
Sterling Commerce Page 1 Nov 06, 2001

EbXML MS Processing Model with Signatures Proposal1
Suresh Damodaran2
Senior Software Architect3
Sterling Commerce4

5
Ver 0.2, Nov 06, 20016

7

Overview8
We discuss the use of XML Signature and related issues in this document. We use the term “payload” to9
refer to any document that an application sends to another application. The payload could be an XML10
document, EDI document, or any other type of document.11
Payload encryption is not addressed in this document.12

Security Considerations13
We discuss in this section the security considerations that led to the processing model in this document.14

Envelope Signing vs. Payload Signing15
It is helpful to differentiate between envelope signing and payload signing while considering ebXML MS.16
Envelope signing denotes “signing the message” that is sent from a MSH to another MSH for the purpose17
of data integrity1. The steps involved are the following.18
1. Create digests for the SOAP envelope and each payload after the specified transforms are applied to19

the SOAP envelope and payload20
2. Insert the digests calculated in step 1 into a ds:SignedInfo element. Canonicalize, and create the digest21

of the ds:SignedInfo element. Encrypt the ds:SignedInfo digest.22
The envelope signing allows verification of the data integrity of the whole message. Note that while doing23
envelope signing, individual payloads are not signed individually. On the other hand, payload signing is to24
verify source authenticity of the payload after it has arrived and is stored at the destination. Payload signing25
is not a necessity, though could be useful in the following circumstances.26
1. The sender of the payload may not be the creator or the “source” of the payload, and therefore, it may27

be useful to sign the payload separately under such circumstances.28
2. The receiver of the payload does not wish to store the message envelope to which the payload is29

attached. Note that it is advisable to store the message envelope for non-repudiation purposes. If the30
envelope is stored and it is safe to assume that the sender of the payload is always identical to creator31
of the payload, then the receiver may do source authentication of the payload by creating the digest of32
the payload and matching it to the digest value in the signed ds:SignedInfo in the stored envelope. 33

Securing Payload Processing34
Note that either signing the payload, or signing the digest of the payload (in ds:SignedInfo) secures the35
processing that a payload has to go through. There are two types of processing that need to be secured.36
These are (a) the transformations that need to be applied to a payload before a digest is created, (b) the37
package processing information, such as MIME Content-ID, and Content-Type. The first type of38
transformation are already secured as part of ds:Signature processing, whereas the second type of39
processing needs to be secured by entering them in eb:Manifest and signing them2.40

1 EbXML MS specs uses the term “non-persistent security,” which I believe is a misnomer because the
receiver may persist the message signature for a long time along with the payloads for non-repudiation and
source authentication of the payload under some circumstances.
2 A potential extension of the notion of PayloadProcessing is to include other types of payload processing
information to be communicated to the application. I believe MS already has this thought as evidenced by
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> in <eb:Reference>

Sterling Commerce Page 2 Nov 06, 2001

Canonicalization of the payload processing info is another important requirement. The ds:Transforms are41
canonicalized as part of canonicalization of ds:SignedInfo as they are expressed in XML. However, the42
packaging information, though expressed in XML as part of eb:Manifest, has the Content-Type and43
Content-ID values which need to be in a “normalized form” that can be understood by all MSHs. Note that44
the values are used for processing by the MIME Unpacker (see Section “Inbound”), and any valid MIME45
Header type and value would be in normalized form3.46

Outbound47
48

Figure 1 describes the processing model when messages are constructed and sent out. The green boxes49
describe essential MSH processing, yellow boxes describe envelope signature related processing, and the50
pink box describes the optional processing. The payload could be signed or unsigned. 51

52
53

Application SOAP/ebXML
Envelope creator Envelope Signer

Mime "big"
packer

ebXML
Outbound

Processing

SSL Encryption

((Optional) Payload
signing

unsigned
payload and
PayloadProcessingIn
fo

signed payload

payload +
SOAP envelope

signed envelope

mime'ed envelope
and payloads

54
Figure 155

56
The application creates one or more payloads and PayloadProcessingInfo for each payload. The payloads57
and PayloadProcessingInfo are passed to the SOAP/ebXML Envelope creator. Note that the payload is58
NOT required to be MIME encoded, though if encoded, the payload will be treated as non-XML. The59
PayloadProcessingInfo includes the following:60

1. The desired MIME headers such as Content-ID, Content-Type61
2. XML Signature transforms for each payload62

63
The MS spec does not have to specify the structure and behavior of the PayloadProcessingInfo. The64
SOAP/ebXML Envelope creator does the packaging to create the envelope and payloads. The MIME65
headers can go into the eb:Reference element in eb:Manifest (the eb schema will need change to include the66
MIME headers). The transforms are stored in the ds:Reference element for each payload. 67

68

3 We need to create another canonicalization algorithm for normalizing the MIME Header values (such as
Multipart/related). We can describe in a separate document and use the transforms described in that
document for our purposes. I do see that when a payload is MIME encoded by the application (before
entering MSH) we could require canonicalization of the MIME message prior to signing. S/MIME may
provide the right solution for this purpose.

Sterling Commerce Page 3 Nov 06, 2001

The envelope and payloads are sent to a Signer4, which signs the envelope using XML Signature. The69
envelope, after this processing, includes the ds:Signature element that contains the signature of the70
envelope. The signed envelope and payloads are sent to the MIME encoder that does the MIME packing.71
The MIME encoded document,“a single big document,” is sent to the SSL encryptor that encrypts the72
message and sends the message over the wire (http/smtp).73

74
75

Comments: There is a concern that the MIME header is repeated in the envelope and in the actual message.
In response to this concern, consider the following points.
1. If the envelope is not signed, it is not REQUIRED to put the MIME headers in the manifest.
2. When the manifest is signed, it MUST include all headers that would appear in the MIME message

transmitted, except those that could change en-route.
3. The duplicate headers (in eb:Reference and in MIME message) can help as a check for the message

receiver to make sure that the MIME headers recovered from the message are not corrupted.

76
77

Inbound78
Figure 2 below describes the inbound processing with signature.79

Application
SOAP/ebXML

Envelope
stripper

Envelope
Signature
Verifier

Mime "big"
Unpacker

ebXML
Inbound

Processing

SSL Decryption

(Optional)
Payload

verification

unsigned payload

signed payload

payload +
SOAP envelope

signed envelope

mime'ed envelope
and payloads

80

Figure 281

The SSL Decryption stage takes in the incoming document and presents the MIME encoded message that82
includes the envelope and payloads to the MIME Unpacker. MIME Unpacker unpacks the first MIME83
body, which is the envelope. MIME Unpacker unpacks the rest of the message using the payload MIME84
header information available in eb:Manifest in the envelope. The envelope signature is verified by the85
Envelope Verifier. The SOAP/ebXML Envelope stripper takes the verified message from the Envelope86
verifier, and delivers PayloadProcessingInfo as well as the payloads to the application.87

88

4 An alternate implementation may actually create multiple MIME messages (one for each payload) that
includes the payload and mime header to the Signer. Yet another implementation may send a single
MIME’d message that has all the payloads to the Signer. In both of these cases, the Signer has the onus of
taking apart the payload and digesting and creating the Signature in ds:SignInfo

Sterling Commerce Page 4 Nov 06, 2001

Proposed Addition to eb Schema89
90
91

Insert the following in <eb:Reference> (“tns” qualification needs to be added in eb Schema) 92
93

<xsd:element name="MIMEHeaders">94
<xsd:complexType>95

<xsd:sequence minOccurs="0" maxOccurs="1">96
<xsd:element ref="MIMEHeader"/>97

</xsd:sequence>98
<xsd:attribute name="CanonicalizationMethod" type="xsd:string"99

value="http://oasis.org#mimeManifest"/>100
</xsd:complexType>101

</xsd:element>102
<xsd:element name="MIMEHeader">103

<xsd:complexType>104
<xsd:sequence>105

<xsd:element name="parameter" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>106
<xsd:element name=":comment" minOccurs="0"/>107

</xsd:sequence>108
<xsd:attribute name="fieldName" type="xsd:string" use="required"/>109
<xsd:attribute name="value" type="xsd:string" use="optional"/>110

</xsd:complexType>111
</xsd:element>112

113

Canonicalization of MIME Header Values114
115

These are early thoughts. RFC 2822, sections 2.1 and 2.2 and related sections form the basis of the116
canonicalization. Excluded from the canonicalization are Header fields whose values may change while in117
transit.118

	EbXML MS Processing Model with Signatures Proposal
	Overview
	Security Considerations
	Envelope Signing vs. Payload Signing
	Securing Payload Processing

	Outbound
	Inbound
	Proposed Addition to eb Schema
	Canonicalization of MIME Header Values

