriate test suite.

1.2.2 A Basic Interoperability Profile

This document specifies the Basic Interoperability Profile for ebXML messaging. <mm1: As its primary objectives, t>his profile defines the baseline of business interoperability (it exercises basic ebXML MS core services, secure and reliable messaging). This profile may not be sufficient to address all the business requirements of a user community: Specific requirements – for example, using very large messages, or security features such as encryption - will be addressed by additional, more specific profiles <mm1: that expand on basic functions or combinations of functions relevant to user communities.>
Users will design these additional interoperability profiles, if these are not already specified in the test suites produced by the ebXML IIC Technical Committee. In order to be conforming to the IIC testing guidelines, any new messaging interoperability profile definition MUST:

· Include the Basic Interoperability Profile (i.e. extend it)

· Be described using the test material (test case scripting, test architecture) specified in the ebXML Test Framework.

The number of test cases for the Messaging BIP is relatively small (e.g. compared to the number of test cases for the conformance test suite.) This is intentional <mm1: to enable interoperability and lower the cost of entry of testing.>. This is because:

· The testing requires more efforts in logistics, as coordination between parties is required.

· Interoperability may be affected by several factors such as operating environment, third-party software or utilities, testing should be done under normal operating conditions. Therefore, the profile has been defined to limit the constraints and disturbance to business while maintaining a balance in rigor for the test.

1.2.3 Related Initiatives and Contributing Parties

In accordance with the notion that interoperability testing should be aligned somehow with business requirements – more than conformance testing is -, some user communities have been consulted by the IIC TC in order to establish a minimal, yet universal set of messaging interoperability requirements.

· In US, UCC (Uniform Code Council) and DGI (Drummond Group, Inc.) have been conducting ebXML interoperability test rounds between several ebXML vendors. The requirements of UCC-DGI tests have been studied, and after investigation, a subset of test cases defined by UCC-DGI have been used as an input for the Basic Interoperability profile test cases.

· In Asia, ECOM (E-Commerce consortium of major Asian IT vendors and government agencies) has also organized ebXML interoperability testing rounds. The requirements of this community of users have also proved valuable and have been taken into account for the Basic Interoperability profile.

· In Europe, eBES is a forum for IT vendors and users, focusing on business-to-business and interoperability testing. The group is also organizing ebXML testing, and has provided useful feedback to IIC, in particular about their implementation and required test harness.

The Basic Interoperability Profile (BIP) is the result of this consulting, and is addressing a common set of interoperability requirements. This common set may not cover every interoperability feature that each community requires, but is quite close and reasonably complete. The test suites of in these industry initiatives also included both interoperability tests and (some) conformance tests. The IIC approach is to clearly separate test suites for conformance, and test suites for interoperability. One reason the BIP has a smaller number of test cases is that only tests relevant to interoperability have been kept. Other tests relevant to conformance have been moved to the MS conformance test suite. By doing so, the cost of operating an interoperability test suite is reduced, as conformance is assumed to be verified prior to interoperability, by a testing procedure that does not require coordination with other parties.

1.3 Concept of Operation

1.3.1 Driving the Tests

The MS interoperability test harness described in this document is based on the ebXML Test Framework [ebXMLTestFramework], described in another document. This test harness that is assumed for testing the Basic Interoperability Profile, and has been designed to achieve the following objectives:

· The MS Interoperability Test Suite can be run entirely and validated from one component of the framework, called the Test Driver. This means that all test outputs will be generated - and test conditions verified - by the Test Driver, even if the test harness involves several – possibly remote – components of the framework
. Significant events occurring in such components are supposed to be communicated in some way to the Test Driver.

· The verification of each Test Case and its results can be done at run-time by the Test Driver itself, as soon as the test case is completed. The outcome of the verification can be obtained immediately as the Test Suite has completed, and a report be generated.

1.3.2 Interoperability vs. Conformance

It is expected that some level of conformance testing be done prior to interoperability testing. For example, the interoperability test does not verify or diagnose the following:

· Invalid SOAP header and message

· Invalid ebXML information in SOAP header and message

· CPA Error and Resolution

· Unrecognized service

· Duplicate messages

· Simple error handling

All the tests above are defined in the ebXML Messaging conformance test suite, and are supposed to be passed prior to undergoing interoperability tests. If only from a logistic perspective, it is preferable to do as many verifications as possible during conformance testing, which typically involves a single message service handler (MSH), and is much easier to set-up than interoperability testing.

In other words, any MSH behavior that can be verified in a test harness that includes a single MSH (plus a test driver simulating another MSH) is relevant to conformance. Any MSH behavior that requires an exchange between two MSH’s for verification is relevant to interoperability. Because organizing interoperability tests (administration and logistics) is usually associated with a high cost, only those tests that are essential to interoperability are considered here.

1.3.3 Asymmetric Testing

The basic interoperability test suite defined here, is intended to be driven from one party (or node) of the network, called the “driver party” (this is the party that includes the Test Driver). As it involves two parties, it is called a “binary” test suite.

The test suite is asymmetric. It means that, when run between two parties A and B, the same test suite may produce different results when driven from A (driver party = A) than when driven from B (driver party = B). For example, a test case that requires a party to sign a message, and the other party to validate the signature, may succeed from A to B, and fail from B to A. This is because the test cases in this suite do not verify exactly the same capability on each side.

In order to achieve a well-rounded interoperability testing, a binary, asymmetric interoperability test suite is supposed to be run twice. At each run, a different party acts as the driver party.

1.3.4 Application Contract

The test suites described here – in their current version - are testing interoperability at application level only, not at “wire” level. This means that the combination:

{ MSH1 + communication medium(transport) + MSH2 }

is treated as a black box. The test cases only verify that the contract Application1 – Application2 is satisfied. For example, no “sniffing” on the wire is needed in order to process these test cases, as everything related to the internal behavior of an MSH, or message conformance at transport level, is supposed to have been verified by conformance testing.

For example, when verifying that a digital signature is:

(a) well inserted by the sender, when the CPA requires so, and

(b) that the recipient is able to validate it, should not require monitoring the wire or the internal behavior of an MSH, during interoperability tests.

Testing for (a) should have occurred during conformance tests, which involve monitoring the “wire” for conformance of message elements such as a well-formed signature. As for recipient validation (b), only the effect of the “Service” behavior (application contract) will be checked: i.e. the received signed message is passed to the application, and no error is generated.

The other aspect of recipient validation (b), which consists of verifying the ability of the receiver to detect bad signatures and to act appropriately, is supposed to have been verified during conformance testing.

However, because there is an interoperability element to it, it can be reproduced in an interoperability suite. In that case, the external behavior (i.e. the expected “service”) will be checked: a message will be sent signed with the wrong key. On the receiver side, the effect should be that the message is not passed to the application, and an error will be generated.

1.4 Minimal Requirements for Conformance to this Specification

An implementation of this specification MUST satisfy ALL of the following conditions to be considered a conforming implementation:

· It supports all the mandatory syntax, features and behavior (as identified by the [RFC2119] key words MUST, MUST NOT, REQUIRED, SHALL and SHALL NOT) defined in Part 1.1.1 – Document Conventions.

2 Harness for MS Interoperability Testing

2.1 Architecture

This section describes how to configure the Test Framework elements for testing interoperability between two implementations of the ebXML Messaging Service specification (2.0), identified here as party A and party B.
As mentioned above, interoperability testing will be asymmetrical: one party – called the driver – will drive the test cases, the other party – called the responder – will respond to messages initiated by the driver party. With this test harness, the Test Suite will be controlled from the “driver” party, and does not necessarily verifies the same capabilities on both sides i.e. is asymmetric). In order to get a full interoperability test between Party A and Party B, the test suite should be repeated after both parties have swapped the (driver/responder) roles.
The components of the framework that are involved in interoperability testing are:

On the driver party:

· An instance of the Test Driver component, coupled with an instance of a Test Service. This coupling consists of: (1) the ability for the Test Driver to trigger an action of the Test Service (typically, the Initiator action), (2) the ability for the Test Driver to be notified of actions triggered in the Test Service by received messages. In this configuration, the Test Driver is said to be used in “service” mode (see TestFramework specification). The driver party will process and initiate all test cases from the Test Driver.

· An instance of the Test Service component, which will directly interact with the driver party’s MSH Service Interface. Note that the Test Driver does not need to interact directly with the MSH. In this configuration, the Test Service will operate in “Driver” mode, as it will directly notify the test driver of received messages, via the “Receive” interface.

On the responder party:

· An instance of the Test Service component (same as in the driver party), which will support test actions invoked by messages received by the responder MSH. This Test Service instance will operate in “non-driver” mode.

Figure 8 illustrates the test harness for MS interoperability testing.

[image: image1.png]
The typical Interoperability test case procedure will consists of a sequence of test steps. The Test Driver will control each of these steps. These steps will:

· Sending messages – the content of which is specified in the test case – to some action of the responder’s Test Service.

· Receiving messages from the responder’s Test Service.

· Analyzing the content of received messages, possibly in correlation with other message data, received or sent during the same test case, in order to validate the requirement of the test case.

· Reporting on the test case outcome.

· Optionally (and prior to executing a test case), configure the MSH(s) for the message conversation(s) that will be generated by the Test Case(s), with CPA data. Normally, the installation of CPAs to be used for a test suite is supposed to be done prior to executing the test suite. However, the Configurator action of a Test Service may be invoked – either directly by the Test Driver on driver party, or remotely by a message on responder party-, with new CPA data. The expected effect is the dynamic creation and installation of a new CPA, on the MSH associated with this Test Service.

Appendix A illustrates how this test harness can be implemented.

2.2 The Test Service and its Actions

The Test Service name is: urn:ebXML:iic:test
A Test Case is described as a sequence of Test Steps. These Test Steps will consist of atomic operations executed by the components of the test Framework, e.g. sending a message, verifying a condition on a received message, etc. Most operations about messages are supported by the Test Service component, described in the Test Framework specification.

In the following, the “requestor” represents the party that originates the message that triggers the action in the remote (or responder) MSH. The requestor is usually the driver party, where the Test Driver resides.

2.2.1 Test Service Actions

The standard test actions are more completely described in the ebXML Test Framework specification. They are:

· Mute action

· Dummy action
· Reflector action

· Initiator action
· PayloadVerify action

· ErrorAppNotify action
· ErrorURLNotify action
· Configurator action
mm1: Provide as a normative reference-Test Framework.
2.2.1.1

2.2.1.2

2.2.1.3

·
·
·

2.2.1.4

2.2.1.5

2.2.1.6

·
·

2.2.1.7

2.2.1.8

·
·
·

·
·
·
3 Test Cases for MS Basic Interoperability Profile

3.1 The Basic Interoperability Profile

The ebXML MS basic interoperability profile (MS-BIP) is intended to be protocol independent. However, for interoperability, the protocol must be specified. MS-BIP is parameterized by the transport protocol. Considering either HTTP or SMTP as protocols, we have two instances of the Basic Interoperability Profile:

· MS-BIP-HTTP, for HTTP

· MS-BIP-SMTP, for SMTP

In a nutshell, the MS-BIP is verifying:

· Various types of messages are exchanged: no payloads, multiple payloads, and different types of payloads.

· Asynchronous responses (as well as Synchronous over HTTP connections).

· All signals normally expected from an MSH (Acks and Errors) are tested for interoperability, i.e. making sure the other MSH will “understand” them properly. (It is assumed that the “conformance” semantics of these signals has already been tested during conformance testing, e.g. they manifest as well-formed envelope elements, or they are generated when they should.)

· When digital signatures are used, they must be properly understood and validated on each side, especially with various combinations and options that may affect interoperability (about key info, about signature of signals such Ack.)

3.2 MS-BIP Test Cases Specification

The following test cases are specified using test material described in the ebXML TestFramework specification. The test data used (CPAs, default message headers, payloads, and configuration) is described in Section 3.4.
3.2.1 Test Case 1.1: No payload basic exchange

Rationale:

The test case verifies that an incoming message is well received and triggers the right action on Responder side. There is no check of the integrity of the received message, except its ability to trigger the Dummy action of the responder Test Service. A predefined response message (no payload) is generated by the Test Service of responder. There is no check on this message, except its ability to trigger the Mute action of the driver Test Service, which will record the reception.

Test Data Material:

CPAId: urn:config:cpa_basic
· MSH-configuration: mshc_1

· Message Payloads: none

· Message Header default: mhdr_0

· Suggested Conversation ID: 10101 (101 = 1.1)

·

Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Dummy action of the Test Service of the responder party. This is done by invoking the Initiator action of the driver party Test Service.

·
·
2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (sent by Dummy action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful within time limit)

[image: image2.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify

Verification condition:

•

M2 received before timeout, correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(no payload)

M2

Diagram for Test Case 1.1

3.2.2 Test Case 1.2: Basic exchange with one payload

Rationale:

The test case verifies that an incoming message is well received, triggers the right action on Responder side, and passes its payload to application (Reflector action of Test Service). A response message is generated by the Test Service of responder (Reflector action), sending back the same message - except for expected changes in header - with same payload. The received message triggers the Mute action of the driver Test Service, which will record the reception. The received payload is compared with the payload initially sent.

Test Data Material:

· CPAId: urn:config:cpa_basic
· MSH-configuration: mshc_1

· Message Payloads: payload_1

· Message Header default: mhdr_1

· Suggested Conversation ID: 10102. (102 = 1.2)
Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Reflector action of the Test Service of the responder party.

·
·
2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (from Reflector action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful) AND (M2.payload = M1.payload)

[image: image3.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.2

M2

(one payload)

3.2.3 Test Case 1.3: Basic exchange with three payloads

Rationale:

The test case verifies that an incoming message with multiple payloads of different types (two XML, one binary) is well received, triggers the right action on Responder side, and passes its payload to application (Reflector action of Test Service). A response message is generated by the Test Service of responder (Reflector action), sending back the same message - except for expected changes in header - with same payloads. The received message triggers the Mute action of the driver Test Service, which will record the reception. The received payloads are compared with the initially sent payloads.

Mm1: In several test cases, we build on another or previous case. Should we acknowledge that or does this create too much dependency in describing the test cases themselves? Agree with footnote here and later to show verification step(s).
Test Data Material:

· CPAId: urn:config:cpa_basic
· MSH-configuration: mshc_1

· Message Header default: mhdr_3
· Message Payloads: payload_1, payload_2, payload_3

· Suggested Conversation ID: 10103

·
·
Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Reflector action of the Test Service of the responder party.

·
·
2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (from Reflector action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful) AND (M2.payload1 = M1.payload1) AND (M2.payload2 = M1.payload2) AND (M2.payload3 = M1.payload3)

[image: image4.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Diagram for Test Case 1.3

M1

(three payload)

M2

(three payload)

3.2.4 Test Case 1.4: Basic exchange with Error message

Rationale:

The test case verifies that error messages are well received by the driver party. The driver party should provide its URL as ErrorURL, as mandated by the CPA “basic_A1”. The test does not cover that errors are generated with the right code: that is done by conformance tests. A “bad” message is sent to the Dummy action of the responder Test Service. The responder MSH should send back an Error, which should be notified to the sender (driver party) via its ErrorURLNotify action, which will record the reception.

Test Data Material:

· CPAId: urn:config:cpa_basic
· MSH-configuration: mshc_1

· Message Header default: mhdr_1

· Message Payloads: payload_1

· Suggested Conversation ID: 10104

·

Test Steps:
1. Test Driver (driver party) sends a sample message M1 to the wrong action of the Test Service of the responder party. In the message header, the Service/Action fields are set to inexisting Service/Action values.

· Header modified: mhdr_1’ <here, introduce the error by modifying header Service/Action in default mhdr_1>

·
·
2. Test Driver (driver party) receives within time limit an error message M2 via the ErrorURLNotify action of its local Test Service. Correlation: (M2.RefToMessageID = M1.MessageId).

3. Verification. Test Case succeeds if: (Step 2 successful)

[image: image5.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

wrong

action

ErrorURL

Notify

Action

invoked

Notify Error

Verification condition:

•

Error received before timeout

•

correlates with M1

Step 1

Step 2

Step 3

Diagram for Test Case 1.4

M1

(one payload)

Error

3.2.5 Test Case 1.5: Signed Message With Key Info

Rationale:

The test case verifies message exchange with digital signature (with key info). The key info is embedded in the message. Note: the response will also be signed as the same CPA is shared., although this is not required for this test: The ability to sign messages from the other party, will be tested when running the same test case from the other party, as the test suite is asymmetric (see Section 1).

Test Data Material:

· CPAId: Urn:config:cpa_basic_signed (with Signature set to Yes)

· MSH-configuration: mshc_2

· Message Payloads: payload_1

· Message Header default: mhdr_1

· Suggested Conversation ID: 10105
Test Steps:
· “Initiator” on driver side sends a signed message to Reflector action of responder
.

· “Mute” action on driver side receives (unsigned) notification message from Reflector, with same payload.

· Verification: (payloads are same) and (no error message received) mm1: Do we need to specify more information to show the steps occurring in the diagram below?

[image: image6.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.5

M2 (unsigned)

(one payload)

Unsign

Using

Cert.

3.2.6 Test Case 1.6: Signed Message Without Key Info

Rationale:

The test case verifies message exchange with digital signature (without key info). The key info is NOT embedded in the message, it is available on recipient side from a certificate. This case exercises a capability significantly different from case 1.5, in the receiver MSH, notably the ability to resolve the key info based on the right certificate. The response does not have to be signed (the ability to sign messages from the other party, will be tested when running the same test case from the other party, as the test suite is asymmetric, see Section 1).

Test Data Material:

· CPAId: Urn:config:cpa_basic_signed (with Signature set to Yes)

· MSH-configuration: mshc_2

· Message Payloads: payload_1

· Message Header default: mhdr_1

· Suggested Conversation ID: 10106
Test Steps:
· “Initiator” on driver side sends signed message to Reflector action of recipient. The entire message is signed.

· “Mute” action on driver side receives (unsigned if applicable) notification message from Reflector, with same payload.

· Verification: (payloads are same) and (no error message received)

[image: image7.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.6

M2 (unsigned)

(one payload)

Unsign

Using

Key info.

3.2.7 Test Case 1.7: Synchronous Basic Exchange with one payload

Rationale:

This is the synchronized version of Test Case 1.2 (SyncReply element is present in sent message). This test case is for synchronous transport only (HTTP).

Test Data Material:

· CPAId: Urn:config:cpa_basic_syncresponse (with syncReplyMode set to “signalsAndResponse”)

· MSH-configuration: mshc_1

· Message Payloads: payload_1

· Message Header default: mhdr_1

· Suggested Conversation ID: 10107
Test Steps:

1. Test Driver (driver party) sends a sample message M1 to the Reflector action of the Test Service of the responder party.

·
·
2. Test Driver (driver party) receives within time limit a response message M2 via the Mute action of its local Test Service (from Reflector action of Responder). Correlation: (M2.RefToMessageID = M1.MessageId) and (same conversation ID).

3. Verification. Test Case succeeds if: (Step 2 successful) AND (M2.payload = M1.payload)

[image: image8.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

M2 received before timeout, correlates with M1

•

same payloads in M1, M2

•

No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.7

M2

(one payload)

Synchronized

3.2.8 Test Case 1.8: Acknowledgment exchange: Unsigned Data, Unsigned Ack

Rationale:

Test the ability of two MSHs to exchange and understand each other’s ack signals.

Test Data Material:

· CPAId: Urn:config:cpa_basic_reliable
(At sending MSH: Retry turned ON,)
(At receiver MSH: No duplicate check)

· MSH-configuration: mshc_1

· Message Payloads: payload_1

· Message Header default: mhdr_1 (add Acknowledge element)

· Suggested Conversation ID: 10108
Test Steps:

· “Initiator” on driver side sends unsigned message to Dummy action of recipient, with AckRequested element.

· “Mute” action on driver side receives a single (unsigned) response message from Dummy. NOTE: in case Ack is not received or understood, driver MSH will resend message of step 1, and several responses from Dummy will be observed.

· Verification: (exactly ONE response message from Dummy is received in Step 2) and (no error message received)

[image: image9.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

Only one correlating M2 received before timeout

•

correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.8 (pass)

M2

(one payload)

Ack

Note: because Acknowledgements are MSH-level signals, it is not possible to observe them from the application side. However, the objective of this test is not to verify the proper generation of well-formed Ack signals: this must have previously been verified using conformance tests.

The objective of this test only consists of verifying that Acks generated by an MSH are well interpreted by the other MSH implementation. In order to do this verification, it is sometimes necessary to check the log of the sender MSH, to verify if an Ack was received. In case the Ack was not well received or understood by the sender, two situations may occur:

The sender MSH will resend the same original message (M1), causing multiple invocations of the Dummy action on receiver side, which in turn will cause several responses (M2) to be notified to the Test Driver. This would be detected at application level (Test Service of the driver), as in figure below.

The sender retry mechanism is not working properly, so no multiple invocations of the Dummy action on receiver side will occur – only the initial invocation. In that case, a single response will be observed on sender side, which is also the observed effect in case of successful verification. Therefore, the only way to detect such a failure, is to “manually” access the log of the MSH to ensure the Ack was well received. It must be noted that this case should be considered as exceptional, since the ability to resend is supposed to have been checked by conformance testing.

The failure case (a) above will translate into the following exchange:

[image: image10.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Notify M2

Verification condition (failure):

•

More than one M2 received before timeout, correlating with M1

OR: no

Ack

logged by MSH1 (manual check)

OR: error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.8 (failure)

M2

(one payload)

Ack

M1 (resend)

Dummy

Action

invoked

Message to

Mute

action

M2

(one payload)

Mute

invoked

Mute

invoked

Notify M2

3.2.9 Test Case 1.9: Acknowledgment exchange: Signed Data, Signed Ack

Rationale:

Test the ability of two MSHs to exchange and understand each other’s signed ack signals (for non-repudiation), while the business messages are signed.

Test Data Material:

· CPAId: Urn:config:cpa_basic_reliablesig
(At sending MSH: Retry turned ON, set Signature to Yes)

· MSH-configuration: mshc_1

· Message Payloads: payload_1

· Message Header default: mhdr_1 (add Acknowledge element)

· Suggested Conversation ID: 10109
Test Steps:

· “Initiator” on driver side sends a signed message to Dummy action of recipient, with AckRequested element.

· “Mute” action on driver side receives a single (unsigned) response message from Dummy. NOTE: in case Ack is not received or understood, driver MSH will resend message of step 1, and several responses from Dummy will be observed.

· Verification: (exactly ONE response message from Dummy is received in Step 2) and (no error message received)

[image: image11.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

Only one correlating M2 received before timeout

•

correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.9

M2

(one payload)

Ack

3.2.10 Test Case 1.10: Synchronous Unsigned Acknowledgment exchange
Rationale:

Test the ability of two MSHs to exchange and understand each other’s ack signals, in a synchronous set-up. The CPA will have SyncReplyMode set to “signals only”, so there is not overlap with Test Case 1.7. This is a fairly common case where the HTTP connection is not kept open for business messages (for which response time may be long), but is kept open for MSH signals, for efficiency purpose. So the Ack is immediately sent back on the same connection as the message. . NOTE: The actual ability of the responder to send Acks on a same HTTP connection, based on CPA requirement, is assumed previously tested by conformance tests. Only the interoperability aspect of it is tested here.

Test Data Material:

· CPAId: Urn:config:cpa_basic_reliablesync
(At sending MSH: Retry turned ON)
(At receiver MSH: No duplicate check)
(At both MSH, set Signature to Yes)

· MSH-configuration: mshc_1

· Message Payloads: payload_1

· Message Header default: mhdr_1 (add Acknowledge element)

· Suggested Conversation ID: 10110
Test Steps:

· “Initiator” on driver side sends unsigned message to Dummy action of recipient, with AckRequested element.

· “Mute” action on driver side receives a single (unsigned) response message from Dummy. NOTE: in case Ack is not received or understood, driver MSH will resend message of step 1, and several responses from Dummy will be observed.

· Verification: (exactly ONE response message from Dummy is received in Step 2) and (no error message received)

[image: image12.wmf]MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

•

Only one correlating M2 received before timeout

•

correlates with M1

•

No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.10

M2

(one payload)

Ack

Synchronized

Test case Script

3.3 The two Basic Interoperability Profiles Variants and Test Suites

3.3.1 The HTTP Basic Interoperability Profile

The test suite is named: MS-BIP-HTTP, and verifies the Basic Interoperability Profile for messaging over HTTP. It includes synchronous and asynchronous test cases (10) which exercise the capabilities of HTTP. The Test Cases are:

· Test Case 1.1: No payload basic exchange over HTTP.

· Test Case 1.2: Basic exchange with one payload over HTTP.

· Test Case 1.3: Basic exchange with three payloads over HTTP.

· Test Case 1.4: Basic exchange with Error message over HTTP.

· Test Case 1.5: Signed Message With Key Info over HTTP.
· Test Case 1.6: Signed Message Without Key Info over HTTP.

· Test Case 1.7: Synchronous Basic Exchange with one payload over HTTP.

· Test Case 1.8: Acknowledgment exchange: Unsigned Data, Unsigned Ack over HTTP.
· Test Case 1.9: Acknowledgment exchange: Signed Data, Signed Ack over HTTP.

· Test Case 1.10: Synchronous Unsigned Acknowledgment exchange over HTTP.

3.3.2 The SMTP Basic Interoperability Profile
The test suite is named: MS-BIP-SMTP and verifies the Basic Interoperability Profile for messaging over SMTP. It includes only asynchronous test cases (8) which exercise the capabilities of SMTP. The Test Cases are:

· Test Case 1.1: No payload basic exchange over SMTP.

· Test Case 1.2: Basic exchange with one payload over SMTP.

· Test Case 1.3: Basic exchange with three payloads over SMTP.

· Test Case 1.4: Basic exchange with Error message over SMTP.

· Test Case 1.5: Signed Message With Key Info over SMTP.

· Test Case 1.6: Signed Message Without Key Info over SMTP.

· Test Case 1.7: Acknowledgment exchange: Unsigned Data, Unsigned Ack over SMTP.

· Test Case 1.8: Acknowledgment exchange: Signed Data, Signed Ack over SMTP.

4 Details of Test Material
4.1 Configuration of the Test Harness and MSH Implementation

4.1.1 MSH Config

4.1.1.1 mshc_1 (default)

Transport:

Protocol

HTTP 1.1

Timeout

300 sec
Security:

No support required

4.1.1.2 mshc_2

Transport:

Protocol

HTTP 1.1

Timeout

300 sec
Security:

Supported

4.1.2 CPA Data

4.1.2.1 urn:config:cpa_basic (default) (for test cases 1.1, 1.2, 1.3, 1.4)
Transport:

 Protocol

HTTP 1.1

SyncReplyMode:

None
Reliability:

Retry/Timeout

Receipt Acknowledgement:
Not required

Response:

Not required

Response Acknowledgement:
Not required (do we need this line? It is more business level, not MSH)

Duplicate Check :

None
Order:

No
Security:

Encryption:

No

Signature:

No

Non-Repudiation

Origin

Not required

Receipt

Not required
Multi Hop:

No
Error:

ErrrorURI:

<URI of driver party>
4.1.2.2 Urn:config:cpa_basic_signed (for test cases 1.5, 1.6)

Transport:

 Protocol

HTTP 1.1

SyncReplyMode:

None
Reliability:

Retry/Timeout

Receipt Acknowledgement:
Not required

Response:

Not required

Response Acknowledgement:
Not required

Duplicate Check :

None
Order:

No
Security:

Encryption:

No

Signature:

Yes

Non-Repudiation

Origin

Not required

Receipt

Not required
Multi Hop:

No
Error:

ErrrorURI:

<URI of driver party>

4.1.2.3 Urn:config:cpa_basic_syncresponse (for test cases 1.7)

Transport:

 Protocol

HTTP 1.1

SyncReplyMode:

signalsAndResponse
Reliability:

Retry/Timeout

Receipt Acknowledgement:
Not required

Response:

Not required

Response Acknowledgement:
Not required

Duplicate Check :

None
Order:

No
Security:

Encryption:

No

Signature:

No

Non-Repudiation

Origin

Not required

Receipt

Not required
Multi Hop:

No
Error:

ErrrorURI:

<URI of driver party>

4.1.2.4 Urn:config:cpa_basic_reliable (for test cases 1.8)

Transport:

 Protocol

HTTP 1.1

SyncReplyMode:

None
Reliability:

Retry/Timeout

Receipt Acknowledgement:
Yes

Response:

Not required

Response Acknowledgement:
Not required

Duplicate Check :

None
Order:

No
Security:

Encryption:

No

Signature:

No

Non-Repudiation

Origin

Not required

Receipt

Not required
Multi Hop:

No
Error:

ErrrorURI:

<URI of driver party>

4.1.2.5 Urn:config:cpa_basic_reliablesig (for test cases 1.9)

Transport:

 Protocol

HTTP 1.1

SyncReplyMode:

None
Reliability:

Retry/Timeout

Receipt Acknowledgement:
Yes

Response:

Not required

Response Acknowledgement:
Not required

Duplicate Check :

None
Order:

No
Security:

Encryption:

No

Signature:

Yes

Non-Repudiation

Origin

Not required

Receipt

Yes (is that what will get the Ack signed?)

Multi Hop:

No
Error:

ErrrorURI:

<URI of driver party>

4.1.2.6 Urn:config:cpa_basic_reliablesync (for test cases 1.10)

Transport:

 Protocol

HTTP 1.1

SyncReplyMode:

mshSignalsOnly
Reliability:

Retry/Timeout

Receipt Acknowledgement:
Yes

Response:

Not required

Response Acknowledgement:
Not required

Duplicate Check :

None
Order:

No
Security:

Encryption:

No

Signature:

No

Non-Repudiation

Origin

Not required

Receipt

Not required
Multi Hop:

No
Error:

ErrrorURI:

<URI of driver party>

4.1.3 Default Message Headers
4.1.3.1 Parameters

The default values for these parameters should be set when the test suite is deployed:

· $SenderParty (set to the Test Driver MSH host)
· $ReceiverParty (set to the remote MSH host)
The values of these parameters must be set for each test case:

· $CPA

· $ConversationId
The value of these parameters may vary for each test step:

· $Action
The value of these parameters is not under control of the Test Driver, and will be set by the MSH implementation at run-time:

· $MessageId

· $TimeStamp

4.1.3.2 mhdr_0

This sample header is used as default header for messages with no payload. The parameters will be instantiated by the Test Driver or the MSH implementation.
<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId> $SenderParty</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId> $ConversationId</eb:ConversationId>

<eb:Service> urn:ebXML:iic:test </eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

</SOAP:Body>

</SOAP:Envelope>

4.1.3.3 mhdr_1

This sample header is used as default header for messages with one payload, after instantiation of parameters.
<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid: payload_1"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

4.1.3.4 mhdr_2

This sample header is used as default header for messages with two payloads, after instantiation of parameters.
<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:payload_1 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:payload_2 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 2</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

.

4.1.3.5 mhdr_3

This sample header is used as default header for messages with three payloads, after instantiation of parameters.
<SOAP:Envelope
xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

 http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

 http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<SOAP:Header>

<eb:MessageHeader SOAP:mustUnderstand="1" eb:version="2.0">

<eb:From>

<eb:PartyId>$SenderParty </eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId>$ReceiverParty </eb:PartyId>

</eb:To>

<eb:CPAId>$CPA </eb:CPAId>

<eb:ConversationId>$ConversationId </eb:ConversationId>

<eb:Service>ebXML_IIC_Testing</eb:Service>

<eb:Action>$Action </eb:Action>

<eb:MessageData>

<eb:MessageId>$MessageId </eb:MessageId>

<eb:Timestamp>$Timestamp </eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body>

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:payload_1 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 1</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:payload_2 2"

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 2</eb:Description>

</eb:Reference>

<eb:Reference xlink:href="cid:payload_3 "

 xlink:role="XLinkRole" xlink:type="simple">

 <eb:Description xml:lang="en-US">Purchase Order 3</eb:Description>

</eb:Reference>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

4.1.4 Message Payloads

4.1.4.1 Payload_1

(a small XML payload)

<purchase_order>

<po_number>1</po_number>

<part_number>123</part_number>

<price currency="USD">500.00</price>

</purchase_order>

(here, URL referencing a real file for download)

4.1.4.2 Payload_2

(another small XML payload)

<purchase_order>

<po_number>2</po_number>

<part_number>456</part_number>

<price currency="USD">1500.00</price>

</purchase_order>

(here, URL referencing a real file for download)

4.1.4.3 Payload_3

(A binary payload)

 (here, URL referencing a real file for download)

4.2 BIP Test Suite Script

4.2.1.1

4.2.1.2

4.2.2
4.2.2.1

4.2.2.2

4.2.2.3

4.2.2.4

4.2.2.5

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
 The following table shows the detail of each test case and its test steps, described using the notation specified in the TestFramework specification document. The actual XML representation of the test suite is given in Appendix B.

	Test Object
	ID
	Description
	Mode
	Operation
	Message Expression

	Test Suite
	
	
	
	
	Configuration:

TestDriver Mode = Service
Default CPAId = urn:config:cpa_basic

	Test Case
	urn:

TestCase

:id:1.1
	Basic exchange,

no payload
	
	
	CPAId = urn:config:cpa_basic

	TestStep
	1
	
	service
	
	

	
	
	Send basic

message header
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:Action>Dummy</eb:Action>

</eb:MessageHeader>

</soap:Header>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	TestStep
	2
	
	service
	
	

	
	
	Correlate returned message
	
	GetMessage
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId=$CPAId and

eb:Conversationid=$ConversationId and

eb:Action='Mute']]

	Assertion
	
	
	
	VerifyContent
	/mime:Message[mime:MessageContainer[1]/

soap:Envelope/soap:Header/eb:MessageHeader]

	Test Case
	urn:

TestCase

:id:1.2
	Basic

 asyncronous exchange with

 one payload
	
	
	CPAId = urn:config:cpa_basic

	TestStep
	1
	
	service
	
	

	
	
	Send basic

message header
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:Action>Reflector</eb:Action>

</eb:MessageHeader>

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id

and payload

 to mime message
	
	SetPayload

Content-Id = 'cid:payload_1' messageRef=

" payload_1"
	

	TestStep
	2
	
	service
	
	

	
	
	Correlate returned messages
	
	GetMessage
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:Conversationid=$ConversationId and

eb:Action='Mute']]

	Assertion
	
	
	
	VerifyContent
	/mime:Message[mime:MessageContainer[1]/

soap:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

	
	
	Find payload

 in message
	
	GetPayload
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	
	
	VerifyContent
	

	Test Case
	urn:

TestCase

:id:1.3
	Basic exchange

 with three

payloads
	
	
	CPAId = urn:config:cpa_basic

	TestStep
	1
	
	service
	
	

	
	
	Send basic

message header
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:Action>Reflector</eb:Action>

</eb:MessageHeader>

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

<eb:Reference xlink:href="cid:payload_2" />

<eb:Reference xlink:href="cid:payload_3" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id

and payload

to mime message
	
	SetPayload

Content-Id = 'cid:payload_1' messageRef=

" payload_1"
	

	
	
	Add content-id

and payload

 to mime message
	
	SetPayload

Content-Id = 'cid:payload_2' messageRef=

" payload_2"
	

	
	
	Add content-id

and payload

to mime message
	
	SetPayload

Content-Id =

'payload_3'

messageRef=

" payload_3"
	

	TestStep
	2
	
	service
	
	

	
	
	Correlate returned messages
	
	GetMessage
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:Conversationid=$ConversationId and

eb:Action='Mute']]

	Assertion
	
	
	
	VerifyContent
	/mime:Message[mime:MessageContainer[1]/

soap:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

	
	
	Find payload

 in message
	
	GetPayload
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	
	
	VerifyContent
	

	
	
	Find payload

in message
	
	GetPayload
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_2']

	Assertion
	
	
	
	VerifyContent
	

	
	
	Find payload

in message
	
	GetPayload
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_3']

	Assertion
	
	
	
	VerifyContent
	

	Test Case
	urn:

TestCas

e:id:1.4
	Basic exchange

with Error

Message
	
	
	CPAId = urn:config:cpa_basic

	TestStep
	1
	
	service
	
	

	
	
	MessageHeader mustUnderstand

set to 'true'
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:Action>WrongAction</eb:Action>

<eb:ExtensionLement soap:mustUnderstand="true" />

</eb:MessageHeader>

</soap:Header>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

[JD]: I have introduced a wrong action name…

this should cause an error message with

severity “Error”.

	TestStep
	2
	
	service
	
	

	
	
	Correlate returned messages
	
	GetMessage
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:Conversationid=$ConversationId and

eb:ErrorList]]

[JD]: here, we should be ready to catch a

stand-alone error message, not a regular message

with an ErrorList element, because this is incompatible

with “error” severity level. There should be an

errorCode elt, its value should be ValueNotRecognized or

 Inconsistent..

	Assertion
	
	
	
	VerifyContent
	mime:Message[mime:MessageContainer[1]/

soap:Envelope/soap:Body/soap:Fault/soap:Code[

soap:Value='MustUnderstand']]

[JD] Not sure this condition is correct or sufficient:

 error element should have severity = “Error”, and the

name of the bad action “WrongAction” should appear in the

error description or location attribute of the Error element,

to make sure we catch the right error

	Test Case
	urn:

TestCas

e:id:1.5
	Signed message with key info
	
	
	CPAId = urn:config:cpa_basic_signed

	TestStep
	1
	
	service
	
	

	
	
	Send basic message header
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:Action>Reflector</eb:Action>

</eb:MessageHeader>

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id and payload to mime message
	
	SetPayload

Content-Id = 'cid:payload_1' messageRef=

" payload_1"
	

	
	
	
	
	DSign
	<ds:Signature xmlns=

"http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod ds:Algorithm=

"http://www.w3.org/

TR/2001/REC-xml-c14n-20010315" />

<ds:SignatureMethod ds:Algorithm=

"http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

<ds:Reference ds:URI="">

<ds:DigestMethod ds:Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>abc</ds:DigestValue>

</ds:Reference>

<ds:Reference ds:URI="cid://blahblahblah/">

<ds:DigestMethod ds:Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>def</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>ghi</ds:SignatureValue>

<ds:KeyInfo>

<ds:KeyValue>

<ds:RSAKeyValue>

<ds:Modulus>abc</ds:Modulus>

<ds:Exponent>def</ds:Exponent>

</ds:RSAKeyValue>

</ds:KeyValue>

</ds:KeyInfo>

</ds:Signature>

	TestStep
	2
	
	service
	
	

	
	
	Correlate

returned messages
	
	GetMessage
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:Conversationid=$ConversationId and

eb:Action='Mute']]

	Assertion
	
	Check for

returned payload
	
	VerifyContent
	/mime:Message[mime:MessageContainer[1]/

soap:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

	
	
	Find payload

in message
	
	GetPayload
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	Verify returned

payload contents
	
	VerifyContent
	

	Test Case
	urn:

TestCase

:id:1.6
	Signed message without key info
	
	
	CPAId = urn:config:cpa_basic_signed

	TestStep
	1
	
	service
	
	

	
	
	Send basic

message header
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:CPAId>cpa_basic_no_key_info</eb:CPAId>

<eb:Action>Reflector</eb:Action>

</eb:MessageHeader>

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id

and payload

to mime message
	
	SetPayload

Content-ID=

"cid:payload_1 "

Content-Id = 'cid:payload_1' messageRef=

" payload_1"
	

	
	
	
	
	DSign
	<ds:Signature xmlns=

"http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod ds:Algorithm=

"http://www.w3.org/TR/2001/

REC-xml-c14n-20010315" />

<ds:SignatureMethod ds:Algorithm=

"http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

<ds:Reference ds:URI="">

<ds:DigestMethod ds:Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>abc</ds:DigestValue>

</ds:Reference>

<ds:Reference ds:URI="cid://blahblahblah/">

<ds:DigestMethod ds:Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>def</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>ghi</ds:SignatureValue>

</ds:Signature>

	TestStep
	2
	
	service
	
	

	
	
	Correlate

returned messages
	
	GetMessage
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:Conversationid=$ConversationId and

eb:Action='Mute']]

	Assertion
	
	Check for

 returned payload
	
	VerifyContent
	/mime:Message[mime:MessageContainer[1]/

soap:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

	
	
	Find payload

in message
	
	GetPayload
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	Verify returned

payload contents
	
	VerifyContent
	

	Test Case
	urn:

TestCase

:id:1.7
	Basic

synchronous

exchange with

one payload
	
	
	CPAId = urn:config:cpa_basic_syncresponse

	TestStep
	1
	
	service
	
	

	
	
	Send basic

message header

with SyncReply
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:Action>Reflector</eb:Action>

</eb:MessageHeader>

<eb:SyncReply />

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id

and payload

to mime message
	
	SetPayload

Content-ID=

"cid:payload_1"

Content-Id = 'cid:payload_1' messageRef=

" payload_1"
	

	TestStep
	2
	
	service
	
	

	
	
	Correlate

returned messages
	
	GetMessage

asycronous=

"false"
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:Conversationid=$ConversationId and

eb:Action='Mute']]

	Assertion
	
	Check for

returned payload
	
	VerifyContent
	/mime:Message[mime:MessageContainer[1]/

soap:Body/eb:Manifest/eb:Reference[

@xlink:href='cid:payload_1']]

	
	
	Find payload

in message
	
	GetPayload
	/MIME:Message/MIME:Container[

@Content-Id = 'cid:payload_1']

	Assertion
	
	Verify returned

payload contents
	
	VerifyContent
	

	Test Case
	urn:

TestCase

:id:1.8
	Test unsigned AckRequested message with unsigned Acknowledgment
	
	
	CPAId = urn:config:cpa_basic_reliable

	TestStep
	1
	
	service
	
	

	
	
	Send basic

message with AckRequested

element
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:Action>Dummy</eb:Action>

</eb:MessageHeader>

<eb:AckRequested />

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	TestStep
	2
	
	service
	
	

	
	
	Correlate returned messages
	
	GetMessage
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:Conversationid=$ConversationId and

../eb:Acknowledgment]]

	Assertion
	
	Verify that no

Error is returned
	
	VerifyContent
	/mime:Message[not mime:MessageContainer[1]/

soap:Envelope/soap:Header/eb:ErrorList]

	Assertion
	
	Verify that no

soap fault is

generated for

warnings
	
	VerifyContent
	/mime:Message[not mime:MessageContainer[1]/

soap:Envelope/soap:Body[not soap:Fault]]

	Assertion
	
	Verify that only one Acknowledgment

was returned
	
	VerifyContent
	/mime:Message[[mime:MessageContainer[1]/

soap:Envelope/eb:MessageHeader/eb:Acknowledgment]

count()=1]

	Test Case
	Urn:

TestCase

:id:1.9
	Test signed AckRequested message with

signed Acknowledgment
	
	
	CPAId = urn:config:cpa_basic_reliablesig

	TestStep
	1
	
	service
	
	

	
	
	Send basic

message with AckRequested

(signed = 'true') element, and

signed payload
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:Action>Dummy</eb:Action>

</eb:MessageHeader>

<eb:AckRequested eb:signed="true" />

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	
	
	Add content-id

and payload

to mime message
	
	SetPayload

Content-ID=

"cid:payload_1"

Content-Id = 'cid:payload_1' messageRef=

" payload_1"
	

	
	
	
	
	DSign
	<ds:Signature xmlns=

"http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod ds:Algorithm=

"http://www.w3.org/

TR/2001/REC-xml-c14n-20010315" />

<ds:SignatureMethod ds:Algorithm=

"http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

<ds:Reference ds:URI="">

<ds:DigestMethod ds:Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>abc</ds:DigestValue>

</ds:Reference>

<ds:Reference ds:URI="cid://blahblahblah/">

<ds:DigestMethod ds:Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>def</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>ghi</ds:SignatureValue>

<ds:KeyInfo>jkl</ds:KeyInfo>

</ds:Signature>

	TestStep
	2
	
	service
	
	

	
	
	Correlate

returned messages
	
	GetMessage
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:Conversationid=$ConversationId and

eb:Action='Mute' and

../eb:Acknowledgment]]

	Assertion
	
	Verify that no

 Error is returned
	
	VerifyContent
	/mime:Message[not mime:MessageContainer[1]/

soap:Envelope/soap:Header/eb:ErrorList]

	Assertion
	
	Verify that no

soap fault is

generated for

warnings
	
	VerifyContent
	/mime:Message[not mime:MessageContainer[1]/

soap:Envelope/soap:Body[not soap:Fault]]

	Assertion
	
	Verify that only one

Acknowledgment

was returned
	
	VerifyContent
	/mime:Message[[mime:MessageContainer[1]/

soap:Envelope/eb:MessageHeader/eb:Acknowledgment]

count()=1]

	Assertion
	
	Validate Acknowledgment Signature
	
	ValidateContent contentType=

signedAck
	/mime:Messag/[mime:MessageContainer[1]/

soap:Envelope/eb:MessageHeader/eb:Acknowledgment

	Test Case
	urn:

TestCase

:id:1.10
	Test unsigned AckRequested message with unsigned Acknowledgment
	
	
	CPAId = urn:config:cpa_basic_reliablesync

	TestStep
	1
	
	service
	
	

	
	
	Send basic

message with AckRequested

element
	
	PutMessage
	<mime:Message>

<mime:MessageContainer>

<soap:Envelope>

<soap:Header>

<eb:MessageHeader>

<eb:Action>Dummy</eb:Action>

</eb:MessageHeader>

<eb:AckRequested />

</soap:Header>

<soap:Body>

<eb:Manifest>

<eb:Reference xlink:href="cid:payload_1" />

</eb:Manifest>

</soap:Body>

</soap:Envelope>

</mime:MessageContainer>

</mime:Message>

	TestStep
	2
	
	service
	
	

	
	
	Correlate

returned messages
	
	GetMessage asycronous=

"false"
	/TEST:MessageStore/MIME:Message[

MIME:Container[1]/

SOAP:Envelope/SOAP:Header/eb:MessageHeader[

eb:CPAId='cpa_basic' and

eb:Conversationid=$ConversationId and

eb:Acknowledgment]]

	Assertion
	
	Verify that no

Error is returned
	
	VerifyContent
	/mime:Message[not mime:MessageContainer[1]/

soap:Envelope/soap:Header/eb:ErrorList]

	Assertion
	
	Verify that no

soap fault is

generated for

warnings
	
	VerifyContent
	/mime:Message[not mime:MessageContainer[1]/

soap:Envelope/soap:Body[not soap:Fault]]

	Assertion
	
	Verify that only one Acknowledgment

was returned
	
	VerifyContent
	/mime:Message[[mime:MessageContainer[1]/

soap:Envelope/eb:MessageHeader/eb:Acknowledgment]

count()=1]

5 Appendix A – Implementations of the Test Harness

The test harness described in Section 2 could be implemented in different ways. For illustration purpose, we outline two of these.

5.1 The “Point-to-point” Test Harness Implementation:

This configuration is appropriate when two parties engage in interoperability testing without any third-party assistance, Each party will in turn play the driver party, and operate the Test Driver (install test cases, drive the executions, generate the reports.)
[image: image14.png]
In this configuration, the Test Driver invokes directly the Initiator action of the associated Test Service in order to trigger an exchange. The Test Driver is also directly notified by these actions. There is no need to generate messages on the wire for doing this, as both components reside on the same host. Would both components always reside on the same host? Suggest we state that both components reside on the same host in the introduction in this section.
5.2 The “Hub Driver” Test Harness Implementation:

This configuration is appropriate when two parties engage in interoperability testing with the help of a third-party, which facilitates the testing. Each party will still in turn play the driver party, but the third party will operate the Test Driver (install test cases, drive the executions, generate the reports.) The two candidate parties would only make sure their MSH and Test Service are up and running, and that the CPAs associated with the test suite are accessible.

[image: image15.png]
In this configuration, the Test Driver invokes remotely the Initiator action of the Test Service of the driver party, in order to trigger an exchange. The Test Driver interfaces directly at transport level, generating message material as done in conformance testing. The notification from the actions of the Test Service (driver party side), will be done by messages sent to the Test Driver (Hub URL). Once an exchange is triggered, both end-points can send messages to each other, directly or through the Hub node, used as a simple route.
6 Appendix B – Test Suite XML Script

References

Non-Normative References

[ebTESTREQ]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebTESTSUITE]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.
 [ebRS]
ebXML Registry Services Specification, version 2.0, published 6 December 2001
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf,
published, 5 December 2001.
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf

[XMLSchema]
W3C XML Schema Recommendation,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[ebCPP]
ebXML Collaboration Protocol Profile and Agreement specification, Version 1.0, published 10 May, 2001, http://www.ebxml.org/specs/ebCCP.doc
[ebBPSS]
ebXML Business Process Specification Schema, version 1.0, published 27 April 2001, http://www.ebxml.org/specs/ebBPSS.pdf.

[ebMS] ebXML Messaging Service Specification, Version 2.0 http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service_Specification_v0-21.pdf
Contact Information

Team Leader
	Name
	

	
	

	
	

	
	

	
	

	
	

Vice Team Leader
	Name
	

	
	

	
	

	
	

	
	

	
	

Team Editor

	Name
	Michael Kass

	
	

	
	

	
	

	
	

	
	

Acknowledgments

The OASIS ebXML-MS Technical Committee would like to thank …

Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Copyright Statement

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
January 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document MUST be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

Intellectual Property Rights Statement

"OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director."
"OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director."
"OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights."

�

� By PayloadVerify correct?

� Where is the step with the Certificate tested?

� As indicated from Carnegie Mellon SEI, the verification process determines whether the requirements for a system or software are complete and correct. From: Carnegie Mellon SEI, � HYPERLINK "http://www.sei.cmu.edu/iso-15504/resources/part2100.pdf" ��http://www.sei.cmu.edu/iso-15504/resources/part2100.pdf�

(Software Process Assessment – Part 2: A model for process management, Version 1.00)

�PAGE \# "'Page: '#'�'" �� For future references.

�PAGE \# "'Page: '#'�'" �� Is this correct??? Still need cleanup on service, connection, loop, reporting modes and when to use. Differentiate to driver and responder for who is the initiator of the tests.

�PAGE \# "'Page: '#'�'" �� Same comment on modes.

�PAGE \# "'Page: '#'�'" �� Be consistent in use of terms.

�PAGE \# "'Page: '#'�'" �� Seems to still be open question. Found in Sections 4.1.4.2, 6.1 and 6.2 in ebMS 2.0 specification.

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS]
April 2002. All Rights Reserved.
ebXML MS (2.0) Testing Specification V0.6

Page 4 of 4
Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

_1100607672.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

wrong

action

ErrorURL

Notify

Action

invoked

Notify Error

Verification condition:

		Error received before timeout

		correlates with M1

Step 1

Step 2

Step 3

Diagram for Test Case 1.4

M1

(one payload)

Error

_1100607727.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify

Verification condition:

		M2 received before timeout, correlates with M1

		No error message generated

Step 1

Step 2

Step 3

M1

(no payload)

M2

Diagram for Test Case 1.1

_1100608385.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		 Only one correlating M2 received before timeout

		 correlates with M1

		 No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.10

M2

(one payload)

Ack

Synchronized

_1103975801.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.2

M2

(one payload)

_1100608143.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		 Only one correlating M2 received before timeout

		 correlates with M1

		 No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.9

M2

(one payload)

Ack

_1100607691.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

Diagram for Test Case 1.3

M1

(three payload)

M2

(three payload)

_1100607620.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.6

M2 (unsigned)

(one payload)

Unsign

Using

Key info.

_1100607650.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout correlates with M1

		 same payloads in M1, M2

		No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.5

M2 (unsigned)

(one payload)

Unsign

Using

Cert.

_1100607525.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		 Only one correlating M2 received before timeout

		 correlates with M1

		 No error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.8 (pass)

M2

(one payload)

Ack

_1100607578.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Reflector

action

Reflector

Action

invoked

Message to

Mute

action

Mute

Action

invoked

Notify M2

Verification condition:

		M2 received before timeout, correlates with M1

		 same payloads in M1, M2

		 No error message generated

Step 1

Step 2

Step 3

Signed M1

(one payload)

Diagram for Test Case 1.7

M2

(one payload)

Synchronized

_1100606718.ppt

MSH 1

MSH 2

Test

Service

(driver

Party)

Test

Service

Test

Driver

Invoke

Initiator

action

Message to

Dummy

action

Dummy

Action

invoked

Message to

Mute

action

Notify M2

Verification condition (failure):

		 More than one M2 received before timeout, correlating with M1

OR: no Ack logged by MSH1 (manual check)

OR: error message generated

Step 1

Step 2

Step 3

M1

(one payload)

Diagram for Test Case 1.8 (failure)

M2

(one payload)

Ack

M1 (resend)

Dummy

Action

invoked

Message to

Mute

action

M2

(one payload)

Mute

invoked

Mute

invoked

Notify M2

