1.1 Execution of a Test Case and Test Case Results

A Test Case is a workflow of Test Threads. Test Threads can be thought of as containers of test operations used to perform some specific testing function. For example, a Thread MAY be used to send a message, receive a response and evaluate the content of that message response (to test a single “business transaction activity”. Or, a Thread MAY be used as a container of other Threads (performing a higher-level role in testing “binary collaboration activity” between two parties.

Threads MAY contain a number of test operations, including message construction and transmission, message reception and evaluation, assertion testing and logic control operations. Section 8 provides the syntactic rules and semantic meaning of the XML schema used to define Test Cases and their Threads.

However, before introducing the technical details of the IIC Test Framework scripting language, it would be helpful to understand how Threads can be used in an abstract sense in 3 sample Test Cases:

1.1.1 Test Case #1: Basic Transaction Send/Receive within specified TimeToAcknowledge and TimeToPerform

This Test Case illustrates a typical “send/receive” testing scenario, in which time plays a critical role in determining whether the candidate business application “passes” or “fails”.

· The Test Driver (acting in the role of the “Buyer”) sends a Purchase Order document to the candidate business application (the “Seller”).
· The Seller must (<JD> this is not a normative text!!) respond with a “business Acknowledgment message” within 120 seconds.

· Lastly, either a Confirmation or Rejection message must be received by the Test Driver within 180 seconds of sending the Purchase Order message. <JD> we can require here that a single one of these be present.
· Test Driver then sends a Receipt Ack for the confirmation/rejection

Below is an abstract representation of how test Threads would be constructed and executed in a test script:

Test Case Begin “main” execution Thread
PutMessage() Send a message containing a Purchase Order attachment

Split (thread_01)

Sleep(180) Fork a “sleep” Thread that waits for 3 minutes …

Split (thread_02)

GetMessage() Concurrently check for a business Acknowledgment response. Filter any business Ack response message with same ConversationId as PurchaseOrder.
TestAssertion Verify that message is an 'ReceiptAcknowledgment with a Purchase order Reference corresponding to the ConversationId' (<JD> if not, what happens?)
TestAssertion Verify that Receipt Acknowledgment occured within specified 'TimeToAcknowledgeReceipt' period of 120 seconds (comparing the Receipt Acknowledgment Timestamp against the Timestamp of the request message. <JD> is this a timestamp that is added by the test driver at reception, or an “ebXML” timestamp? That should be the former. We should say a minimum about thes Timestamps in the “execution semantics” section below: is it something the test driver generates for each message operation? Or something we can capture at any time with a time function and a variable? Fail the Test Case if ReceiptAcknowledgment occurred outside of this timeframe.

Join (thread_01, thread_02) Synchronize script execution, proceeding after both threads complete.

GetMessage() Retrieve Response message(s). Filter any business response message (either Confirmation or Rejection)” with same ConversationId as PurchaseOrder.
TestAssertion Verify that result contains either a single Confirmation or Rejection. Fail the Test Case if neither is present, or if more than one is present.
PutMessage() Send a business Receipt Acknowledgment

End Test Case End “main” execution Thread
1.1.1.1 Semantics of Thread Execution:

 A “main” Thread is invoked by default when a Test Case is executed. This main Thread contains two sub-threads and their test operations. Within this main Thread, a “PutMessage” operation sends a Purchase Order request to a candidate business applications. Also within this main Thread, two sub-threads (thread_01 and 02) are invoked “in parallel” using the Split operation. The first thread simply sleeps for 3 minutesThe Second Thread simultaneously checks for a business-level Acknowledgment message (which MUST be received within 120 seconds of the initial Purchase Order request Timestamp value)
NOTES:

· in the above example, thread_02 is defined as a separate thread. An alternative would be to not use thread_02, and just have the “main” thread execute the steps within thread_02 (remove “split thread_02” statement), then join thread_01 only (instead of joining both threads). <JD> maybe we could just use thread_01, for simplifying the case?
· thread_01 and thread_02 are defined “inline” at the place where they are forked. They could have been scripted outside the main sequence of operations (i.e. at the end of the test case.)

Continued execution of the Test Case is predicated upon the successful completion of thread 01 and 02 (which is determined by a successful “Join” test operationAssuming that Threads 01 and 02 complete successfully, the Join (by default an “and join”) operation will continue Test Case exection. A final TestAssertion operation is done to determine if a Confirmation or Rejection message was received by the Test Driver. If one or the other was received, then a final Acknowledgment signal is sent back to the “Seller” application and Test Case execution is complete. A Test Case result of “pass” results from the successful completion of the final Acknowledgment send operation.

1.1.2 Test Case #2: Basic Error Error Handling Test Scenario

This Test Case illustrates a scenario in which an error message may be generated at any time in the business transaction. The Test Driver (acting in the role of the “Buyer”) sends a Purchase Order document to the candidate business application (the “Seller”). The Seller responds with an Acceptance or Rejection message. An error MAY occur at any point within 5 minutes of the initial Purchase Order request (either before, during or after receiving the Acceptance or Rejection response).

Below is an abstract representation of how test Threads would be constructed and executed in a test script:

Test Case Begin “main” execution Thread

PutMessage() Send a message containing a Purchase Order attachment

Split (thread_01)

Sleep(180) Fork a “sleep” Thread that waits for 3 minutes …

GetMessage() Check for any received Error Messages . Filter any Error message referring to this PurchaseOrder ID.
TestAssertion <JD> previous statement may be ambiguous: I guess the assertion condition will be empty here? Since we want the “filter” to catch the right error, and just exit on failure after. Exit with a final Test Case result of “fail” if an Error message is received.

Join (thread_01,) Synchronize script execution, proceeding after thread_01 completes.

GetMessage() Retrieve Response message(s). Filter any business response message with same ConversationId as PurchaseOrder.
TestAssertion Verify that result contains either a single Confirmation or Rejection. Fail the Test Case if neither is present.

End Test Case End “main” execution Thread
<JD> the previous Use Case #1 was requiring to check the “single” acceptance or rejection within 180 sec, but not this one. Here, we could just illustrate the main thread proceeding in parallel to the error detection thread (not waiting for it) . So we could do the join at the end of the test case, for a change… while your example above is OK, it is too much like use case #1 showing a split thread just blocking the main thread (joined right after being split). (we could terminate Test Case with the Join)

Incidentally, shouldn’t your scripting above use some “bloc” notation to delimit threads? (“start thread_01”, “end thread_01”), the indentation is not enough.
Now, in case we still want to keep checking the “single” response: you assume implicitly that the time to get no Error is the same as the max time to get an acceptance or rejection, but we could have a use case that says: “response message should be obtained within 3 mn, and no error should be received within 5mn of the request”. That would be a better extension of case #1 (we would then have the same as Use Case #1, plus one more thread to fork two threads at least)
1.1.2.1 Semantics of Thread Execution:

A “main” Thread is invoked by default when a Test Case is executed. This main Thread containsone sub-thread, with its own test operations. Within this main Thread, a “PutMessage” operation sends a Purchase Order request to a candidate business applications. Concurrently, thread_01 (a Thread that simply sleeps for 3 minutes, then tests for any received Error messages) is executed via the Split operation

Continued execution of the Test Case is predicated upon the successful completion of thread 01 (which is determined by a successful “Join” test operation. Assuming that thread_01 completes successfully, Test Case execution continues with a retrieval of the response message from the candidate MSH. Finally a TestAssertion operation verifies that either a single Confirmation or Rejection message is received by the Test Driver. If neither is received, the Test Case ends with a final result of “fail”.

1.1.3 Test Case #3: Conditional Branching Scenario

This Test Case illustrates a scenario in branching of Test Case logic is dependent upon the outcome of a TestAssertion operation. The Test Driver (acting in the role of the “Buyer”) sends a Request for Quote document to the candidate business application (the “Seller”). The Seller responds with an Approval or Rejection message. An error may occur at any point after the initial of the initial Request for Quote, and must be caught by the Test Driver.

Below is an abstract representation of how test Threads would be constructed and executed in a test script:

Test Case Begin “main” execution Thread

PutMessage() Send a message containing a Request For Quote

Split (thread_01)

Sleep(180) Instruct Test Driver to “sleep” for 3 minutes <JD> use a longer time, to differentiate from the previous 180sec tat was used for max response time in Use case #1.
GetMessage() Wake up and check for any received Error Messages (<JD> same updates as before)
TestAssertion Verify that no Error message was received. Immediately exit with a final Test Case result of “fail” if an Error message is received.

GetMessage() Retrieve Response message(s). Filter any business response message with same ConversationId as Request For Quote.

TestAssertion Verify that result contains an “Approval” or “Rejection” document.. if not, exit Test Case with result of “fail”

TestAssertion Verify that result contains an “Approval” document.

WhenTrue Process the Approval document by forking the “Approval” Thread (02)

Split (thread_02)

TestAssertion Validate the Approval document.. exit with a result of “fail” if it is not valid. <JD> shouldn’t this test be done in the previous test assertion?
GetMessage() Retrieve a Quote message(s). Filter messages of type “Quote” with corresponding ConversationId as the Approval document.

TestAssertion Validate the Quote document.. exit with a result of “fail” if it is not valid.

PutMessage() Send an Appproval of Quote message response. Message created reuses the same ConversationId.
WhenFalse “Continue” to next Test Operation

TestAssertion Verify that result contains a “Rejection” document.

WhenTrue Process the Rejection document by forking the “Rejection” Thread (03)

Split (thread_03)

TestAssertion Validate the Rejection document.. exit with a result of “fail” if it is not valid.

GetMessage() Retrieve the “alternative” message. Filter messages of type with corresponding ConversationId as the Rejection document.

TestAssertion Verify that it is not a ‘Quote’ message.. exit Test Case with a result of “fail” if it is.

WhenFalse “Continue” to next Test Operation

Join (thread_01) Synchronize script execution, proceeding after thread_01 completes, signifying that no Errors were generated.

End Test Case End “main” execution Thread

It is a little risky to NOT join threads 2 and 3: Splitting them without forking means that [either one] will go concurrently to0 main, and may not even be over at the time we join thread 01. I would insert a “or-join(thread_02, thread_03)” before the join(thread 01).

Note that we could have also written:

…

TestAssertion Verify that result contains an “Approval” document.

WhenTrue Process the Approval document by forking the “Approval” Thread (02)

Split (thread_02)

TestAssertion Validate the Approval document.. exit with a result of “fail” if it is not valid. <JD> shouldn’t this test be done in the previous test assertion?

GetMessage() Retrieve a Quote message(s). Filter messages of type “Quote” with corresponding ConversationId as the Approval document.

TestAssertion Validate the Quote document.. exit with a result of “fail” if it is not valid.

PutMessage() Send an Appproval of Quote message response. Message created reuses the same ConversationId.

WhenFalse Process the Rejection document by forking the “Rejection” Thread (03)
Split (thread_03)

TestAssertion Verify that result contains a “Rejection” document. If not, exit on “fail”

TestAssertion Validate the Rejection document.. exit with a result of “fail” if it is not valid.

GetMessage() Retrieve the “alternative” message. Filter messages of type with corresponding ConversationId as the Rejection document.

TestAssertion Verify that it is not a ‘Quote’ message.. exit Test Case with a result of “fail” if it is.

Or-Join(Thread_02, Thread_03)

Join (thread_01) Synchronize script execution, proceeding after thread_01 completes, signifying that no Errors were generated.

End Test Case End “main” execution Thread

1.1.3.1 Semantics of Thread Execution:

 A “main” Thread is invoked, which contains three sub-threads (01, 02 and 03) and their test operations. It is a RECOMMENDED practice that a “main” Thread be used to control execution of the entire Test Case

The main Thread executes a simple Request for Quote request to the candidate business application.

Following the PutMessage test operation one sub-thread (thread_01) is invoked “in parallel” using the Split operation. This thread constantly checks for any received messages throughout the execution of the entire Test Case.

Next, the main Thread does a GetMessage test operation to retrieve any response messages from the Test Driver Message Store. with same ConversationId,
Continued execution of the Test Case is predicated upon the successful retrieval of either an Approval or a Rejection message from the candidate application.

This can be expressed as two boolean expressions, whose true result causes the execution of a sub-thread of test operations (either Acceptance thread_02 or Rejection thread_03). Again, continued execution of the Test Case is predicated on the results of the TestAssertion operations within each Thread.

Lastly, execution completes by passing control back to the main via the Join operation, which ends the “error checking thread_01”, then ends Test Case execution. Completion of this logical workflow indicates a “pass” result for the Test Case.

1.1.4 The following rules specify how a Test Driver determines if a he Test Case evaluates to a value of “pass, fail, or undetermined”.

A Test Assertion may include specific actions associated with either its “true” and/or “false” value. Such an action could be (1) exit test case on either “fail”, “pass”, or “undetermined”, (2) return from this thread (complete it), (3) continue to the next step in this thread. In case no action statement is specified for either Boolean value of the Test Assertion, the following default rules apply:
· The default action for a boolean value of “true” is “continue”.

· The default action for a boolean value of “false” is exit test case on “fail”)

The final outcome of a Test Case follows these rules:
 A final Test Case state of "pass" occurs when the Test Driver encounters an explicit "exit/pass" instruction from within a TestAssertion, OR logical testing execution proceeds from beginning to end without: <JD> how do we define the end of a test case, if there are threads that are not joined? Would the end of the “main” thread determine the end of the test case even if there are other pending (not joined) threads? (I tend to say so)

a) An explicit "exit/fail" or "exit/undetermined"

b) A system "exception" condition

c) A timeout on the test case (e.g. a pending GetMessage, or a failed Join due to a hanging thread would preclude further testing execution beyond the Join.)
 A final Test Case state of "fail" occurs when :

a) A TestAssertion boolean operation returns a result of "false" (default behavior) (i.e. it is assumed by default that a TestAssertion is a meaningful condition of conformance/interoperability that MUST pass.. unless a different meaning is given explcitly by the test writer, e.g. in such cases where a TestAssertion verifies a "precondition" to further testing, in which case the test writer may wish to "exit" with a state of "undetermined". Additionally, the test writer may wish to "continue" if the failed result of the TestAssertion is used to alter the flow of Test Case execution.
b) The Test Driver encounters an explicit "exit/fail" instruction within a TestAssertion operation.

 A final Test Case state of "undetermined" occurs if:

1) An explicit "exit/undetermined" instruction occurs from a TestAssertion operation

2) Testing logic flow cannot proceed beyond a Join due to failed andJoin or orJoin condition <JD> we could say more generally: all other conditions that do not meet the criteria for “pass” or “fail” above.

