1.1 An overview of Test Scripts
A Test Case is a workflow of Test Threads. Test Threads can be thought of as containers of test operations used to perform some specific testing function. These operations are typically executed in sequence within a thread. Concurrency of operations typically involve several (concurrent) threads. For example, a Thread may be used to send a message, receive a response and evaluate the content of that message response (to test a single “business transaction activity”. Or, a Thread may be used as a container of other Threads (performing a higher-level role in testing “binary collaboration activity” between two parties. If two conversations must be controlled by the Test Driver, without clear indication on which one will occur first or whether they may be interleaved, then two concurrent threads can be used, each one taking care of a conversation.
Threads may contain a number of test operations, including message construction and transmission, message reception and evaluation, assertion testing and logic control operations. Section 8 <JD5> this section ref may be changed? [MIKE] – Probably will be section 7 provides the syntactic rules and semantic meaning of the XML schema used to define Test Cases and their Threads.

However, before introducing the technical details of the IIC Test Framework scripting language, it would be helpful to understand how Threads can be used in 3 sample Test Cases.

Before discussing these Test Cases, a few test operations need to understanding. These include
[MIKE] – Moved Jacques text here.. so that it applies to all 3 sample Test Cases .. includes some of my comments.
· PutMessage() is an operation that will send a message to the remote party. The message material is built or modified by the Test Driver, based on previous messages or based on message material that is part of the test case definition.

· GetMessage() is an operation that will wait for incoming messages, and only select those that satisfy a filter condition. In fact, all received messages are stored in a queue. [MKE] – that is an implementation detail.. no need to say wahat kind of data structure is used and GetMessage() will select any message (including previously received messages) from the Message Store . As soon as the XPath filter is satisfied, GetMessage() completes its execution. A timeout is always be specified (via a Test Driver configuration parameter) so that GetMessage() does not hang query the Message Store indefinitely. Messages that have been selected are (by default) not removed from the Message Store incoming queue.

· [MIKE] – I changed the text above (Italics) because message masking is NOT the default behavior, because it assumes that any filtered message is no longer needed for subsequent GetMessage operations. I would even suggest putting masking in the category of an “extension” to the Test Framework, since it is difficult to implement, (unless you simply “wipe out” the Message Store after every GetMessage). I suggest keeping “mask” an option (not the default behavior). Comments?
· TestAssertion is a verification operation that evaluates a condition on message material, typically from the last received message. It then may determine the action to follow, such as continue or test case termination (as failure, success, or undetermined outcome).

· Split() and join() are typical workflow operators. Split() is forking one or more thread concurrently to the parent thread. Join() is by default an and-join operator that will wait for the completion of its argument threads before proceeding further.

1.1.1 Test Case #1: Basic Transaction Send/Receive within specified TimeToAcknowledge and TimeToPerform

This Test Case illustrates a typical “send/receive” testing scenario, in which time plays a critical role in determining whether the candidate business application “passes” or “fails”.

The Test Driver (acting in the role of the “Buyer”) sends a Purchase Order document to the candidate business application (the “Seller”).
The Seller must respond with a “business Acknowledgment message” within 120 seconds.

Lastly, either a Confirmation or Rejection (but not both) message must be received by the Test Driver within 180 seconds of sending the Purchase Order message.

Test Driver then sends a Receipt Ack for the confirmation/rejection

Below is an approximate script representation of the test case, showing how threads are combined and what operations they execute :

Test Case Begin “main” execution Thread

PutMessage() Send a message containing a Purchase Order attachment

Split (thread_01)

Thread

Sleep(180) Fork a “sleep” Thread that waits for 3 minutes.

End Thread

GetMessage() Concurrently check for a business Acknowledgment response. Filter any ReceiptAcknowledgment response message with same ConversationId as PurchaseOrder.
TestAssertion Verify that a filtered message is present in the filtered result. If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”, stating that a ReceiptAcknowledgment was not present.

.<JD5> shouldn’t we set a “failure info” element telling why the test case failed? Since that could be very valuable info, as a test case may fail in so many ways. That may be a more general issue to fix in our framework. Here, it would be “ message is not a ReceiptAcknowledgement”. [MIKE] – Agreed. We actually added a “description” attribute to our <Exit> element just for this purpose.
[MIKE] – Agreed. We actually added a “description” attribute to our <Exit> element just for this purpose.

<JD5> shouldn’t we also specify a timeout (120s) for the above GetMessage operation? We don’t want it to wait forever.
[MIKE] – The StepDuration configuration parameter controls this. It is (by default) “global” for the Test Case> We can include this also by saying GetMessage(stepDuration=120 seconds).. But the thing to remember here, is that this is just a “timeout”, and has nothing to do with any Sleep operations performed before or during the GetMessage. Assuming the proper Sleep time has been set, then a FilterResult should return an immediate result.. and “timeout” if time exceeds stepDuration. Again however, such a timeout is NOT a reason to thrown an “exception”, since an unsatisfied Filter result MAY be what the test writer intended. We cannot assume to know what the test writer intends to mean with their XPath filter.

I think it is important to convey – even in these informal scripts - all the aspects of timing control like we do for the 180 sec. By the way, when a timeout occurs for a GetMessage() op, I think we should catch it in a TestAssertion (like an exception) as a Boolean variable, and decide what to do with it. Example: first TestAssertion after GetMessage() could be: “if (timeout=”true”) then exit(fail)” .
[MIKE] – A test writer is free to evaluate the content of the FilterResult using a TestAssertion if they wish, and make the appropriate call (exit/fail, exit/undetermined). If their Filter result is “empty” (say, due to a stepDuration timeout. they can make the appropriate call/verification with their TestAsserrion. Otherwise, you are suggesting that we need to add another system parameter called “stepDurationTimeout”. We can do that, but I think that it is unnecessary. Let me know what you think, and if we need to add it to the spec, we will.
TestAssertion Verify that Receipt Acknowledgment occured within specified 'TimeToAcknowledgeReceipt' period of 120 seconds (comparing the Receipt Acknowledgment Timestamp against the Timestamp of the request message (generated by the Test Driver at runtime). If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

Join (thread_01) Synchronize script execution, proceeding if both Threads successfully complete.

GetMessage() Retrieve Response message(s). Filter any business response message (either Confirmation or Rejection)” with same ConversationId as PurchaseOrder.

TestAssertion Verify that result contains either a single Confirmation or Rejection (but not both). If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

PutMessage() Send a business Receipt Acknowledgment

End Test Case End “main” execution Thread
1.1.1.1 Semantics of Execution for this test case:

 When the above Test Case is executed, a “main” Thread is started (even if not explicitly defined in the Test Case). This main Thread will spawn other threads, such as thread_01 in our example. The first step in the main Thread above is a “PutMessage” operation which sends a Purchase Order request to a candidate business application. Also within this main Thread, a sub-thread (thread_01) is invoked “in parallel” using the Split operation. This thread simply “sleeps” for 3 minutes, while the main thread proceeds concurrently.
<JD5> added:
 [MIKE] – Maybe we should move this outside of the “Semantics of Execution for this test case”.. since this applies to all 3 sample Test Cases.. perhaps moving it just before section 1.1.1.. then it can serve as a reference for all 3 example test cases. I “duplicated” this text at the start of section 1.1.1 to illustrate.
A few operations need to be understood:
· PutMessage() is an operation that will send a message to the remote party. The message material is built or modified by the Test Driver, based on previous messages or based on message material that is part of the test case definition.

· GetMessage() is an operation that will wait for incoming messages, and only select those that satisfy a filter condition. In fact, all received messages are stored in a queue. [MKE] – that is an implementation detail.. no need to say wahat kind of data structure is used and GetMessage() will select any message (including previously received messages) from the Message Store . As soon as the XPath filter is satisfied, GetMessage() completes its execution. A timeout is always be specified (via a Test Driver configuration parameter) so that GetMessage() does not hang query the Message Store indefinitely. Messages that have been selected are (by default) not removed from the Message Store incoming queue.

· [MIKE] – I changed the text above (Italics) because message masking is NOT the default behavior, because it assumes that any filtered message is no longer needed for subsequent GetMessage operations. I would even suggest putting masking in the category of an “extension” to the Test Framework, since it is difficult to implement, (unless you simply “wipe out” the Message Store after every GetMessage). I suggest keeping “mask” an option (not the default behavior). Comments?
· TestAssertion is a verification operation that evaluates a condition on message material, typically from the last received message. It then may determine the action to follow, such as continue or test case termination (as failure, success, or undetermined outcome).

· Split() and join() are typical workflow operators. Split() is forking one or more thread concurrently to the parent thread. Join() is by default an and-join operator that will wait for the completion of its argument threads before proceeding further.

·

·
·
<JD5> The main thread is then executing the operation GetMessage(), which will select any received message that correlates with the previous PurchaseOrder (same conversation ID, and reference) and that is of type ReceiptAcknowledgement. This operation should not last more than 120 seconds. If no message of this type has been received withing 120 seconds, the test case will exit in failure. Finally, even if a ReceiptAcknowledgement is received with less than 120sec of wait, it may be that more than 120 sec have elapsed since the initial PutMessage() operation. A TestAssertion verification is handling this test and failure case.

[MIKE] – I believe we should be comparing Timestamps to verify whether an implementation performs within a specified time period. We should not use stepDuration as a measurement tool for determining whether a message was “received in time”. If however, we want to use the Test Driver clock to determline whether an application performs within a specified time, I’d opt for the use of <Sleep> as a “recommended practice” for measuring delays, since it takes away any inherent inefficiencies that may exist in GetMessage (such as speed of XPath processing, time to store messages in the MessageStore) to make a determination whether an implementation passes or fails. Using StepDuration (essentially a “timeout” tool) to pass/fail an implementation may not be a good way to go.

[MIKE] – If we wish to change this Test Case, and add a TestAssertion that says that a ReceiptAcknowledgment MUST be returned within 120 seconds from when a PurchaseOrder request was sent, then I think we need to be clear.. Do you want to measure time difference between Timestamps? (say a signal Acknowledgment Timestamp from the MSH saying it “got” the PurchaseOrder request at XX time, and compare that with the Timestamp of the ReceiptAcknowledgment message? This would seem to be a much more precise measurement than simply saying that a stepDuration timeout occurred at 120 seconds.. therefore the Test Case fails. Such a test does not account for network latency,actual time of receipt of a request, and actual time of responsel. The only true way to accurately measure time in business processes is through comparison of Timestamps.. not clock time of a Test Driver. Comments?
And if you wanted to do it simply measuring Test Driver clock time from successful PutMesssage() to an “unsuccessful” GetMessage() (ignoring Timestamps) you could simply do a PutMessage(), Sleep (120), then do a GetMessage(). If your XPath Filter is not satisfied, you exit/fail. This takes “stepDuration” out of the equation. StepDuration was not meant to be a critical measurement of time between sends/receives.. but simply a “reasonable timeout” for the Test Driver to retrieve/filter messages from the MessageStore before proceeding to the next test operation. I believe that Sleep() plays the more vital role of timing between send/receive operations. But lastly, Timestamps play the critical role of determining whether business transactions completed withina a specified time interval. Comments?
<JD5> updates:
Continued execution of the Test Case is predicated upon the completion of thread 01 Assuming that thread_01 completes successfully, the “Join” operator will give control to subsequent operations and the Test Driver will continue script execution. A final TestAssertion operation determines if a single Confirmation or Rejection message (but not both) was received by the Test Driver, over the past 180 seconds. If one or the other was received, then a final Acknowledgment signal is sent back to the “Seller” application and Test Case execution is complete. The Test Case will “pass” upon the successful completion of the final Receipt Acknowledgment send operation.

1.1.2 Test Case #2: Basic Error Error Handling Test Scenario

<JD5> updates:
This Test Case illustrates a scenario where an error message must be caught, no matter when it occurs during the test case execution. The “Buyer” (Test Driver) sends a Purchase Order document to the candidate business application (the “Seller”). The Seller responds with an Acceptance or Rejection message (but not both). An error may occur at any point within 5 minutes of the initial Purchase Order request (either before, during or after receiving the Acceptance or Rejection response). If that is the case, the test case must fail.
Below is an approximate script representation of the test case, showing how threads are combined and what operations they execute:

<JD5> to avoid confusion, I would swap the names of the sub-threads below, and split the 180sec first like in use case #1.
[MIKE] - OK
Test Case Begin “main” execution Thread

PutMessage() Send a message containing a Purchase Order attachment

Split (thread_01) Fork“sleep” Thread that waits for 3 minutes

Thread

Sleep(180)

 End Thread

Split (thread_02) Fork“sleep” Thread that waits for 5 minutes then checks for an Error message

Thread

Sleep(300)

GetMessage() Check for any received Error Messages. Filter a specific Error message referring to this PurchaseOrder ID.

TestAssertion() Verify an Error message was received. If the verification condition returns a boolean result of “true”, exit the Test Case with a final result of “fail”. If the value is “false”, the test case is instructed to continue its execution.
 End Thread

Join (thread_01) Synchronize script execution, proceeding after thread_02 completes successfully (i.e 3 minutest have passed since the request message was sent).
GetMessage() Retrieve Response message(s). Filter any business response message with same ConversationId as PurchaseOrder.

TestAssertion() Verify that result contains either a single Confirmation or Rejection(but not both). If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

Join (thread_02) Synchronize script execution, proceeding after thread_01 completes successfully.
End Test Case End “main” execution Thread
1.1.2.1 Semantics of Execution for this test case:

<JD5> rewording:

 The main Thread starts by executing a “PutMessage” operation to send a Purchase Order request to a candidate business application. After this, two threads are forked:

· thread_01 (a Thread that sleeps for 3 minutes, is executed via the Split operation. The role of this thread is the same as in use case #1.

· thread_02 is forked and sleeps for 5 minutes. then tests for any received Error messages
Continued execution of the Test Case is predicated upon the completion of thread 01 Assuming thread_01 completes successfully, Test Case execution continues with a retrieval of the response message. Like in Use Case #1, a TestAssertion operation verifies that either a single Confirmation or Rejection (but not both) message is received by the Test Driver. If neither is received, the Test Case ends with a final result of “fail”.

Lastly, thread_02 (the Error checking Thread) is Joined as the final determinant of success/failure of the Test Case. If thread_02 completes its execution (meaning it has failed to detect an error message), the final Test Case result is “pass”. .

1.1.3 Test Case #3: Conditional Branching Scenario

This Test Case illustrates a scenario in branching of Test Case logic, which is dependent upon the outcome of a TestAssertion operation. The Test Driver (acting in the role of the “Buyer”) sends a Request for Quote document to the candidate business application (the “Seller”). The Seller responds with an Approval or Rejection message. An error may occur at any point after the initial of the initial Request for Quote, and must be caught by the Test Driver.

Below is an approximate script representation of the test case, showing how threads are combined and what operations they execute:

Test Case Begin “main” execution Thread

PutMessage() Send a message containing a Request For Quote

Split (thread_01)

[MIKE] – Added below… will delete above as per Jacques instructions

Thread

Sleep(300)

GetMessage() Check for any received Error Messages. Filter a specific Error message referring to this PurchaseOrder ID.

TestAssertion() Verify an Error message was received. If the verification condition returns a boolean result of “true”, exit the Test Case with a final result of “fail”. If the value is “false”, the test case is instructed to continue its execution.

 End Thread

GetMessage() Retrieve Response message(s). Filter any business response message with same ConversationId as Request For Quote.

TestAssertion() Verify that result contains an “Approval” or “Rejection” document. If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

TestAssertion() Verify that result contains an “Approval” document.

WhenTrue

Split (thread_02) Process the Approval document by forking the “Approval” Thread (02)

Thread

TestAssertion () Validate the Approval document. If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

GetMessage () Retrieve a Quote message with corresponding, filtering messages of type “Quote and having the same ConversationId as the Approval document.
PutMessage () Send an Appproval of Quote message response. Message created reuses the same ConversationId. Message created reuses the same ConversationId as the Approval document.
End Thread <JD5> I think thethread should includethe PutMessage() below, motherwise PutMessage will execute concurrently.
[MIKE] – Fixed

[MIKE] – OK… removed Join (thread_02)
WhenFalse

Continue()“Continue” to next Test Operation. Explicitly continue execution if the TestAssertion operation fails (i.e. do not abort the Test Case), because the response is a “Rejection”.
TestAssertion() Verify that result contains a “Rejection” document. <JD5> this verification may take place concurrently with Thread_02, since they are actually exclusive. So we don’t need the join(thread_02) above. [MIKE] – OK, removed Join
WhenTrue Process the Rejection document by forking the “Rejection” Thread (03)

Split (thread_03) Process the Rejection document by forking the “Rejection” Thread (03)

Thread

TestAssertion () Verify that this is a Rejection document. TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

GetMessage () Retrieve the “alternative” message , filtering messages of type with same corresponding ConversationId as the Rejection document.

TestAssertion () Verify that it is not a ‘Quote’ message.. exit Test Case with a result of “fail” if it is. . If the TestAssertion operation returns a Boolean result of “false”, exit the Test Case with a final result of “fail”.

End Thread

[MIKE] – Removed Join of thread_03 as per Jacques suggestion

WhenFalse Not a Rejection
Continue ()“Continue” to next Test Operation. Explicitly continue execution if the TestAssertion operation fails (i.e. do not exit the Test Case), because the response is an “Approval”.

OrJoin(thread_02, thread_03) Synchronize script execution to make sure that either an Approval or Rejection was successfully processed before doing proceeding to a final synchronization of the “Error Checking” thread.
<JD5> I think the or-join should be for (thread_02, thread_03). For an Or-join, it does not matter if one of the threads never actually started: one is enough. [MIKE] – OK, fixed
Join (thread_01) Synchronize script execution, proceeding after thread_01 completes, signifying that no Errors were generated. If thread_01 does not complete, exit the Test Case with a final state of “undetermined”, since test execution cannot proceed for an unknown reason.

End Test Case End “main” execution Thread

1.1.3.1 Semantics of Execution for this Test Case:

<JD5> rewording:

The main Thread executes a simple Request for Quote request to the candidate business application.

Following the PutMessage test operation one sub-thread (thread_01) is invoked “in parallel” using the Split operation. This thread will check for any received error message over the 5 minutes that follow the start of the execution.
Next, the main Thread does a GetMessage test operation to retrieve any response message having the same ConversationId as the initial request..
Continued execution of the Test Case is predicated upon the successful retrieval of either an Approval or a Rejection message from the candidate application.

This can be expressed as two boolean expressions, whose true result causes the execution of a sub-thread of test operations (either Acceptance thread_02 or Rejection thread_03).
Continued Test Case script execution is predicated upon the completion of thread_02 OR thread_03 (via the OrJoin instruction). If one or the other completes, then script execution continues. Otherwise, the Test Driver exits with a final Test Case result of “undetermined”.

Lastly, a final Join operation verifies that thread_01 (the “error checking Thread”) completes. If thread_01 runs to completion, then the entire Test Case script has run to completion, and the final Test Case state is “pass”, since no further execution is possible.

1.1.4 Final Test Case Result Rules

A Test Assertion may specify a particular action to be taken by the Test Driver, based upon its “true” or “false” result value. Such an action could be (1) exit test case on either “fail”, “pass”, or “undetermined”, (2) return from this thread (complete it), (3) continue to the next step in this thread. In case no action statement is specified for either boolean value of the Test Assertion, the following default rules apply:

· The default action for a boolean value of “true” is “continue”.

· The default action for a boolean value of “false” is exit test case with a final result of “fail”)
The final outcome of a Test Case follows these rules:

 A final Test Case state of "pass" occurs when:

The Test Driver encounters an explicit "exit/pass" instruction from within a TestAssertion

Logical Test Case execution proceeds from beginning to end without the Test Driver encountering:

1) An explicit "exit/fail" or "exit/undetermined" instruction

2) A system "exception" condition occurs (such as an HTTP timeout, network protocol error, or improper test scripting (e.g. an invalid XPath expression in a TestAssertion operation) that precludes continuation of Test Case execution.

 A final Test Case state of "fail" is given to a TestCase when:

a) A TestAssertion boolean operation returns a result of "false" (default behavior) (i.e. it is assumed by default that a TestAssertion is a meaningful condition of conformance/interoperability that must pass.

* Note however, that this default behavior can overriden by the test writer in such cases where a different meaning is given to the TestAssertion, such as when a TestAssertion verifies a "precondition" to further testing, in which case the test writer may wish to "exit" the Test Case with a final state of "undetermined". Additionally, the test writer may wish to "continue" if the failed result of the TestAssertion is used to alter the flow of Test Case execution.

b) The Test Driver encounters an explicit "exit/fail" instruction within a TestAssertion operation.

 A final Test Case state of "undetermined" occurs when:

a) The Test Driver encounters an explicit "exit/undetermined" instruction within a TestAssertion operation.

b) A system "exception" condition occurs (such as an HTTP timeout, network protocol error, or improper test scripting (e.g. an invalid XPath expression in a TestAssertion operation) that precludes continuation of Test Case execution.
