
Sterling Commerce Page 1 Nov 06, 2001

EbXML MS Processing Model with Signatures & Payload1
Encryption Proposal2
Suresh Damodaran3
Senior Software Architect4
Sterling Commerce5

6
7

Ver 0.3, Nov 14, 20018
9

Overview10
We discuss the use of XML Signature, payload encryption, and related issues in this document. We use the11
term “payload” to refer to any document that an application sends to another application. The payload12
could be an XML document, EDI document, or any other type of document.13

14

Security Considerations15
We discuss in this section the security considerations that led to the processing model in this document.16

Envelope Signing vs. Payload Signing17
It is helpful to differentiate between envelope signing and payload signing while considering ebXML MS.18
Envelope signing denotes “signing the message” that is sent from a MSH to another MSH for the purpose19
of data integrity1. The steps involved are the following.20
1. Create digests for the SOAP envelope and each payload after the specified transforms are applied to21

the SOAP envelope and payload22
2. Insert the digests calculated in step 1 into a ds:SignedInfo element. Canonicalize, and create the digest23

of the ds:SignedInfo element. Encrypt the ds:SignedInfo digest.24
The envelope signing allows verification of the data integrity of the whole message. Note that while doing25
envelope signing, individual payloads are not signed individually. On the other hand, payload signing is to26
verify source authenticity of the payload after it has arrived and is stored at the destination. Payload signing27
is not a necessity, though could be useful in the following circumstances.28
1. The sender of the payload may not be the creator or the “source” of the payload, and therefore, it may29

be useful to sign the payload separately under such circumstances.30
2. The receiver of the payload does not wish to store the message envelope to which the payload is31

attached. Note that it is advisable to store the message envelope for non-repudiation purposes. If the32
envelope is stored and it is safe to assume that the sender of the payload is always identical to creator33
of the payload, then the receiver may do source authentication of the payload by creating the digest of34
the payload and matching it to the digest value in the signed ds:SignedInfo in the stored envelope. 35

Securing Payload Processing36
Note that either signing the payload, or signing the digest of the payload (in ds:SignedInfo) secures the37
processing that a payload has to go through. There are two types of processing that need to be secured.38
These are (a) the transformations that need to be applied to a payload before a digest is created, (b) the39
package processing information, such as MIME Content-Type. The first type of transformation are already40

1 EbXML MS specs uses the term “non-persistent security,” which I believe is a misnomer because the
receiver may persist the message signature for a long time along with the payloads for non-repudiation and
source authentication of the payload under some circumstances.

Sterling Commerce Page 2 Nov 06, 2001

secured as part of ds:Signature processing, whereas the second type of processing needs to be secured by41
entering them in eb:Manifest and signing them2.42
Canonicalization of the payload processing info is another important requirement. The ds:Transforms are43
canonicalized as part of canonicalization of ds:SignedInfo as they are expressed in XML. However, the44
packaging information, though expressed in XML as part of eb:Manifest, has the Content-Type values45
which need to be in a “normalized form” that can be understood by all MSHs. Note that the values are used46
for processing by the MIME Unpacker (see Section “Inbound”), and any valid MIME Header type and47
value would be in normalized form3.48

Outbound49
50

Figure 1 describes the processing model when messages are constructed and sent out. The green boxes51
describe essential MSH processing, yellow boxes describe envelope signature related processing, and the52
pink box describes the optional processing. The payload could be signed or unsigned. 53

54
55

Application SOAP/ebXML
Envelope creator Envelope Signer

Mime "big"
packer

ebXML
Outbound

Processing

SSL Encryption

((Optional) Payload
signing

unsigned
payload and
PayloadProcessingIn
fo

signed payload

payload +
SOAP envelope

signed envelope

mime'ed envelope
and payloads

56
Figure 157

58
The application creates one or more payloads and PayloadProcessingInfo for each payload4. The payloads59
and PayloadProcessingInfo are passed to the SOAP/ebXML Envelope creator. Note that the payload is60

2 A potential extension of the notion of PayloadProcessing is to include other types of payload processing
information to be communicated to the application. I believe MS already has this thought as evidenced by
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/> in <eb:Reference>

3 We may create another canonicalization algorithm for normalizing the MIME Header filed bodies (such
as Multipart/related). We can describe the necessary transforms in a document and use the transforms
described in that document for our purposes. Also, when a payload is MIME encoded by the application
(before entering MSH) we could require canonicalization of the MIME message prior to signing. S/MIME
may provide the right solution for this purpose.
4 The MIME headers of the SOAP envelope of interest (Content-Type) is text/xml, and is standard.
Content-ID, as discussed in (1) above, is not of interest. Therefore, I do not see the need to secure the
MIME headers of the SOAP envelope. It would be a prudent thing to check that the Content-Type is indeed
"text/xml" for SOAP envelope after receiving it.

Sterling Commerce Page 3 Nov 06, 2001

NOT required to be MIME encoded, though if encoded, the payload will be treated as non-XML. The61
PayloadProcessingInfo includes the following:62

1. The desired MIME headers such as Content-Type63
2. XML Signature transforms for each payload64

65
The MS spec does not have to specify the structure and behavior of the PayloadProcessingInfo. The66
SOAP/ebXML Envelope creator does the packaging to create the envelope and payloads. The MIME67
headers can go into the eb:Reference element in eb:Manifest (the eb schema will need change to include the68
MIME headers). The transforms are stored in the ds:Reference element for each payload. 69

70
The envelope and payloads are sent to a Signer5, which signs the envelope using XML Signature. The71
envelope, after this processing, includes the ds:Signature element that contains the signature of the72
envelope. The signed envelope and payloads are sent to the MIME encoder that does the MIME packing.73
The MIME encoded document,“a single big document,” is sent to the SSL encryptor that encrypts the74
message and sends the message over the wire (http/smtp).75

76
77

Comments: There is a concern that the MIME header is repeated in the envelope and in the actual message.
In response to this concern, consider the following points.
1. If the envelope is not signed, it is not REQUIRED to put the MIME headers in the manifest.
2. When the manifest is signed, it MUST include all headers that would appear in the MIME message

transmitted, except those that could change en-route
3. The duplicate headers (in eb:Reference and in MIME message) can help as a check for the message

receiver to make sure that the MIME headers recovered from the message are not corrupted.

78
79

Inbound80
Figure 2 below describes the inbound processing with signature.81

5 An alternate implementation may actually create multiple MIME messages (one for each payload) that
includes the payload and mime header to the Signer. Yet another implementation may send a single
MIME’d message that has all the payloads to the Signer. In both of these cases, the Signer has the onus of
taking apart the payload and digesting and creating the Signature in ds:SignInfo

Sterling Commerce Page 4 Nov 06, 2001

Application
SOAP/ebXML

Envelope
stripper

Envelope
Signature

Verifier

Mime "big"
Unpacker

ebXML
Inbound

Processing

SSL Decryption

(Optional)
Payload

verification

unsigned payload

signed payload

Valid Signature
= {true, false}

signed envelope

mime'ed envelope
and payloads

payloads + SOAP
Envelope

82

Figure 283

The SSL Decryption stage takes in the incoming document and presents the MIME encoded message that84
includes the envelope and payloads to the MIME Unpacker. MIME Unpacker unpacks the first MIME85
body, which is the envelope. MIME Unpacker unpacks the rest of the message using the payload MIME86
header information available in eb:Manifest in the envelope. The envelope signature is verified by the87
Envelope Signature Verifier. The SOAP/ebXML Envelope stripper takes the verified message from the88
MIME Unpacker, and delivers PayloadProcessingInfo as well as the payloads to the application.89

90

Proposed Addition to eb Schema91
92
93

Insert the following in <eb:Reference> (“tns” qualification needs to be added in eb Schema) 94
95

<xsd:element name="MIMEHeaders">96
<xsd:complexType>97

<xsd:sequence minOccurs="0" maxOccurs="unbounded">98
<xsd:element ref="MIMEHeader"/>99

</xsd:sequence>100
<xsd:attribute name="CanonicalizationMethod" type="xsd:string"101

value="http://oasis.org#mimeManifest"/>102
</xsd:complexType>103

</xsd:element>104
<xsd:element name="MIMEHeader">105

<xsd:complexType>106
<xsd:sequence>107

<xsd:element name="parameter" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>108
<xsd:element name=":comment" minOccurs="0"/>109

</xsd:sequence>110
<xsd:attribute name="fieldName" type="xsd:string" use="required"/>111
<xsd:attribute name="fieldBody" type="xsd:string" use="optional"/>112

</xsd:complexType>113
</xsd:element>114

115

Canonicalization of MIME Header (fieldBody)116
117

Sterling Commerce Page 5 Nov 06, 2001

 RFC 2822, sections 2.1 and 2.2 and related sections form the basis of the canonicalization. The following118
Canonicalization steps will be followed.119
1. The field Body will be unfolded with line separators replaced by the character sequence CRLF120
2. (Optionally) the field Body is Base64 encoded.121

122

Excluded Headers and parameters6123
1. Content-Transfer-Encoding124
2. “boundary” parameter of Content-Type (When multipart/related messages are sent, it is possible to125

change)126
127

Adding Encryption128
129

The processing model for encryption/decryption of the payload is described in this section. The encryption130
and decryption of the payload is conceptually independent of the MSH, i.e., if you remove MSH and131
replace it with some other transport (for whatever reason), the payload will still be encrypted when received132
at the other end.133

Outbound134
Figure 3 below describes the processing model for encryption.135

6 There is an argument to avoid Content-ID because changing the Content-ID in the MIME message
should flag an error from the MIME processor if it is incorrect, and if the Content-ID of the
SOAP:Envelope is changed (corresponding to “start” parameter), then Envelope processing should flag an
error. However, Content-ID should not change in transit unless the envelope also changes, and therefore,
we should sign it.

Sterling Commerce Page 6 Nov 06, 2001

136

Application SOAP/ebXML
Envelope creator Envelope Signer

Mime "big"
packer

ebXML
Outbound

Processing

SSL Encryption

(Optional) Payload signing

unsigned payload

signed payload

payload +
SOAP envelope

signed envelope

mime'ed envelope
and payloads

Encryptor

Payload

137
The Encryptor stage encrypts the payloads and provides it to the MIME packer whenever MIME packer138
requests that a payload be (S/MIME) encrypted.139

140

Sterling Commerce Page 7 Nov 06, 2001

Inbound141
Figure 4 describes the inbound processing with encryption.142

Application
SOAP/ebXML

Envelope
stripper

Envelope
Signature

Verifier

Mime "big"
Unpacker

ebXML
Inbound

Processing

SSL Decryption

(Optional)
Payload

verification

unsigned payload

signed payload

Valid Signature
= {true, false}

signed envelope

mime'ed envelope
and payloads

Decrypt

payloads + SOAP
Envelope

143
144

The Mime unpacker decrypts all the payloads that it thinks needed to be decrypted. Note that the payload145
may have been already encrypted by the application prior to signing, and the Content-Type set to146
application/pkcs7-mime. It is also possible that super encryption is intended or not intended. The problem147
here is that the unpacker does not know whether it needs to decrypt which payload for signature148
verification. XML Encryption is expected to be the savior of this situation. In the absence of XML149
Encryption we have the following choices to choose from.150

151
A) We insert the following in Content-Description header of the payload: 152

MSHAdvisory-sign_encrypt153
MSHAdvisory-encrypt_sign154

The “sign_encrypt” keyword signifies that the payload has been signed before encryption, and155
“encrypt_sign” signifies the reverse order.156

157
B) An alternate solution to posting an advisory is to assume that the order is already in CPA.158
This approach can be extended to the case when there are intermediaries that might need to inspect159
payload, though additional advisory as to the intended “Party-To” of the payload is necessary.160

161
C) Add an element in eb:Manifest within ed:Reference such as162
 MSHAdvisory that can have a value of sign_encrypt or encrypt_sign.163

164
The option “C” seems to be the cleanest option of all because it is not changing the semantics of CPA or165
Content-Description.166

Sterling Commerce Page 8 Nov 06, 2001

Acknowledgements167
To James Galvin for spearheading the campaign to protect MIME headers and other helpful comments,168
David Fischer for suggesting we use the XMLDSIG style for the MIME headers as well as providing many169
other comments, Sanjay Cherian for useful comments and discussions, Interop team members for suffering170
through the arguments and helpful comments.171

	EbXML MS Processing Model with Signatures & Payload Encryption Proposal
	Overview
	Security Considerations
	Envelope Signing vs. Payload Signing
	Securing Payload Processing

	Outbound
	Inbound
	Proposed Addition to eb Schema
	Canonicalization of MIME Header (fieldBody)
	
	Excluded Headers and parameters

	Adding Encryption
	Outbound
	Inbound

	Acknowledgements

