Mike: comments in red

Jacques,

 Here is my response to your comments:

 Concurrency Use Case #1: Exception handling

 Test Case:
 - send a message M1
 - receive message M2
 - verify M2

 But in case an error is received that correlates with M1, at any point in time
 within 300sec after sending M1, before or after receiving M2, and regardless of
 the outcome of verifying M2, we want the test case to fail.

<JD> Overall, your scripting is working, but I find the embedding of threads clumsy:
- it is not very readable.
- in case the same thread needs be started several times in same test case,
we need to avoid embedding it each time: I assume we'll just start it by referring to its name.

[MIKE] - That is the purpose of the <ThreadRef> and <TestStepRef> elements.. to "reuse" a <Thread>
or <TestStep> via name reference. We could introduce all <Threads> at the beginning of the <TestSuite>, and
use them via name reference.. and eliminate "inlining" <Threads> If you have a lot of redundant
<Threads>.. this would make for smaller <TestSuite> files.

- embedding the full sequence of steps of a thread, inside the calling thread, is misleading:
it seems that the step #3 in use case 1 needs to wait for the end of the embedded thread,
while it is not true.

[MIKE] - Why does it seem to indicate that? The embedded thread has an type attribute value of "asynchronous"..
so why would you conclude that step #3 would have to wait for that thread to complete? Perhaps what you are saying
is that "inlining" a <Thread> gives the appearance of a "synchronous" execution, when in fact the "asynchronous" attribute
precludes this from happpening. I agree however that inlining <Thread> content is unnecessary, and should be eliminated.
<JD> yes, it is just the perception… inlining suggests synchronous exec with the next step.

So I propose to modify your test case for UC 1 (Exception Handling) as follows:

Instead of the following embedding pattern you have in your example:

Test Case 1:
Thread:
(Test Step 1.01 (Put) ;
 Test Step 1.02 (async Thread: Test Step 03 (Get, assertion)) ;
 Test Step 1.03 (Get, assertion)

We could dissociate the threads (and use their names):

Test Case 1:
Thread: "main"
{ Test Step 1.01 (Put) ;
 Test Step 1.02 (async thread("Exception")) ;
 Test Step 1.03 (Get, assertion)
}
Thread: "Exception"
(Test Step 2.01 (Get, assertion) }

[MIKE] - I will declare all <Threads> at the beginning (or end) of the <TestSuite>. This will allow their use by any <TestCase> via their "name" attribute value.

<JD> OK, I believe the whole thing will be more readable that way.

Also, the script is not explicit about the 300sec limit:

[MIKE] - It is if you read the XML, but you are correct that it is not in the rendered HTML,. I added a <GetMessage stepDuration="300"/> attribute, which would be used to
define the "timeout" periof for that <GetMessage> operation

There are several ways we could handle this:
- time the Get operation itself, by adding to it an optional "timeout" parameter.

[MIKE] - I opted for this solution (see above)

If the Get could not select a message within the timeout, the test step proceeds further
here with the "Assertion" op, which would verify no error received.

[MIKE] - Agreed

- introduce a new type of step, a "sleep", which would block the thread some amount
of time before passing control to the next step. (note that could be useful generally).

[MIKE] - This is an option.. but I like the "stepDuration" attribute better because it is explicit to the <GetMessage> operation,
where timing will be an issue I will expand the graphic of the schema with the next revision to show this.
.

<JD> We have to be careful at the actual semantics of GetMessage: can it select several messages at once?

(I thought so, as that may be useful in some cases)

If yes, the semantics of a timed GetMessage needs be specified:

(1) it waits for the timeout to expire, to see how messages are selected,

(2) as soon as at least one message is selected before timeout, the step is done and proceed further.
I think we have a quantifier for GetMessage? (how many we expect to select) something like “1”, or

 “all”) and if it is “all”, then the step must last until its timeout.

This said, it seems that a “sleep” operator can still be generally very useful to time any step, simulate delays, etc.

Finally, a more general question: now that we have several threads in a tset case,
should we always require that ALL threads terminate successfully, for the test case to succeed?

[MIKE] - No. With this expanded (logical branching) capability, a successful <TestCase>
is now based upon the final "state" in its logical branching evaluating to "true" . (BUT NOT INTERMEDIATE
"BRANCHING" STATES). If we branch to a <Thread> or <TestStep> that returns a "false" result, but it is part of an
<If> <Then> <ElseIf> <Else> structure, and the branching (and execution) can logically continue, then we would not say that the
<TestCase> "passed" until the logical branching reached a leaf node in the branch with a "true" result.
Conversely, to "fail", execution reaches a leaf node in the logical branching structure where the result is "false"
and cannot proceed further.

- It could be more natural to state that if thread X terminates on a successsful assertion
(e.g. Error message is obtained, and matches requires condition) then this causes the
entire test case to fail.

[MIKE] - This is a case of perception. No error = "pass" OR Error = "fail" However, "pass" and "fail"
have a specific meaning in the currently defined logical evaluation of a <TestCase> "pass", as currently
defined, means "success" and "proceed" (in the case of logical branching). Saying that an Error message
is obtained = "pass" presents problems. That is why my <TestAssertion> says No Errors = "pass".
If we want to describe <TestAssertions> both ways, then we need a qualifier like the one you describe.
Comments from implementers?

That will be generally what Exceptions threads are for.
For this we could use an explicit qualifier "fail" or "pass" for the final Assertions
(if the Assertion is verified, the qualifier decides of the entire test case: "fail" or "pass").

[MIKE] - If our logical structure is sound (<TestCase><Thread><If><Then><Else) then the final
<TestAssertion> (wherever that is in the logic tree.. it could vary depending on logic flow during execution)
would determine <TestCase> result. Again, the "pass" or "fail" I believe reflects the
"No Errors = Pass" VS "Errors = "Fail" issue. If it is determined that we need this, then I will
add it as a <TestAssertion> attribute (with a default of "pass").

- without pass/fail qualifiers, the thread execution simply has boolean semantics, for
the overall flow control of the case ("if (thread A) then ...").

[MIKE] - This is not true. The boolean semantics do more than control flow. The boolean semantics
include a "bottom up" logic, in which a true/false <TestAssertion> result determines a true/false
<TestStep> result. A true/false <TestStep> result (based upon its parent <If><Then><Else>
clause) determines control flow AND is the current state of the <TestCase> If the <TestAssertion> is the
"last" in the <TestCase> (as you mention directly below) , then the state of the <TestCase> is whatever its value is: pass or fail.
So it is not simply boolean semantics driving execution, it is the "state" of the <TestCase> at any point in time.
The only advantage of using the "pass/fail" qualifier" is that it lets you express a <TestAssertion> in both the positive and negative (pass or fail).
(e.g the "No Errors = pass" VS Errors = "fail") As it is currently is defined, all <TestAssertion>s MUST be expressed
in the positive (pass). It is not a big deal to add this attribute to <TestAssertion> and <TestPrecondition>.
Comments from implementers?

- Conversely, it could be that it is enough for thread XYZ to terminate successfully,
for the test case to succeed, regardless of how other threads do. Then we would qualify
its last assertion with "pass".

[MIKE] - I see what you are saying. This is true.. since the value of the last <TestAssertion> reflects the
state of the <TestCase> at that point.

- note that we could acheive the same effect with a pass or fail action:
if (thread A) then "fail";
or
if (thread A) then "pass" else "fail";

[MIKE] - If we want to introduce additional elements into the scheam <Pass> <Fail> we can do that. It makes for more
readable <TestCase>s. Basically, these <Pass> and <Fail> tags would set the state of the <TestCase> and the
booean logic would still ultimately determline wheter execution continues (if it is part of some greater <If><Then> <Else> structure,
of it is a <Thread> within a <Thread> Comments from implementers?

<JD> If we do so (explicit “fail” “pass” exit operations) then I believe it will be easier to express various

outcomes for a multi-threaded test case.

Sometimes having to glue together all threads in a large conditional expression is contrived and more complex.

So a thread in itself would not decide of the total outcome (except for the main thread,
which has a default of: if (thread main) then "pass" else "fail";)

[MIKE] - I do not have a problem with this if that is what is decided.

 Concurrency Use Case #2: workflow split

 Test Case:
 - send M1
 (---> this will trigger two concurrent subprocesses 2 and 3 on the remote side,
 which will send back two threads of messages: M2a + M2b for subprocess 2, and M3 for
 subprocess 3. There is no order between subprocesses 2 and 3)
 - split {(receive M2a; verify M2a; receive M2b; verify M2b)(receive M3; verify M3)}
 (---> then when M2a , M2b and M3 have been verified, one last message M4 is expected)
 - receive message M4
 - verify M4

<JD> In this script, the "if...then...endThen" seems unnecessary:

[MIKE] - This is true, It could just be:

<Thread name="thread_01" type="synchronous">
 <TestStep id="step_01"/>
 <Thread name= "thread_02" type="asynchronous"> </Thread>
 <TestStep id="step_03"/>

</Thread>

[MIKE] - The result would be the determination that all <TestStep>s and <Threads> have a state of "true" (with the asynchronous Thread result returned
whenver it completes). step_01 is executed first, thread_02 is executed next (ascynhronously), step_03 is executed simultaneously with thread_02
(this assumes that each operation is executed serially unless it is an asynchronous thread).
<JD> Yes. The “if…then…” gives a false impression of synchronicity, in addition.

also the notion of "AndSplit" does not really match common workflow notions:
subthreads are always all started and concurrently in a split (so there is no such thing
as an or-split I believe).

[MIKE] - I got my notation (AndSplit/OrSplit) from the workflow examples I researched on the web
(Google searching of AndSplit or OrSplit returns many such examples). However, you can certainly
just say:

<Split>
 ...
</Split>

<Join type="AndJoin"/> or <Join type="OrJoin"/>

My questions are:

In workflow, does a <Split> always require a <Join>? Can we just <Split> three <TestSteps> without necessarily
haveing a logical <Join> operation (for example, a <Thread> that does a PutMessage <TestStep>, then a "GetMessage" <TestStep> then another "GetMessage" <TestStep>, with no
branching to a <AndJoin> or <OrJoin>) The result of the <Thread> is based upon all <TestSteps> returning a value of "true"

<JD> Joins are not always needed, only if you want to wait for a thread to end. You could start a bunch of threads using split,

have each decide of a “pass” or “fail” at its end, and that is it.
Also, how do we express a synchronous "AndSplit" operation (since a <Split>, as you say is by definition an asynchronous execution of sub-threads)? As I have read it, <AndSplit>
is an asynchronous execution of subthreads, and an <OrSlit> is a synchronous execution of subthreads.

<JD> I see. I had in mind only the AndSplit. The OrSplit is less common in workflow, not sure if we need it in

this version of TFk? (we can simulate with if—then)

Because some <Split> operations in ebXML BPSS testing will require sequential execution, and cannot be run in parallel. I see this as a problem unless we can define a workflow term for a
"synchronous <Split>". For example, the script below would result in asynchronous PutMessage and GetMessage <TestSteps> which is not what we want, since BPSS requires a sequence of "Purchase Order First", then "Send Invoice Second". Is there a "synchronous" way to do a <Split>? Or should I be using another workflow term to express this?

<Split>
<TestStep><PutMessage>...send an Purchase Order </PutMessage></TestStep>
<TestStep><GetMessage>... Request a Confirmation </PutMessage></TestStep>
</Split>

<JD> but then why would we need a split here, instead of just a sequential exec of these 2 first steps?

<AndJoin>
<TestStep><PutMessage>...send a Duplicate Purchase Order </PutMessage></TestStep>
<TestStep><PutMessage>...get an Error response </PutMessage></TestStep>
</AndJoin>

 <JD> I would only use threads as argt of Joins and Split, not any step…

It seems that here we don't need more than split, or-join, and-join which are
known workflow operators.

[MIKE] - I think we need one more (asynchronous split)?

Split (A, B) is actually equivalent to a sequence { async thread(A); async thread(B) }
so maybe we don't even need a split.

MIKE] - I agree, unless we need to "join" their result. Then we need to define what is being "joined".
If we have a sequence of A,B,C,D,E,F,G, then we define a "join", in XML terms we need to "enclose" what
we are joining, so I think a "container" element (e.g. <Split>) would be necessary to define what we are joining,
<Split>A,B,C</Split>? or <Split>C,D,E</Split>?
<JD> we would just have a <join> element for this, right? And it does not have to match a split with same argts:

threads we need to join could be started with several splits or just some async branching.

We still need a join, here and-join to wait for all threads,
before proceeding further in the parent thread.

[MIKE] - This means (in XML terms) that we need a "parent" element for the 2 asynchronous threads (A and B). So a
<Split> parent element is called for.

So it seems to me could have:

Thread: "main"
- step 1;
- split (thread A, thread B)
- and-join (A, B)
- step 4;

[MIKE] - Agreed. It could be writen as:

<Thread name="main">
 <TestStep id = "testStep_01"> ... </TestStep>
 <Split>
 <Thread name="A"></Thread>
 <Thread name="B"></Thread>
 </Split>
<AndJoin>
<TestStep id="step_04">...</TestStep>
</AndJoin>
 <JD> but I would only use thread names as arg for Join (like for split)

 Conditional Use Case #3: conditional branching

 Test Case:
 - send M1
 - received M2 (e.g. an approval, or rejection)
 (---> if M2 is "approval", we will expect a sequence of: receive M3 + send M4 + receive M5.
 if M2 is "rejection", we will expect a sequence of: receive M6)
 We need to verify all received messages, as the test case would fail if they do not comply.

<JD> In this case, as it is either one thread or the other, we probably need no "split"
(I think we have a misunderstanding on the split semantics)
only an "if (assertion) then (thread A) else (thread B)" would be sufficient.

[MIKE] - I see. I interpreted this as we receiver an "Approval"... "Rejection"..
or perhaps some other type of message. You are saying it is either one or the other.
In this case, I agree that we doe not need a <Split> However, there may be use cases
where an <If><Then><ElseIf><Then> <Else> situation may exist.
<JD> yes, but that would be sufficient (would that actually simulate an OrSplit?)

Now, should we use the "if (...) " at assertion level, instead of thread level?

[MIKE] - I think this gets to the issue of what a <TestStep> is. Should it invoke
a <Thread>? Or is it the "lowest common denominator" (capable only of invoking
a <PutMessage> or <GetMessage> operation.. My opinion is that we are getting too
"low level" here, because <TestPreCondition> and <TestAssertion> may get "lost" in the
complexities of <If><Then><Else> I would rather have the <If> clause reserved for evaluating
the results of <TestSteps> and <Threads>, ranther than <TestAssertions>. Comments
from implementers?

<JD> I understand. Yet, if we decide to branch a new thread one way or the other, from INSIDE

another Thread, how can we express this condition? It would be contrived to “cut” the main thread

in small pieces so that the conditional is always done on the outcome of a thread…

Maybe we could have “guarded” steps: they execute only if a condition is verified

(a very primitive “if…then…”)
because we need to branch within a thread, like here, in some cases.
So both could be possible in general.
the "Then" and "Else" would still start threads (synchronous in our use case, as you pointed out).
