
[image: image10.wmf]Testing

•

Define Mission

•

Identify Test Motivators

•

Functionality

•

Reliability

•

Performance

•

interoperability

•

Agree on Mission

•

Define Assessment &

Traceability

Needs

•

Define Test Approach

•

API Level

•

SOAP Level

•

Identify Test ideas

•

Define Test Bed

•

Identify Test Environment

•

Prepare H/W & S/W Infrastructure

•

Prepare Test Data Sets

•

Develop, Test & Evaluate

•

Define Test Details

•

Implement Test

•

Generate WS Client

•

Implement Test Suite

•

Execute Test Suite

•

Analyse

Test Failures

•

Determine Test Results

•

Improve Test Assets

•

Define Test Approach

•

Identify Test Ideas

•

Prepare Guidelines for Project

Testing

•

Define Mission

•

Identify Test Motivators

•

Functionality

•

Reliability

•

Performance

•

interoperability

•

Agree on Mission

•

Define Assessment &

Traceability

Needs

•

Define Test Approach

•

API Level

•

SOAP Level

•

Identify Test ideas

•

Define Test Bed

•

Identify Test Environment

•

Prepare H/W & S/W Infrastructure

•

Prepare Test Data Sets

•

Develop, Test & Evaluate

•

Define Test Details

•

Implement Test

•

Generate WS Client

•

Implement Test Suite

•

Execute Test Suite

•

Analyse

Test Failures

•

Determine Test Results

•

Improve Test Assets

•

Define Test Approach

•

Identify Test Ideas

•

Prepare Guidelines for Project

Web Service Implementation Methodology

Document Template 03a, 20 September 2004
Document identifier:

FWSI-IMSC-Document-03a.doc
Location:

http://www.oasis-open.org/committees/documents.php?wg_abbrev=fwsi
Editors:

Lai Peng CHAN, Singapore Institute of Manufacturing Technology

<lpchan@SIMTech.a-star.edu.sg>

Contributors:

Chai Hong ANG, Singapore Institute of Manufacturing Technology

<chang@SIMTech.a-star.edu.sg>

Eng Wah LEE, Singapore Institute of Manufacturing Technology

<ewlee@SIMTech.a-star.edu.sg>

Puay Siew TAN, Singapore Institute of Manufacturing Technology

<pstan@SIMTech.a-star.edu.sg>

Yushi CHENG, Singapore Institute of Manufacturing Technology

<ycheng@SIMTech.a-star.edu.sg>

Xingjian XU, Singapore Institute of Manufacturing Technology

<xjxu@SIMTech.a-star.edu.sg>

Zun Liang YIN, Singapore Institute of Manufacturing Technology

<zlyin@SIMTech.a-star.edu.sg>

Andy TAN, individual, <andytan@intrinix.net>

Roberto PASCUAL, The Infocomm Development Authority of Singapore <Roberto_B_Pascual@ida.gov.sg>
JAGDIP Talla, CrimsonLogic Pte Ltd <jagdip@crimsonlogic.com>

RAVI SHANKAR Narayanan Nair, CrimsonLogic Pte Ltd <ravishankar@crimsonlogic.com>

Marc HAINES, individual <mhaines@uwm.edu>

Abstract:

This document specifies Web service specific activities in a Web service implementation methodology and illustrates the approach to incorporate these activities into an existing agile software development methodology.

Status:

This document is updated periodically on no particular schedule. Send comments to the editor.
Committee members should send comments on this specification to the fwsi-imsc@lists.oasis-open.org list. Others should subscribe to and send comments to the fwsi-comment@lists.oasis-open.org list. To subscribe, send an email message to fwsi-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the FWSI TC web page (http://www.oasis-open.org/committees/fwsi/).

Table of Contents
121
Introduction

121.1 Purpose

121.2 Target Audience

121.3 Scope

121.3.1 Not in Scope

132
Implementation Methodology Overview

132.1 Terminology

132.2 Concepts

132.2.1 Web Service

132.2.2 Web Service Implementation Lifecycle

132.2.3 Phase

132.2.3.1 Requirements Phase

142.2.3.2 Analysis Phase

142.2.3.3 Design Phase

142.2.3.4 Coding Phase

142.2.3.5 Test Phase

142.2.3.6 Deployment Phase

152.2.4 Activity

152.2.5 Role

152.2.6 Artifact

163
Detailed Implementation Methodology

183.1 Web Service Implementation Lifecycle

183.1.1 Overview

183.1.2 Requirements Phase

183.1.2.1 Activity: Determine the need for Web service

183.1.2.1.1 Tasks

183.1.2.1.2 Roles

183.1.2.1.3 Artifacts

183.1.2.2 Activity: Elicit Web service requirements

183.1.2.2.1 Tasks

193.1.2.2.2 Roles

193.1.2.2.3 Artifacts

193.1.2.3 Activity: Manage the Web service requirements

193.1.2.3.1 Tasks

193.1.2.3.2 Roles

193.1.2.3.3 Artifacts

193.1.2.4 Activity: Model the usage scenarios

193.1.2.4.1 Tasks

193.1.2.4.2 Roles

193.1.2.4.3 Artifacts

203.1.2.5 Activity: Prepare Test Cases for User Acceptance Test (UAT) and System Test

203.1.2.5.1 Tasks

203.1.2.5.2 Roles

203.1.2.5.3 Artifacts

203.1.3 Analysis Phase

203.1.3.1 Activity: Select a technology platform as implementation framework

203.1.3.1.1 Tasks

203.1.3.1.2 Roles

203.1.3.1.3 Artifacts

213.1.3.2 Activity: Define a candidate architecture for the Web service

213.1.3.2.1 Tasks

213.1.3.2.2 Roles

213.1.3.2.3 Artifacts

213.1.3.3 Activity: Decide on the granularity of the Web service

213.1.3.3.1 Tasks

213.1.3.3.2 Roles

213.1.3.3.3 Artifacts

213.1.3.4 Activity: Identify reusable Web services

213.1.3.4.1 Tasks

223.1.3.4.2 Roles

223.1.3.4.3 Artifacts

223.1.3.5 Activity: Identify service interface contract for new Web services

223.1.3.5.1 Tasks

223.1.3.5.2 Roles

223.1.3.5.3 Artifacts

223.1.3.6 Activity: Prepare Test Cases for Performance Test

223.1.3.6.1 Task

223.1.3.6.2 Roles

223.1.3.6.3 Artifacts

223.1.3.7 Activity: Prepare Test Cases for Integration / Interoperability Test

223.1.3.7.1 Task

233.1.3.7.2 Roles

233.1.3.7.3 Artifacts

233.1.3.8 Activity: Prepare Test Cases for Functional Test

233.1.3.8.1 Task

233.1.3.8.2 Roles

233.1.3.8.3 Artifacts

233.1.3.9 Activity: Testbed preparation

233.1.3.9.1 Task

233.1.3.9.2 Roles

233.1.3.9.3 Artifacts

233.1.4 Design Phase

233.1.4.1 Activity: Transform signatures of reusable Web services

233.1.4.1.1 Tasks

243.1.4.1.2 Roles

243.1.4.1.3 Artifacts

243.1.4.2 Activity: Refine service interface of the new Web service

243.1.4.2.1 Tasks

243.1.4.2.2 Roles

243.1.4.2.3 Artifacts

243.1.4.3 Activity: Design Web service

243.1.4.3.1 Tasks

243.1.4.3.2 Roles

243.1.4.3.3 Artifacts

243.1.4.4 Activity: Refine Test Cases for Functional Test

243.1.4.4.1 Task

253.1.4.4.2 Roles

253.1.4.4.3 Artifacts

253.1.5 Coding Phase

253.1.5.1 Activity: Code internal workings of Web service

253.1.5.1.1 Tasks

253.1.5.1.2 Roles

253.1.5.1.3 Artifacts

253.1.5.2 Activity: Write the web service consumer code

253.1.5.2.1 Tasks

263.1.5.2.2 Roles

263.1.5.2.3 Artifacts

263.1.5.3 Activity: Unit Test Web service

263.1.5.3.1 Tasks

263.1.5.3.2 Roles

263.1.5.3.3 Artifacts

263.1.6 Test Phase

273.1.6.1 Activity: Test functionality of Web Services

273.1.6.1.1 Tasks

273.1.6.1.2 Roles

273.1.6.1.3 Artifacts

273.1.6.2 Activity: Integration Test on the Web Services

273.1.6.2.1 Tasks

283.1.6.2.2 Roles

283.1.6.2.3 Artifacts

283.1.6.3 Activity: System Test on the Web services

283.1.6.3.1 Tasks

283.1.6.3.2 Roles

283.1.6.3.3 Artifacts

283.1.6.4 Activity: User Acceptance Test on the Web Services

283.1.6.4.1 Tasks

283.1.6.4.2 Roles

283.1.6.4.3 Artifacts

293.1.7 Deployment Phase

293.1.7.1 Activity: Prepare deployment environment

293.1.7.1.1 Tasks

293.1.7.1.2 Roles

293.1.7.1.3 Artifacts

293.1.7.2 Activity: Deploy Web service

293.1.7.2.1 Tasks

293.1.7.2.2 Roles

293.1.7.2.3 Artifacts

293.1.7.3 Activity: Test deployment

293.1.7.3.1 Tasks

303.1.7.3.2 Roles

303.1.7.3.3 Artifacts

303.1.7.4 Activity: Create end user support material

303.1.7.4.1 Tasks

303.1.7.4.2 Roles

303.1.7.4.3 Artifacts

303.1.7.5 Activity: Publish Web service

303.1.7.5.1 Tasks

303.1.7.5.2 Roles

303.1.7.5.3 Artifacts

314
Case Example(s) of Applying the Implementation Methodology

314.1 Rational Unified Process (Example)

314.1.1 Overview

334.1.2 Approach

344.1.2.1 Discipline: Requirements

344.1.2.1.1 Workflow Detail: Analyze the Problem

344.1.2.1.1.1
Activity: Capture a Common Vocabulary

344.1.2.1.1.1.1
Role

344.1.2.1.1.1.2
Artifact

354.1.2.1.1.2
Activity: Develop Vision (across all web services)

354.1.2.1.1.2.1
Role

354.1.2.1.1.2.2
Artifact

354.1.2.1.2 Workflow Detail: Understand Stakeholder Needs

354.1.2.1.2.1
Activity: Elicit Needs

354.1.2.1.2.1.1
Role

354.1.2.1.2.1.2
Artifact

354.1.2.1.2.2
Activity: Develop Vision

354.1.2.1.2.2.1
Role

354.1.2.1.2.2.2
Artifact

354.1.2.1.2.3
Activity: Manage Dependencies

364.1.2.1.2.3.1
Role

364.1.2.1.2.3.2
Artifact

364.1.2.1.2.4
Activity: Find Actors and Use Cases (per web service)

364.1.2.1.2.4.1
Role

364.1.2.1.2.4.2
Artifact

364.1.2.1.3 Workflow Detail: Define the System

364.1.2.1.3.1
Activity: Find Actors and Use Cases (per web service)

364.1.2.1.3.1.1
Role

364.1.2.1.3.1.2
Artifact

364.1.2.1.4 Workflow Detail: Manage the Scope of the System

364.1.2.1.4.1
Activity: Prioritise the Use Cases (per web service)

364.1.2.1.4.1.1
Role

364.1.2.1.4.1.2
Artifact

364.1.2.1.5 Workflow Detail: Refine the System Definition

364.1.2.1.5.1
Activity: Detail a Use Case

374.1.2.1.5.1.1
Role

374.1.2.1.5.1.2
Artifact

374.1.2.1.5.2
Activity: Detail the Software Requirements

374.1.2.1.5.2.1
Role

374.1.2.1.5.2.2
Artifact

384.1.2.2 Discipline: Analysis and Design

384.1.2.2.1 Workflow Detail: Define a Candidate Architecture (for each web service)

384.1.2.2.1.1
Activity: Architectural Analysis

384.1.2.2.1.1.1
Role

384.1.2.2.1.1.2
Artifact

384.1.2.2.2 Workflow Detail: Analyse Behaviour (for each use case)

384.1.2.2.2.1
Activity: Use Case Analysis

394.1.2.2.2.1.1
Role

394.1.2.2.2.1.2
Artifact

394.1.2.2.3 Workflow Detail: Refine the Architecture (for each web service)

394.1.2.2.3.1
Activity: Identify Design Elements

394.1.2.2.3.1.1
Role

394.1.2.2.3.1.2
Artifact

394.1.2.2.3.2
Activity: Identify Design Mechanisms

394.1.2.2.3.2.1
Role

394.1.2.2.3.2.2
Artifact

394.1.2.2.4 Workflow Detail: Design Components

394.1.2.2.4.1
Activity: Use Case Design

404.1.2.2.4.1.1
Role

404.1.2.2.4.1.2
Artifact

404.1.2.2.4.2
Activity: Subsystem Design

404.1.2.2.4.2.1
Role

404.1.2.2.4.2.2
Artifact

404.1.2.2.4.3
Activity: Class Design

404.1.2.2.4.3.1
Role

404.1.2.2.4.3.2
Artifact

414.1.2.3 Discipline: Implementation

414.1.2.3.1 Workflow Detail: Structure the Implementation Model

414.1.2.3.1.1
Activity: Structure the Implementation Model

414.1.2.3.1.1.1
Role

414.1.2.3.1.1.2
Artifact

414.1.2.3.2 Workflow Detail: Implement Components

414.1.2.3.2.1
Activity: Implement Design Elements

424.1.2.3.2.1.1
Role

424.1.2.3.2.1.2
Artifact

424.1.2.3.3 Workflow Detail: Integrate Each Web Service

424.1.2.3.3.1
Activity: Integrate Subsystem

424.1.2.3.3.1.1
Role

424.1.2.3.3.1.2
Artifact

424.1.2.3.4 Workflow Detail: Manage the Scope of the System

424.1.2.3.4.1
Activity: Prioritise the Use Cases (per web service)

424.1.2.3.4.1.1
Role

424.1.2.3.4.1.2
Artifact

424.1.2.3.5 Workflow Detail: Refine the System Definition

424.1.2.3.5.1
Activity: Detail a Use Case

424.1.2.3.5.1.1
Role

424.1.2.3.5.1.2
Artifact

424.1.2.3.5.2
Activity: Detail the Software Requirements

434.1.2.3.5.2.1
Role

434.1.2.3.5.2.2
Artifact

444.1.2.4 Discipline: Testing

444.1.2.4.1 Workflow Detail: Define Mission

444.1.2.4.1.1
Activity: Identify Test Motivators

454.1.2.4.1.1.1
Role

454.1.2.4.1.1.2
Artifact

454.1.2.4.1.2
Activity: Agree on the Mission

464.1.2.4.1.2.1
Role

464.1.2.4.1.2.2
Artifact

464.1.2.4.1.3
Activity: Define Assessment and Traceability Needs

464.1.2.4.1.3.1
Role

464.1.2.4.1.3.2
Artifact

474.1.2.4.1.4
Activity: Define Test Approach

474.1.2.4.1.4.1
Role

474.1.2.4.1.4.2
Artifact

474.1.2.4.1.5
Activity: Identify Test Ideas

484.1.2.4.1.5.1
Role

484.1.2.4.1.5.2
Artifact

484.1.2.4.2 Workflow Detail: Define Test Bed

484.1.2.4.2.1
Activity: Identify Test Environment

484.1.2.4.2.1.1
Role

484.1.2.4.2.1.2
Artifact

484.1.2.4.2.2
Activity: Prepare H/W & S/W Infrastructure

494.1.2.4.2.2.1
Role

494.1.2.4.2.2.2
Artifact

494.1.2.4.2.3
Activity: Prepare Test Data Sets

494.1.2.4.2.3.1
Role

494.1.2.4.2.3.2
Artifact

494.1.2.4.3 Workflow Detail: Develop, Test and Evaluate

494.1.2.4.3.1
Activity: Define Test Details

494.1.2.4.3.1.1
Role

494.1.2.4.3.1.2
Artifact

504.1.2.4.3.2
Activity: Implement Test

504.1.2.4.3.2.1
Role

504.1.2.4.3.2.2
Artifact

504.1.2.4.3.3
Activity: Implement Test Suite

504.1.2.4.3.3.1
Role

504.1.2.4.3.3.2
Artifact

504.1.2.4.3.4
Activity: Execute Test Suite

514.1.2.4.3.4.1
Role

514.1.2.4.3.4.2
Artifact

514.1.2.4.3.5
Activity: Analyse Test Failures

514.1.2.4.3.5.1
Role

514.1.2.4.3.5.2
Artifact

514.1.2.4.3.6
Activity: Determine Test Results

514.1.2.4.3.6.1
Role

514.1.2.4.3.6.2
Artifact

514.1.2.4.4 Workflow Detail: Improve Test Assets

514.1.2.4.4.1
Activity: Define Test Approach (Refinement)

524.1.2.4.4.1.1
Role

524.1.2.4.4.1.2
Artifact

524.1.2.4.4.2
Activity: Identify Test Ideas (Refinement)

524.1.2.4.4.2.1
Role

524.1.2.4.4.2.2
Artifact

524.1.2.4.4.3
Activity: Prepare Guidelines for the Project

524.1.2.4.4.3.1
Role

524.1.2.4.4.3.2
Artifact

534.1.2.5 Discipline: Deployment

534.1.2.5.1 Workflow Detail: Plan Deployment

534.1.2.5.1.1
Activity: Develop Deployment Plan

534.1.2.5.1.1.1
Role

534.1.2.5.1.1.2
Artifact

544.1.2.5.2 Workflow Detail: Develop Support Material

544.1.2.5.2.1
Activity: Develop Training Material

544.1.2.5.2.1.1
Role

544.1.2.5.2.1.2
Artifact

544.1.2.5.2.2
Activity: Develop Support Material

544.1.2.5.2.2.1
Role

544.1.2.5.2.2.2
Artifact

544.1.2.5.3 Workflow Detail: Produce Deployment Unit (Web service)

544.1.2.5.3.1
Activity: Write Release Notes

544.1.2.5.3.1.1
Role

544.1.2.5.3.1.2
Artifact

544.1.2.5.3.2
Activity: Develop Installation Artifacts

544.1.2.5.3.2.1
Role

544.1.2.5.3.2.2
Artifact

554.1.2.5.3.3
Activity: Create Deployment Unit (Web service)

554.1.2.5.3.3.1
Role

554.1.2.5.3.3.2
Artifact

554.1.2.5.3.4
Activity: Deploy Web Service to identified app servers

554.1.2.5.3.4.1
Role

554.1.2.5.3.4.2
Artifact

554.1.2.5.3.5
Activity: Publish Web service [optional]

554.1.2.5.3.5.1
Role

554.1.2.5.3.5.2
Artifact

565
References

565.1 Normative

565.2 Non-Normative

57Appendix A. Acknowledgments

58Appendix B. Revision History

59Appendix C. Notices

List of Figures

17Figure 1: Web Service Implementation Methodology

17Figure 2: The "V" Model

32Figure 3: The Rational Unified Process

34Figure 4: The RUP development disciplines

34Figure 5: Requirements Workflow

38Figure 6: Analysis and Design Workflow

41Figure 7: Implementation Workflow

44Figure 8: Testing Workflow

53Figure 9: Deployment Workflow

1 Introduction

1.1 Purpose

The purpose of this document is to define a practical and extensible Web Service Implementation Methodology that can be used as a reference for Web service development and deployment. This document is a consolidation of the best practices by Web service practitioners and aims to improve the Web service implementation process through the formalization of a Web service implementation lifecycle and defining the Web service specific activities and artifacts.

This document should be used in conjunction with the Functional Elements
 specifications to govern the approach by which the Functional Elements are implemented, in a satisfactory manner.

1.2 Target Audience

The target audiences are likely to be:

· Project Managers so as to have a formal methodology for Web service implementation, which they can use for management and control.

· Software Architects/Designers/Developers/Testers to have identifiable activities which are repeatable and which can be abide by, so as to ensure the quality of the software produced.

1.3 Scope

This document details only the Web service specific activities, artifacts, roles and responsibilities that can be incorporated into an agile software development methodology (e.g. RUP, Extreme Programming, Feature Driven Development etc). A section is also included to illustrate how an agile software development methodology can be tailored to incorporate these Web service specific activities as part of the process.

1.3.1 Not in Scope

This document does not define yet another software development methodology. Instead, the Web service implementation methodology leverages on an existing agile software methodology and extend it by incorporating the Web service specific activities.

Also, it is not in the scope of this document to specifically address how each of these software development methodology should be tailored to incorporate these Web service specific parts. An example is provided to only illustrate just one way of tailoring a specific agile development methodology for Web service implementation.

This document does not cover the detailed description or explanation of the existing agile software development methodologies as mentioned above nor does it recommend one particular agile software development methodology over another.

2 Implementation Methodology Overview

2.1 Terminology

The Web service implementation methodology defines a systematic approach to Web service development by leveraging on an agile software development methodology and extending that methodology by specifying the Web service specific activities and the corresponding roles and work-products that are produced in the process.
This methodology will define a set of common practices that create a method-independent framework, which can be applied by most software teams for developing Web Services applications.

2.2 Concepts

2.2.1 Web Service

A Web service is a software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-processable format (specifically WSDL). Other systems interact with the Web service in a manner prescribed by its description using SOAP-messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.

- W3C Definition
2.2.2 Web Service Implementation Lifecycle

A Web Service Implementation Lifecycle refers to the phases a Web service goes through between when it is conceived and when it is available for use.

The Web service implementation lifecycle typically includes the following phases:

1. Requirements Phase [see 2.2.3.1]

2. Analysis Phase [see 2.2.3.2]

3. Design Phase [see 2.2.3.3]

4. Coding Phase [see 2.2.3.4]

5. Test Phase [see 2.2.3.5]

6. Deployment Phase [see 2.2.3.6]

The transitions through these phases need not be a single-pass, sequential process. On the contrary, the process tends to be iterative and incremental in nature and should be agile enough to accommodate revisions to the web service in situations where the scope cannot be completely defined up front.

2.2.3 Phase

A Phase when used in the context of a Web service implementation lifecycle refers to the period of time a set of related software implementation activities are carried out.

In general, the phases detailed in the sub-sections are identified to be pertinent in a Web service implementation lifecycle. These phases may overlap with each other in the course of the implementation process.

2.2.3.1 Requirements Phase

The objective in the requirements phase is to understand the business requirements and translating them to web service requirements in terms of the features, the functional and non-functional requirements, and the constraints within which the web service has to abide.

Requirements elicitation should be done by the requirements analyst and should involve the project stakeholders such as the project champion, customers, end users, etc. Following which, the analyst should interpret, consolidate and communicate these requirements to the development team.

If possible, Requirements should be aggregated in a centralized repository where they can be viewed prioritized, and “mined” for iteration features. In all cases, enabling the team to easily capture requirements, search them, prioritize them and elaborate as necessary is the primary function of the repository.

2.2.3.2 Analysis Phase

In the analysis phase, the requirements of the web service are further refined and translated into conceptual models by which the technical development team can assimilate. It is also in this phase that an architecture analysis is done to define the high-level structure and identify the web service interface contracts. This process should be performed by both the requirements analyst and the architect and communicated to the designers.

2.2.3.3 Design Phase

The detailed design of the Web service is done in this phase. In this phase, the designers should define the Web service interface contract that has been identified in the analysis phase. The defined Web service interface contract should identify the elements and the corresponding data types (possibly using a XML schema) as well as mode of interaction between the Web service and the client, for example, whether it should be synchronous/asynchronous or RPC/Document style etc. Also the need to decide on the client programming model either Static Stub, Dynamic Proxy or DII (Dynamic Invocation Interface) should be done in this phase.

2.2.3.4 Coding Phase

The coding and debugging phase for Web service implementation is essentially quite similar to other software component-based coding and debugging phase. The key differences lie in the creation of additional Web service interface wrappers (to expose the components’ public APIs), generation of WSDLs and client stubs. Web services in addition have to be deployed to a Web server/Application Server before the test clients can consume them.

The component developer and/or the tester should perform these activities.

2.2.3.5 Test Phase

For testing of Web services, besides testing for functional correctness and completeness, testers should also perform interoperability testing between different Web/App servers and clients. Furthermore, performance testing has to be conducted to ensure that the Web services are able to withstand the maximum load and stress as specified in the non-functional requirements specification. Other tasks like profiling of the Web service application and inspection of SOAP messages should be done in this phase.

2.2.3.6 Deployment Phase

Once the Web service has passed all the tests, it is now ready to be deployed by the deployer to be made available for consumption. The service end points of the Web service specifies where it is going to be deployed and needs to be identified and configured accordingly. The deployer primary tasks are to ensure that the Web service has been properly configuration managed (e.g. version controlled, presetting of configuration files, packaged and loaded in the correct location etc.) and running post-deployment tests to ensure that the Web service is indeed ready for use. Other optional tasks like specifying and registering the Web service with an UDDI registry may also be performed in this phase.

2.2.4 Activity

An Activity refers to a unit of work a role may be assigned to perform. Activities are performed within each of the phases in the Web service implementation lifecycle. These activities will be described and elaborated in the next section.

2.2.5 Role

A Role refers to the responsibilities that a person or a team has been assigned with.

Commonly defined roles include:

· Requirements Analyst - responsible for eliciting and interpreting the stakeholder needs, and communicating those needs to the entire team.

· Architect - responsible for the software architecture, which includes the key technical decisions that constrain the overall design and implementation for the project.
· Designer - responsible for designing a part of the system, within the constraints of the requirements, architecture, and development process for the project.
· Developer - responsible for developing and testing components, in accordance with the project's adopted standards.
· Deployer - responsible for planning the product's transition to the user community, ensuring those plans are enacted appropriately, managing issues and monitoring progress.
· Stakeholder – responsible for providing the domain expertise and specifying the system requirements. Stakeholder usually includes the project champion and the end users.
· Project Manager – responsible for the deciding on the scope, schedule and staffing of the project team.
· Test Manager - tasked with the overall responsibility for the test effort’s success. The role involves quality and test advocacy, resource planning and management, and resolution of issues that impede the test effort.
· Test Designer - responsible for defining the test approach and ensuring its successful implementation. The role involves identifying the appropriate techniques, tools and guidelines to implement the required tests, and to give guidance on the corresponding resources requirements for the test effort. The role also involves monitoring detailed testing progress and results in each test cycle and evaluating the overall quality as a result of testing activities.
· Tester - responsible for the core activities of the test effort, which involves conducting the necessary tests and logging the outcomes of that testing.
· System Administrator – responsible for planning, installing and maintaining the hardware and software of the different environments e.g. development, test, live environment.
2.2.6 Artifact

An Artifact refers to the work-product that is used or produced as a result of performing an activity. Examples of Artifacts include models, source files, scripts, and binary executable files.

3 Detailed Implementation Methodology

The term Web service describes a specialized type of software, which is designed to support a standardized way for provision and consumption of services over the Web, through the compliance with open standards such as eXtensible Markup Language (XML), SOAP, Web Services Description Language (WSDL) and Universal Description, Discovery and Integration (UDDI).

Web service, unlike traditional client/server systems, such as browser/Web server systems, is not meant for direct end-user consumption. Rather, Web services are pieces of business logic, which have programmatic interfaces and it is through these interfaces that developers can create new application systems.

The motivation behind Web services is to facilitate businesses to interact and integrate with other businesses and clients, without having to go through lengthy integration design and/or to expose its confidential internal application details unnecessarily. This is made possible by leveraging on the non-platform dependent, non-programming language dependent, XML, to describe the data to be exchanged between businesses or between the business and its clients; using a WSDL to specify what the service is providing; using a UDDI to publish and locate who is providing the service; and using SOAP over HTTP to transfer the message across the internet.

Web service, naturally, is a software element, but because of its specialized interface and mechanism to interoperate with others, all the prevalent generic software development methodology would need to be tailored to handle the unique features of Web service. This could translate to identification of Web service specific requirements (e.g. conformance to Web services standards), analysis of the specific implications of Web service on the overall system, design of the Web service interface and XML message structure, coding, testing, deployment and execution of the Web service.

The Web service implementation methodology that we define is to promote a systematic approach to Web service development. Rather than defining a new software development methodology and forcing software practitioners to forget their own familiar and established methodology to re-learn another, the better alternative is to leverage on what is already available and customize that methodology to incorporate the specifics of Web services.

The candidate software development methodology should, ideally, be agile and able to accommodate refinement throughout the development cycle in an iterative and incremental approach. The methodology should consists of phases that cover from the conception of the need of the Web service, to the construction of the Web service and finally to be deployed for use by the eventual client application. In this document, these phases are identified as requirements, analysis, design, code and debug, test and deployment.

The Web service implementation methodology would leverage on any of the candidate agile software development methodology and extend the said methodology by specifying additional and/or customized Web service specific activities and its corresponding roles and work-products. Figure 1 illustrates the proposed Web service implementation methodology.

[image: image2.emf]Web Services

Requirements

Web Services

Analysis

Web Services

Design

Web Services

Coding

Web Services

Testing

Web Services

Deployment

Leverage on

Existing

Agile

Software

Development

Methodology

Iteration 1 .. n

Web Services

Requirements

Web Services

Analysis

Web Services

Design

Web Services

Coding

Web Services

Testing

Web Services

Deployment

Leverage on

Existing

Agile

Software

Development

Methodology

Iteration 1 .. n

Figure 1: Web Service Implementation Methodology

The Web service implementation methodology is iterative and incremental. In each iteration, the Web service would goes through all the phases (i.e. requirements, analysis, design, code and debug, testing and finally deployment), thereby developing and refining the Web services throughout the project lifecycle.

In addition, for Web service testing, a multitude of tests have to be conducted to ensure that the Web service is developed according to its functional as well as non-functional requirements. Figure 2 illustrates using the “V” Model to perform these tests.

[image: image3.emf]Legend

Development Phase Development Phase Test Phase

Architectural

Design Spec

Implementation Implementation

Source Codes

Requirements Requirements

Requirements

Spec

Design Design

Design Spec

Unit Test

User Acceptance

Test Cases / Scripts

Analysis Analysis

System /

Performance Test

Functional Test

Integration /

Interoperability Test

System / Performance

Test Cases / Scripts

User Acceptance Test

Integration / Interoperability

Test Cases / Scripts

Functional Test

Cases / Scripts

Unit Test

Cases / Scripts

Deployment Deployment

Test Test

Legend

Development Phase Development Phase Test Phase

Legend

Development Phase Development Phase Test Phase

Architectural

Design Spec

Implementation Implementation

Source Codes

Requirements Requirements

Requirements

Spec

Design Design

Design Spec

Unit Test

User Acceptance

Test Cases / Scripts

Analysis Analysis

System /

Performance Test

Functional Test

Integration /

Interoperability Test

System / Performance

Test Cases / Scripts

User Acceptance Test

Integration / Interoperability

Test Cases / Scripts

Functional Test

Cases / Scripts

Unit Test

Cases / Scripts

Deployment Deployment

Test Test

Architectural

Design Spec

Implementation Implementation

Source Codes

Requirements Requirements

Requirements

Spec

Design Design

Design Spec

Unit Test

User Acceptance

Test Cases / Scripts

Analysis Analysis

System /

Performance Test

Functional Test

Integration /

Interoperability Test

System / Performance

Test Cases / Scripts

User Acceptance Test

Integration / Interoperability

Test Cases / Scripts

Functional Test

Cases / Scripts

Unit Test

Cases / Scripts

Deployment Deployment

Test Test

Figure 2: The "V" Model

The specifications produced in each of the phases are sources of input to derive the test scenarios and test cases. From these test cases, test scripts and test data are compiled, which will be used in unit testing, functional testing, integration/interoperability test, system/performance test and the final user acceptance test.

3.1 Web Service Implementation Lifecycle

3.1.1 Overview

The Web Service Implementation Lifecycle describes the phases a typical Web service would undergo, from the identification of the need of the Web service to the final deployment and usage by the end-users. The phases identified to be relevant in the Web service implementation lifecycle are: requirements, analysis, design, code and debug, test and deployment. In each of these phases, Web service specific activities are carried out. These activities, as well as the roles and responsibilities, and the artifacts will be elaborated in the subsequent sub-sections.

3.1.2 Requirements Phase

3.1.2.1 Activity: Determine the need for Web service

3.1.2.1.1 Tasks

· Identify the stakeholders

Stakeholders would usually include the end users, project champion, project manager, etc.

· Understand the inadequacies/problems to address

Understand the stakeholders’ need for Web services.

· Identify the need for Web service technology

Based on the current technology available, identify needs specially for Web services.

· Determine the positioning of the Web service within the boundaries of the problem identified

· Define the features of the Web service based on the needs list

· Identify the limitations to be imposed on the Web service

3.1.2.1.2 Roles

Architect, Requirements Analyst, Stakeholders, Project Manager

3.1.2.1.3 Artifacts

The results should be recorded in Business Requirement Specifications.

3.1.2.2 Activity: Elicit Web service requirements

3.1.2.2.1 Tasks

· Identify the sources for requirements gathering based on the features list

Identify the departments, end users, domain experts, etc. who would be impacted by the introduction of Web services.

· Gather information from these sources and elicit the requirements for the Web service

· Identify functional requirements for the Web service and categorise them

· Identify non-functional requirements for the Web service

Non-functional requirements are requirements pertaining to Usability, Reliability, Performance, Scalability, Supportability and other design considerations.

3.1.2.2.2 Roles

Requirements Analyst, Architect, Test Manager

3.1.2.2.3 Artifacts

The results should be recorded in Requirement Specifications.

3.1.2.3 Activity: Manage the Web service requirements

3.1.2.3.1 Tasks

· Based on the functional requirements categories, identify the Web services and establish the dependencies and priorities

· Create traceability matrices from the requirements to the identified Web services

Traceability matrices help to track the requirements that have been taken care of by the Web services identified.

· Manage changes to the requirements

3.1.2.3.2 Roles

Requirements Analyst, Architect, Test Manager

3.1.2.3.3 Artifacts

The results should be recorded in Requirement Specifications.

3.1.2.4 Activity: Model the usage scenarios

3.1.2.4.1 Tasks

· Translate the functional requirements into conceptual usage models using some form of analysis modeling techniques

· Specify the major interaction scenarios with the Web service clients

This is to highlight the usage of Web services involved. Especially, the message exchange scenarios should be captured.

3.1.2.4.2 Roles

Requirements Analyst, Architect, Test Manager

3.1.2.4.3 Artifacts

The results should be recorded in Requirement Specifications.

3.1.2.5 Activity: Prepare Test Cases for User Acceptance Test (UAT) and System Test

3.1.2.5.1 Tasks

· Write business scenario test case(s) based on the requirements gathered to be used for UAT and System Test

Test case(s) can be derived from requirements. This is also a way to verify the requirements when they are implemented.

· Build requirement validation matrix

The requirement validation matrix will include the requirements and a reference to the test case(s) that will validate the requirement.

· Manage changes to the test cases when requirements changed

3.1.2.5.2 Roles

Requirements Analyst, Test Manager, Test Designer

3.1.2.5.3 Artifacts

The results should be recorded in Test Plan – UAT and System Test.

3.1.3 Analysis Phase

3.1.3.1 Activity: Select a technology platform as implementation framework

3.1.3.1.1 Tasks

· Specify the web services standards that the implementation must adhere

Identify the Web service standards based on the requirements and implementation constraints. Consider issues like the standards compatibility, version of standards, standards adoption in industry sector, and the organization approving the standards.

· Decide the technology platform for implementing Web services

Choose technology platform that suitable for implementation. E.g. dotNet or Java platform.

· Decide the technology platform for hosting Web services

Based on implementation constrains and considerations for standards support and interoperability requirements, choose the appropriate hosting platform for Web services.

· Decide the IDE tools used to develop Web services

Available options include commercial vendor’s IDE tools, open source IDE tools. Normally, the selection of IDE is tied together with the implementation platforms.

3.1.3.1.2 Roles

Architect

3.1.3.1.3 Artifacts

The results should be recorded in Software Architecture Specifications.

3.1.3.2 Activity: Define a candidate architecture for the Web service

3.1.3.2.1 Tasks

· Define a high-level architecture

· Identify the architectural component that expose functionality as Web services

It is necessary to identify the architectural components that implement the wrapping of functionality as Web services and implement the message exchanges in the high level architecture.

· Specify the major information exchange with Web service clients

Identify and specify the first cut definition of message that is exchanged with web services clients. The definition includes the element of data, data type and format.

3.1.3.2.2 Roles

Architect

3.1.3.2.3 Artifacts

The results should be recorded in Software Architecture Specifications.

3.1.3.3 Activity: Decide on the granularity of the Web service

3.1.3.3.1 Tasks

· Decide on the coarseness of the Web service operations to be exposed

Set up criteria on the coarseness of web services operations. Its definition depends the usage scenarios and requirements.

· Identify and group functionality into the Web service.

Based on the requirements and criteria mentioned above, identify the functions that are needed to group into the web services.

· Decide on the mechanisms to compose or aggregate functionality

In case there is a need to compose individual web services, choose and decide the mechanism to implement the compositions.

3.1.3.3.2 Roles

Architect

3.1.3.3.3 Artifacts

The results should be recorded in Software Architecture Specifications.

3.1.3.4 Activity: Identify reusable Web services

3.1.3.4.1 Tasks

· Identify the architectural components that can be realized by existing Web services

If the functionality of architecture component can be fulfilled with existing Web services (internal or third party Web services), the architectural components should be identified to make use of these existing Web services.

· Identify the Web service providers for the reusable Web services

Identify and gather the information about provider of existing web services.

· Define the major invocation scenarios of re-use

Identify the functions that are going to be used. Define the interface of invocation.

3.1.3.4.2 Roles

Architect

3.1.3.4.3 Artifacts

The results should be recorded in Software Architecture Specifications.

3.1.3.5 Activity: Identify service interface contract for new Web services

3.1.3.5.1 Tasks

· Define the new Web service operation signatures

Based on the usage models and analysis models, identify the operations and its signatures.

· Define XML schema for the message exchange

If message exchanges are involved, XML schema that guides the structure of message should be defined.

3.1.3.5.2 Roles

Architect, Designer

3.1.3.5.3 Artifacts

Web Service Signature Specifications, XML schema.

3.1.3.6 Activity: Prepare Test Cases for Performance Test

3.1.3.6.1 Task

· Write performance test case(s) to be used for Performance Test

Test case(s) can be derived from Architectural Design Specifications.

· These test cases should cover load testing scenarios to see how the system will perform under various loads (in terms of concurrent users/requests and/or transactions).

3.1.3.6.2 Roles

Test System Administrator, Test Designer

3.1.3.6.3 Artifacts

The results should be recorded in Test Plan – Performance Test.

3.1.3.7 Activity: Prepare Test Cases for Integration / Interoperability Test

3.1.3.7.1 Task

· Write integration / interoperability test case(s) to be used for Integration / Interoperability Test

Test case(s) can be derived from Architectural Design Specifications.

3.1.3.7.2 Roles

Test Designer, Tester

3.1.3.7.3 Artifacts

The results should be recorded in Test Plan – Integration / Interoperability Test.

3.1.3.8 Activity: Prepare Test Cases for Functional Test

3.1.3.8.1 Task

· Write functional test case(s) to be used for Functional Test

Test case(s) can be derived from Architectural Design Specifications.

3.1.3.8.2 Roles

Test Designer, Tester

3.1.3.8.3 Artifacts

The results should be recorded in Test Plan - Functional Test.

3.1.3.9 Activity: Testbed preparation

3.1.3.9.1 Task

· Set up testing environment that include hardware and software

· This environment may be similar to the production/live environment in terms of hardware, OS, Web Server/Application Server, etc.

3.1.3.9.2 Roles

Test System Administrator, Test Designer

3.1.3.9.3 Artifacts

The results should be recorded in Test Plan - Testbed.

3.1.4 Design Phase

3.1.4.1 Activity: Transform signatures of reusable Web services

3.1.4.1.1 Tasks

· Identified the data type mapping if required

If the type of a parameter of the reusable service is not directly supported by the identified platform, data type mapping should be performed.

· Identify the design patterns for mapping the re-used Web service interface to the identified (desired) one

Certain design patterns could be used to reuse existing web service(s), such as adapter pattern, façade pattern etc. Adapter pattern could be used to expose a new interface of an existing web service. The façade pattern could be used to encapsulate the complexity of existing web services and provide a coarse-grained web service.

3.1.4.1.2 Roles

Designer

3.1.4.1.3 Artifacts

The results should be recorded in the Design Specifications.

3.1.4.2 Activity: Refine service interface of the new Web service

3.1.4.2.1 Tasks

· Refine Web service interfaces signature

In the detailed design stage, the signature may be refined further. Care must be taken to ensure that the design decision should not affect the interoperability of the service.

· Refine XML schema for message exchange

The XML schema may be refined to further expand on the data structure, data types, namespaces etc.

3.1.4.2.2 Roles

Designer

3.1.4.2.3 Artifacts

The results should be recorded in the Design Specifications.

3.1.4.3 Activity: Design Web service

3.1.4.3.1 Tasks

· Use some form of modeling techniques to describe the internal structure of the Web service

The design of the internal structure needs to consider the receiving and pre-processing of request, delegating of the request, processing of the request and sending of the response. Existing modeling techniques such as UML, design patterns could be applied to the design.

· Consider non-functional requirements (e.g. usability, reliability, performance, scalability etc) and design constraints (e.g. interoperability etc.)

3.1.4.3.2 Roles

Designer

3.1.4.3.3 Artifacts

The results should be recorded in the Design Specifications.

3.1.4.4 Activity: Refine Test Cases for Functional Test

3.1.4.4.1 Task

· Refine functional test case(s) to be used for functional Test

Test case(s) can be refined by Design Specifications.

3.1.4.4.2 Roles

Test Designer, Tester

3.1.4.4.3 Artifacts

The results should be recorded in Test Plan – Functional Test.

3.1.5 Coding Phase

3.1.5.1 Activity: Code internal workings of Web service

3.1.5.1.1 Tasks

· Based on the implementation language choice, code the Web service according to the design
Consider other constraints that are imposed by the specific implementation language itself. For example, consider the language dependent data types and the need to map these data types to the ones specified by the Web service interface.

· Expose public APIs as Web service interface
For example, in Java, to create the interface class to expose the class method as a Web service operation or in dotNet, to annotate the class API as a [WebMethod].

· Generate WSDL for client to consume
Most IDEs can auto-generate the WSDL from the interface code.

3.1.5.1.2 Roles

Developer

3.1.5.1.3 Artifacts

Web Service Implementation Codes.

3.1.5.2 Activity: Write the web service consumer code

3.1.5.2.1 Tasks

· Decide on the Web Service Client programming model

Among the three available:

a) Static Stub

The client invokes the web service operation through a stub. Any IDE can generate this stub at compile time.

b) Dynamic Proxy

As the name implies, dynamic proxy is dynamically generated when the client application is executed. Because dynamic proxy is generated during runtime, Web Service invocation using this method takes the longest time amongst the three approaches.

c) DII (Dynamic Invocation Interface)

Is the most flexible approach among the three programming models; the client does not even need to know the signature of the web service operation until runtime. The web service invocation can be dynamically constructed.

Hence, identify and decide on a suitable client programming model based on the weightage of flexibility against performance requirements.

· Write client code to consume the web service
Use the WSDL to generate client stubs, which can be used in the client code to invoke the methods provided by the Web service.
3.1.5.2.2 Roles

Developer

3.1.5.2.3 Artifacts

Web Service Client Codes.

3.1.5.3 Activity: Unit Test Web service

3.1.5.3.1 Tasks

· Deploy Web service in local test environment and perform functional unit testing
The emphasis is on the correctness of the functionality and the exceptions handling.
3.1.5.3.2 Roles

Developer

3.1.5.3.3 Artifacts

Unit Test Scripts.

3.1.6 Test Phase

For Web services, additional tests may be conducted to ensure that the Web services are interoperable, secured and scalable.

Interoperability is an issue in Web services because the standards governing Web services are still evolving. Furthermore, different vendors that implement these specifications may interpret and comply with these specifications differently. Currently there is an effort by Web Services Interoperability Organization (WS-I) to recommend basic profiles to minimise these incompatibilities. The aim of conducting interoperability tests is to ensure that these reccomendations are followed and the Web service developed will interoperate with other Web services and products without problems.

Network congestion created by Web services is the major contributor to Web services’ slow performance. Not only is the messaging between requesters and Web services impacted by network latency, but also the service discovery and description protocols that precede those message exchanges. The cumulative effect of these delays can seriously degrade the performance of Web services. Therefore it is necessary to do a performance test on the Web services before they are deployed for operation, and then to monitor the Web services to determine if they can meet the service level agreements.

Web Services introduce special security issues e.g. in privacy, message integrity, authentication and authorization. Tests have to be conducted to ensure that these security requirements have been fulfilled. However, security schemes could complicate the process of testing and debugging Web service basic functionality. For example, nonintrusive monitors are often used in functional testing but encrypted traffic presents an obvious complication to this approach to testing.
3.1.6.1 Activity: Test functionality of Web Services

3.1.6.1.1 Tasks

· Testing basic Web service functionality

The Web service should respond correctly to requests from their clients. The format of the SOAP message should be in compliance with the specifications. WSDL files, which contain metadata about Web services’ interfaces, should be in compliance with the WSDL specifications published by W3C. Perform fault checking to see how it handles unexpected input. The test scripts and data prepared in the earlier phases are executed in this activity. The test results should be recorded, and bugs found should be reported to the code owners and fixed by them.

· Test for security

If a service requires a certain level of privacy, or if it requires that messages be authenticated in a certain way, then specific tests are needed to ensure that these security requirements are met. The test scripts and test data prepared in the earlier phases should be executed in this activity. Any inadequacies that may lead to possible security breaches should be reported and resolved by the code owner, designer or architect.

· Test the UDDI functionality

If a service is registered to a registry server, perform registering of Web service, then write test clients to perform finding and binding of Web service on the registry, and then use the registry data to actually invoke the service. Test results from the test scripts and data should be recorded and bugs should be fixed by the code owners.

· Test for SOAP intermediary capability

If particular SOAP message has one or more intermediaries along the message route that take actions based upon the instructions provided to them in the header of the SOAP message. Web service SOAP intermediary testing must verify the proper functionality of these intermediaries. Test results from the test scripts and data should be recorded and bugs should be fixed by the code owners.
3.1.6.1.2 Roles

Tester, Test Designer

3.1.6.1.3 Artifacts

The results should be recorded in Client Test Code, Test Scripts and Test Results.

3.1.6.2 Activity: Integration Test on the Web Services

3.1.6.2.1 Tasks

· Test for conformance to Web Services Interoperability Organization (WS-I) recommendations. Execute test scripts and data according to the test cases based on the WS-I recommendations.
· Perform interoperability testing base on various scenarios
This is to highlight the interoperability issues of web services implementation. Refer to Interoperability Guideline for the interoperability testing scenarios.

· Perform integration testing base on various scenarios
Based on the test cases prepared in the Analysis Phase, test scripts and test data, which are prepared are executed and analysed in this activity.

3.1.6.2.2 Roles

Tester, Test Designer, Test System Administrator

3.1.6.2.3 Artifacts

The results should be recorded in Client Test Code, Test Scripts and Test Results.

3.1.6.3 Activity: System Test on the Web services

3.1.6.3.1 Tasks

· Check system functionality and response time under different degrees of load increases
The test cases that are prepared in the earlier phases are executed in this activity. The load increases can be sudden surges or gradual ramp-ups.The test results should be analysed to determine potential bottlenecks and if the system is scalable.
· Check functionality and response time under different combinations of valid and invalid requests.
The results from the test execution should be analysed to determine if the system can still render the expected quality of service as specified in the non-functional requirement specifications.
3.1.6.3.2 Roles

Tester, Test Designer, Test System Administrator

3.1.6.3.3 Artifacts

The results should be recorded in Client Test Code, Test Scripts and Test Results.

3.1.6.4 Activity: User Acceptance Test on the Web Services

3.1.6.4.1 Tasks

· Run the user acceptance test cases(s) for the Web services system.

The test cases prepared in the Requirement Phase are used in this activity to validate the correctness and completeness of the Web service system. Any bugs found should be reported and fixed by the code owners.

3.1.6.4.2 Roles

User, Test Manager, Test System Administrator

3.1.6.4.3 Artifacts

The results should be recorded in Client Test Code, Test Scripts and Test Results.

3.1.7 Deployment Phase

3.1.7.1 Activity: Prepare deployment environment

3.1.7.1.1 Tasks

· Set up and configure the hardware for Web service deployment

· Set up and configure the software for Web service deployment

The software may include application server, database, etc. The application server should have a SOAP listener to support Web services. Some Web services may need the SOAP handler to be configured.

3.1.7.1.2 Roles

System Engineer

3.1.7.1.3 Artifacts

Release Notes.

3.1.7.2 Activity: Deploy Web service

3.1.7.2.1 Tasks

· Determine service URL

Web service URL is unique and used to identify the Web service and where it is located.

· Prepare the deployment script

Deployment script is used to determine the steps of deployment. Although it different for different application server, most of them will include creation of directory, copying files, shutting down and restarting the server.

· Deploy the Web service

Execute the prepared deployment script.

· Generate WSDL file

After successfully deploying the Web service, a WSDL file is needed to describe the functions provided by the Web service. WSDL can be created manually or by most application servers, which will automatically generate the WSDL file after deployment.

3.1.7.2.2 Roles

Developer

3.1.7.2.3 Artifacts

WSDL File, Deployment Script.

3.1.7.3 Activity: Test deployment

3.1.7.3.1 Tasks

· Create (reuse) Web service client code

The Web service client code should be created by the developer during code and debug phase.

· Consume Web service with the client code

Because the functionality of the Web Service is properly tested, there is no need to test all of the operations. To make sure the Web service is properly deployed and configured, the best candidates of operations for invocation are the ones needed for database connection, configuration of SOAP handler or any other special features of application server.

3.1.7.3.2 Roles

Tester

3.1.7.3.3 Artifacts

Web Service Client Codes.

3.1.7.4 Activity: Create end user support material

3.1.7.4.1 Tasks

· Create end user support material.

The support material is needed to help the users to understand and use the Web service. For example, an interoperability guide of the Web service.

3.1.7.4.2 Roles

Developer

3.1.7.4.3 Artifacts

Interoperability Guide, User Guide, On-line Help, Tutorials and Training Material.

3.1.7.5 Activity: Publish Web service

3.1.7.5.1 Tasks

· Identify the UDDI registry for publishing the Web service

Based on the requirements, decide whether a private or public UDDI registry is needed and the version of the UDDI Business Registry specifications to follow.

· Prepare the information needed for publishing.

The information may include key words for searching, description of Web service, URL of WSDL file, etc.

· Publish the Web service in the UDDI registry

Normally, the UDDI registry will support the publishing via browser.

· Search the Web service by key words after publishing

Search the Web service through browser provided by UDDI registry or tools provided by other vendors.

3.1.7.5.2 Roles

Developer

3.1.7.5.3 Artifacts

None.

4 Case Example(s) of Applying the Implementation Methodology

The case example(s) aims to illustrate how an agile software methodology could be adapted to incorporate the Web services-specific activities described in the previous chapters.

It is not the intention of this Technical Committee to recommend any of the following case example(s) as the recommended agile software methodology to be used for Web services implementation. The Web service implementation methodology is intended to be generic and should be able to incorporate to any agile software methodology.

4.1 Rational Unified Process (Example)

In this section, the Rational Unified Process (RUP) is illustrated as an example of how the Web service implementation methodology can be incorporated into RUP. Although the example tries to be as complete as possible, it is foreseeable that different projects set-up may be different in nature and would need to further customise this case example according to their needs.

4.1.1 Overview

The Rational Unified Process® is a software engineering process. It provides a disciplined approach to assigning tasks and responsibilities within a development organization. Its goal is to ensure the production of high quality software that meets the needs of its end users within a predictable schedule and budget.

As illustrated in Figure 3, the overall architecture of RUP has two dimensions: the horizontal axis represents time and shows the lifecycle aspects of the process as it unfolds. This dimension is expressed in terms of phases, iterations and milestones. The vertical axis represents disciplines that logically group activities by nature. This second dimension portrays the static aspect of the process and is described in terms of process components, disciplines, activities, workflows, artifacts, and roles.

The “humps” in the graph illustrate the relative emphases of the disciplines change over the life of the project. For example, in early iterations more time is spent on Requirements, and in later iterations more time is spent on implementation.

[image: image4.png]Disciplines
Business Modeling
Requirements
Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management.
Environment

Phases

Iterations

Figure 3: The Rational Unified Process
As the terms used in RUP are different from the terms used in Web Service Implementation Methodology, Table 1 maps the terms used between the two software methodologies.

	RUP
	Web Service Implementation Methodology

	Phases
	Lifecycle

	Disciplines
	Phases

	Roles
	Roles

	
	Analyst
	System Analysts

Requirements Specifier
	
	Analyst
	Architect

Requirements Analyst

	
	Developer
	Software Architect

Designer

Implementer

Integrator
	
	Developer
	Designer

Developer

Deployer

	
	Tester
	Test Manager

Test Analyst

Test Designer

Tester

Test System Administrator
	
	Tester
	Test Manager

Test Designer

Tester

Test System Administrator

	
	Production & Support
	Deployment Manager

DBA

Process Engineer
	
	Others
	User

System Engineer

Project Manager

Stakeholder

	Artifacts
	Artifacts

	
	Glossary

Vision
	
	Business Requirement Specifications

	
	Stakeholder Requests

Requirements Attributes

Requirements Management Plan

Software Requirement

Software Requirements Specifications

Use Case Model

Supplementary Specifications
	
	Requirement Specifications

	
	Software Architecture Document
	
	Software Architecture Specifications

	
	Design Model

Analysis Model

Use Case Realization
	
	Web Service Signature Specifications

XML Schema

Design Specifications

	
	Test Plan

Test Environment Configuration

Test Strategy
	
	Test Plan – UAT and System Test

Test Plan – Performance Test

Test Plan – Integration / Interoperability Test

Test Plan – Functional Test

	
	Test-Ideas List

Test Case

Test Data

Test Suite
	
	Test Plan – Testbed

	
	Test Script
	
	Test Scripts

Unit Test Scripts

Client Test Code

	
	Test Log

Test Results
	
	Test Results

	
	Implementation Model

Implementation Element

Build
	
	Implementation Codes

Web Service Client Codes

	
	Deployment Unit
	
	Release Notes

Deployment Scripts

WSDL File

	
	End-User Support Material
	
	Interoperability Guide

User Guide

On-line Help

Tutorials

	
	Training Materials
	
	Training Materials

	
	Change Request
	
	Not Applicable

	
	Deployment Plan
	
	Not Applicable

	
	Installation Artifacts
	
	Not Applicable

	
	Project Specific Guidelines
	
	Not Applicable

	
	Release Notes
	
	Not Applicable

	
	Test Environment Summary
	
	Not Applicable

Table 1: Mapping of the terms used by both the RUP and the Web Service Implementation Methodology

4.1.2 Approach

In RUP, there are 9 disciplines altogether namely, Business Modeling, Requirements, Analysis & Design, Implementation, Test, Deployment, Configuration & Change Management, Project Management and Environment. However, as the focus of this Web service implementation methodology is on the implementation aspects only, the discplines Business Modeling, Configuration & Change Management, Project Management and Environment are beyond the scope of this document and will not be discussed here. The following disciplines as shown in Figure 4, are of interest and will be illustrated in detail in the subsequent sections.

[image: image5.emf]Requirements

Analysis and Design

Implementation

Testing Deployment

Requirements

Analysis and Design

Implementation

Testing Deployment

Figure 4: The RUP development disciplines
For each of these disciplines, the relevant workflow details will be described and are extracted directly from RUP. Most of the activities in these workflow do not need special customisation. However, in areas where the activities are specific to Web services, these will be highlighted in bold
.

4.1.2.1 Discipline: Requirements

[image: image6.emf]Requirements

•Analyze Problem

•Capture a Common Vocabulary

•Develop Vision (across all WS)

•Understand Stakeholder Needs

•Elicit Needs

•Categoriseneeds into respective WSs

•Identify potential WS

•Develop Vision

•Refine the CategorisationBased on

Features

•Manage Dependencies

•Prioritisethe WS

•Find Actors & UCs(per WS)

•Define System

•Find Actors & UCs(per WS)

•Manage Scope Of System

•Prioritisethe UCs(per WS)

•Refine System Definition

•Detail a UC

•Detail the Software Requirements

Requirements

•Analyze Problem

•Capture a Common Vocabulary

•Develop Vision (across all WS)

•Understand Stakeholder Needs

•Elicit Needs

•Categoriseneeds into respective WSs

•Identify potential WS

•Develop Vision

•Refine the CategorisationBased on

Features

•Manage Dependencies

•Prioritisethe WS

•Find Actors & UCs(per WS)

•Define System

•Find Actors & UCs(per WS)

•Manage Scope Of System

•Prioritisethe UCs(per WS)

•Refine System Definition

•Detail a UC

•Detail the Software Requirements

Figure 5: Requirements Workflow

4.1.2.1.1 Workflow Detail: Analyze the Problem

4.1.2.1.1.1 Activity: Capture a Common Vocabulary

· Find Common Terms

4.1.2.1.1.1.1 Role

System Analyst

4.1.2.1.1.1.2 Artifact

The results should be recorded in Glossary.

4.1.2.1.1.2 Activity: Develop Vision (across all web services)

· Gain agreement on the some problems faced

· Identify stakeholders of the web services

· Define boundaries of web services

· Identify (initial) constraints to be imposed on the web services

· Formulate Problem Statement (positioning why the need to develop web services)

4.1.2.1.1.2.1 Role

System Analyst

4.1.2.1.1.2.2 Artifact

The results should be recorded in Requirements Attributes and Vision.

4.1.2.1.2 Workflow Detail: Understand Stakeholder Needs

4.1.2.1.2.1 Activity: Elicit Needs

· Determine sources for requirements (who and where can you gather the requirements of web services)

· Gather information (based on stakeholders identified)

· Conduct brainstorming session

· Categorise the needs into respective web services
· Identify the web services
4.1.2.1.2.1.1 Role

System Analyst

4.1.2.1.2.1.2 Artifact

The results should be recorded in Stakeholder Requests.

4.1.2.1.2.2 Activity: Develop Vision

· Gain agreement on the some problems faced

· Identify stakeholders of the web services

· Refine boundaries of web services

· Identify the new constraints (or refine on existing constraints)

· Formulate Problem Statement (positioning why the need to develop web services)

· Define features of the web services based on the needs list

· Refine the categorisation of the web services based on the features
4.1.2.1.2.2.1 Role

System Analyst

4.1.2.1.2.2.2 Artifact

The results should be recorded in Requirements Attributes and Vision.

4.1.2.1.2.3 Activity: Manage Dependencies

· Assign attributes to the features of the web services

· Prioritise the web services
· Establish and verify traceability (what requirement types to be traced)

· Manage changing requirements

4.1.2.1.2.3.1 Role

System Analyst

4.1.2.1.2.3.2 Artifact

The results should be recorded in Requirements Attributes, Requirements Management Plan and Vision.

4.1.2.1.2.4 Activity: Find Actors and Use Cases (per web service)

· Find Actors

· Find Use Cases

· Create use case model

4.1.2.1.2.4.1 Role

System Analyst

4.1.2.1.2.4.2 Artifact

The results should be recorded in Use Case Model and Supplementary Specifications.

4.1.2.1.3 Workflow Detail: Define the System

4.1.2.1.3.1 Activity: Find Actors and Use Cases (per web service)

· Find Actors

· Find Use Cases

· Refine use case model to include outlined use cases

4.1.2.1.3.1.1 Role

System Analyst

4.1.2.1.3.1.2 Artifact

The results should be recorded in Use Case Model and Supplementary Specifications.

4.1.2.1.4 Workflow Detail: Manage the Scope of the System

4.1.2.1.4.1 Activity: Prioritise the Use Cases (per web service)

· Prioritise Use Cases and Scenarios

4.1.2.1.4.1.1 Role

Software Architect

4.1.2.1.4.1.2 Artifact

The results should be recorded in Software Architecture Document and Software Requirement.

4.1.2.1.5 Workflow Detail: Refine the System Definition

4.1.2.1.5.1 Activity: Detail a Use Case

· Review and Refine the Scenarios

· Detail the Flow of Events

· Structure the Flow of Events

· Describe any Special Requirements

4.1.2.1.5.1.1 Role

Requirements Specifier

4.1.2.1.5.1.2 Artifact

The results should be recorded in Use Case Model, Supplementary Specifications.

4.1.2.1.5.2 Activity: Detail the Software Requirements

· Detail the Software Requirements

· Generate Supporting Reports (Use Case Model and Supplementary Specs)

4.1.2.1.5.2.1 Role

Requirements Specifier

4.1.2.1.5.2.2 Artifact

The results should be recorded in Software Requirement and Software Requirements Specifications.

Discipline: Analysis and Design

[image: image7.emf]Analysis and Design

•Define a Candidate Architecture (for

each WS)

•Architectural Analysis

•Identify WS Signatures

•Identify possible 3rd party WS

•Analyse Behaviour(for each UC)

•UC Analysis

•Refine the Architecture (for each WS)

•Identify Design Elements

•Signature Mapping Translation

•Confirm reuse of 3rd party WS

•Identify WS to be built

•Identify Design Mechanisms

•Design Components

•UC Design

•Subsystem Design

•WS Signature Design

•Class Design

Analysis and Design

•Define a Candidate Architecture (for

each WS)

•Architectural Analysis

•Identify WS Signatures

•Identify possible 3rd party WS

•Analyse Behaviour(for each UC)

•UC Analysis

•Refine the Architecture (for each WS)

•Identify Design Elements

•Signature Mapping Translation

•Confirm reuse of 3rd party WS

•Identify WS to be built

•Identify Design Mechanisms

•Design Components

•UC Design

•Subsystem Design

•WS Signature Design

•Class Design

Figure 6: Analysis and Design Workflow

4.1.2.1.6 Workflow Detail: Define a Candidate Architecture (for each web service)

4.1.2.1.6.1 Activity: Architectural Analysis

· Define the high-level organization

· Identify key abstractions

· Identify analysis mechanisms

· Identify the use case realization for the current iteration

· Identify the Web Service signatures
· Identify the possible 3rd party Web Service reuse
4.1.2.1.6.1.1 Role

Software Architect

4.1.2.1.6.1.2 Artifact

The results should be recorded in Software Architecture Document and Design Model.

4.1.2.1.7 Workflow Detail: Analyse Behaviour (for each use case)

4.1.2.1.7.1 Activity: Use Case Analysis

· Find analysis classes from Use Case Behaviour

· Distribute behaviour to analysis classes

· Describe responsibilities

· Reconcile the use case realization

· Qualify analysis mechanisms

4.1.2.1.7.1.1 Role

Designer

4.1.2.1.7.1.2 Artifact

The results should be recorded in Analysis Model and Use Case Realization.

4.1.2.1.8 Workflow Detail: Refine the Architecture (for each web service)

4.1.2.1.8.1 Activity: Identify Design Elements

· Signature mapping translation
· Confirm reuse of 3rd party Web Services
· Identify Web Services to be built
· Identify classes and subsystems based on the activity Use Case Analysis

· Identify subsystem interfaces

· Identify candidate interfaces (from internal or external source)

· Look for similarities between interfaces

· Identify reuse opportunities

· Look for existing subsystems with similar interfaces

· Modify the newly identified interfaces to improve the fit
· Update the organization of the design model

4.1.2.1.8.1.1 Role

Software Architect

4.1.2.1.8.1.2 Artifact

The results should be recorded in Design Model.

4.1.2.1.8.2 Activity: Identify Design Mechanisms

· Inventory the implementation mechanisms

· Map design mechanisms to implementation mechanisms

· Document architectural mechanisms (in terms of patterns)

4.1.2.1.8.2.1 Role

Software Architect

4.1.2.1.8.2.2 Artifact

The results should be recorded in Software Architecture Document and Design Model.

4.1.2.1.9 Workflow Detail: Design Components

4.1.2.1.9.1 Activity: Use Case Design

· Describe Interactions between design objects (refine interaction diagrams)

· Simplify sequence diagrams with interfaces of subsystems (if any subsystems found)

· Unify design classes and subsystems

4.1.2.1.9.1.1 Role

Designer

4.1.2.1.9.1.2 Artifact

The results should be recorded in Design Model and Use Case Realization.

4.1.2.1.9.2 Activity: Subsystem Design

· Interface realization (web service signature design)
· Distribute subsystem behaviour to subsystem elements (design the web service)

· Document subsystem elements (internal structure of the web service)

· Describe subsystem dependencies

4.1.2.1.9.2.1 Role

Designer

4.1.2.1.9.2.2 Artifact

The results should be recorded in Design Model.

4.1.2.1.9.3 Activity: Class Design

· Create initial design classes

· Define class visibility

· Define operations

· Define attributes

· Define dependencies

· Define associations

· Define generalizations

· Handle non-function requirements

4.1.2.1.9.3.1 Role

Designer

4.1.2.1.9.3.2 Artifact

The results should be recorded in Design Model.

Discipline: Implementation

[image: image8.emf]Implementation

•Structure the Implementation

Model

•Structure the Implementation

Model

•Implement Components

•Implement Design Elements

•Wrapping into WS

•Integrate Each WS

•Integrate Subsystem

•Aggregate WS for Application

Development

•Manage Scope Of System

•Prioritisethe UCs(per WS)

•Refine System Definition

•Detail a UC

•Detail the Software

Requirements

Implementation

•Structure the Implementation

Model

•Structure the Implementation

Model

•Implement Components

•Implement Design Elements

•Wrapping into WS

•Integrate Each WS

•Integrate Subsystem

•Aggregate WS for Application

Development

•Manage Scope Of System

•Prioritisethe UCs(per WS)

•Refine System Definition

•Detail a UC

•Detail the Software

Requirements

Figure 7: Implementation Workflow

4.1.2.1.10 Workflow Detail: Structure the Implementation Model

4.1.2.1.10.1 Activity: Structure the Implementation Model

· Establish the implementation model structure

· Define imports for each implementation components

· Decide how to treat executables (and other derived objects)

4.1.2.1.10.1.1 Role

Software Architect

4.1.2.1.10.1.2 Artifact

The results should be recorded in Software Architecture Document and Implementation Model.

4.1.2.1.11 Workflow Detail: Implement Components

4.1.2.1.11.1 Activity: Implement Design Elements

· Implement operations

· Implement associations

· Implement attributes

· Provide feedback to design

· Wrapping into Web Service
4.1.2.1.11.1.1 Role

Implementer

4.1.2.1.11.1.2 Artifact

The results should be recorded in Implementation Element.

4.1.2.1.12 Workflow Detail: Integrate Each Web Service

4.1.2.1.12.1 Activity: Integrate Subsystem

· Integrate implementation elements

· Aggregate Web Service for application development

4.1.2.1.12.1.1 Role

Integrator

4.1.2.1.12.1.2 Artifact

The results should be recorded in Build and Implementation Model.

4.1.2.1.13 Workflow Detail: Manage the Scope of the System

4.1.2.1.13.1 Activity: Prioritise the Use Cases (per web service)

· Prioritise Use Cases and Scenarios
4.1.2.1.13.1.1 Role

Software Architect

4.1.2.1.13.1.2 Artifact

The results should be recorded in Software Architecture Document and Software Requirement.

4.1.2.1.14 Workflow Detail: Refine the System Definition

4.1.2.1.14.1 Activity: Detail a Use Case

· Review and Refine the Scenarios

· Detail the Flow of Events

· Structure the Flow of Events

· Describe any Special Requirements
4.1.2.1.14.1.1 Role

Requirement Specifier

4.1.2.1.14.1.2 Artifact

The results should be recorded in Use Case Model and Supplementary Specifications.

4.1.2.1.14.2 Activity: Detail the Software Requirements

· Detail the Software Requirements

· Generate Supporting Reports (Use Case Model and Supplementary Specs)
4.1.2.1.14.2.1 Role

Requirement Specifier

4.1.2.1.14.2.2 Artifact

The results should be recorded in Software Requirement and Software Requirements Specifications.

Discipline: Testing

[image: image1.png]OASIS)

Figure 8: Testing Workflow

4.1.2.1.15 Workflow Detail: Define Mission

4.1.2.1.15.1 Activity: Identify Test Motivators

· Identify iteration target items

· Web services

· configuration (deployment platform)

· Gather and examine related information

· dependencies of services to be tested

· other services

· configuration (deployment platform)

· Identify candidate motivators

· Web services

· functionality

· usability

· reliability

· performance

· supportability

· Determine quality risks

· prioritise the tests requirements

· architecture significant

· value of service

· stability

· define the acceptable quality level

· Define motivator list

· define the specific web services ready to be tested

· Maintain traceability relationships

· manage the test requirements to the other requirements

· impact analysis

· Evaluate and verify your results

· verify with team members on the objectives of this activity

4.1.2.1.15.1.1 Role

Test Manager

4.1.2.1.15.1.2 Artifact

The results should be recorded in Test Plan.

4.1.2.1.15.2 Activity: Agree on the Mission

· Investigate options for the scope of the assessment effort

· determine the resources needed to achieve the testing

· scope the test based on existing resources

· Formulate mission statement

· determine a balance between the need for:

· Test for correctness

· Test for completeness

· determine Test Coverage

· Code

· Test requirements

· Defect

· Test Result

· determine the necessary stages of testing

· Unit

(Formal/Informal)

· Integration
(Formal/Informal)

· System

(Formal)

· UAT

(Formal)

· Identify test deliverables

· Test Plan (based on type of tests)

· Test Cases (high-level)

· Test Scenarios (test case)

· Explanation

· Deriving Test Cases from Use Cases

· Deriving Test Cases from Supplementary Specifications

· Deriving Test Cases for Performance Tests

· Deriving Test Cases for Security / Access Tests

· Deriving Test Cases for Configuration Tests

· Deriving Test Cases for Installation Tests

· Deriving Test Cases for other Non Functional Tests

· Deriving Test Cases for Product Acceptance Tests

· Build Verification Test Cases for Regression Tests

· Defining Test Data for Test Cases

· use the existing test ideas as a mean to identify possible scenarios

· verify all extension points where not explicitly defined

· Test Procedures/Steps

· Test Scripts

· Test Result

· Evaluate and verify your results

· verify with team members and stakeholder on the objectives of this activity

4.1.2.1.15.2.1 Role

Test Manager

4.1.2.1.15.2.2 Artifact

The results should be recorded in Test Plan.

4.1.2.1.15.3 Activity: Define Assessment and Traceability Needs

· Identify assessment and traceability requirements

· how to assess formal and informal testing

· Consider constraints

· limitation that prohibits the testing effort

· existing skills set

· availability of resources

· tools

· information

· process

· skills set

· Consider possible strategies

· acquire required skills

· vendor

· training

· outsource

· Define and agree on the assessment strategy

· define checkpoint to assess the strategy (verify test approach)

· Define tool requirements

· Use existing tool

· Good match

· Workaround solution

· Acquire new technology

· Increase productivity

· Regression testing

· Evaluate and verify your results

· verify with team members and stakeholder on the objectives of this activity

4.1.2.1.15.3.1 Role

Test Analyst

4.1.2.1.15.3.2 Artifact

The results should be recorded in Test Plan.

4.1.2.1.15.4 Activity: Define Test Approach

· Examine test motivators and target test items

· test requirements - FURPS

· Examine the software architecture

· understand how the target is deployed

· select the appropriate test point

· Consider the appropriate breadth and depth of the test approach

· determine strategy for the test points

· API level

· SOAP Client level
· Atomic / Collaboration

· Identify existing test techniques for reuse

· gather experience from team members

· identify the possible technique for use

· select appropriate technique

· the rest as contingency

· Define techniques

· Outline each technique for each type of test

· Automated/Manual/semi-automated

· Require tool

· Framework

· Test Design

· maintenance

· effectiveness

· reusable

· longevity

· Implementation tips and tricks

· Test bed pre-condition/post-condition

· Test data management

· Test Result logging/reporting

· Define the test asset configuration management strategy

· Identify possible test assets management

· version control

· backup

· Survey availability of reusable assets

· Identify existing test asset which could be reused

· Based on test design

· Evaluate and verify your results

· verify with team members and stakeholder on the objectives of this activity

4.1.2.1.15.4.1 Role

Test Designer

4.1.2.1.15.4.2 Artifact

The results should be recorded in Test Environment Configuration, Test Plan and Test Strategy.

4.1.2.1.15.5 Activity: Identify Test Ideas

· Identify relevant Test Motivators and Target Test Items

· Determine level of testing required for specific/partial targets

· Correctness (must)

· Completeness (vary)

· The test ideas will help you to identify the possible test scenarios you would need to address based on the signature of each method call found in the specific web service

· Examine relevant available Test-Idea Catalogs

· Check existing best practices to test specific

· Brainstorm additional Test Ideas

· Enhance Test Idea catalog

· Examine web service and analyse every method signature

· Valid value

· Boundary value

· Identify possible values for each parameter. Valid and invalid

· Special value

· Invalid value

· Must conform to the syntax of the parameter data structure

· Guidelines: Test Ideas for Booleans and Boundaries

· Guidelines: Test Ideas for Method Calls

· Refine the Test-Ideas List

· update existing list

· Evaluate and verify your results

· verify with team members and stakeholder on the objectives of this activity

4.1.2.1.15.5.1 Role

Test Analyst

4.1.2.1.15.5.2 Artifact

The results should be recorded in Test-Ideas List.

4.1.2.1.16 Workflow Detail: Define Test Bed

4.1.2.1.16.1 Activity: Identify Test Environment

· Identify the application architecture and deployment

· Hardware and Software (20% effort)

· Configurations

· Test Data (80% effort)

· Explanation

· Depth

· Breadth

· Scope

· Architecture

· Identify the test facilities

· Tools

· Hardware and Software requirements

· Roles

· Sys Admin, DBA, etc

· Security

4.1.2.1.16.1.1 Role

Test Designer

4.1.2.1.16.1.2 Artifact

The results should be recorded in Test Environment Configuration.

4.1.2.1.16.2 Activity: Prepare H/W & S/W Infrastructure

· Select the appropriate technique to control environment

· Set up test environment

· settings and configuration

· Restore test environment

· Logs

· Temp files

· Software and Hardware settings

4.1.2.1.16.2.1 Role

Test System Administrator, DBA

4.1.2.1.16.2.2 Artifact

The results should be recorded in Test Environment Configuration.

4.1.2.1.16.3 Activity: Prepare Test Data Sets

· Identify the test data to be used

· Depth

· Breadth

· Scope

· Identify the strategy to restore test data

· data refresh

· data re-initialize

· data reset

· data roll forward

4.1.2.1.16.3.1 Role

Test Analyst

4.1.2.1.16.3.2 Artifact

The results should be recorded in Test Data.

4.1.2.1.17 Workflow Detail: Develop, Test and Evaluate

4.1.2.1.17.1 Activity: Define Test Details

· Examine the Target Test Item and related Test-Ideas List

· Select a subset of the test ideas to detail

· For each test idea, design the Test;

· identify input, output and execution conditions

· identify candidate points of observation

· identify candidate points of control

· Identify appropriate oracles

· Define required data sources, values and ranges

· Source sufficient consumable Test Data

· Maintain traceability relationships

· Evaluate and verify your results

4.1.2.1.17.1.1 Role

Test Analyst

4.1.2.1.17.1.2 Artifact

The results should be recorded in Test Case, Test Data and Test Script.

4.1.2.1.17.2 Activity: Implement Test

· Test Design

· Macro-Level

· Collaboration of high-level test case

· Micro-Level

· Test script implementation level

· Affected by the test data management

· Data partitioning strategy

· Data “life-cycle” strategy

· Select appropriate implementation technique

· Set up test environment preconditions

· Generate Web service client

· Implement the test

· Establish external data sets

· Verify the test implementation

· Restore test environment to known state

· Maintain traceability relationships

· Evaluate and verify your results

4.1.2.1.17.2.1 Role

Tester

4.1.2.1.17.2.2 Artifact

The results should be recorded in Test Script.

4.1.2.1.17.3 Activity: Implement Test Suite

· Examine candidate Test Suites

· Examine related Tests and Target Test Items

· Identify Test dependencies

· Identify opportunities for reuse

· Apply necessary infrastructure utilities

· Determine recovery requirements

· Implement recovery requirements

· Stabilize the Test Suite

· Maintain traceability relationships

· Evaluate and verify your results

4.1.2.1.17.3.1 Role

Tester

4.1.2.1.17.3.2 Artifact

The results should be recorded in Test Suite.

4.1.2.1.17.4 Activity: Execute Test Suite

· Setup test environment to known state

· Set execution tool options

· Schedule Test Suite execution

· Execute Test Suite

· Evaluate execution of Test Suite

· Recover from halted tests

· Inspect the Test Logs for completeness and accuracy

· Restore test environment to known state

· Maintain traceability relationships

· Evaluate and verify your results

4.1.2.1.17.4.1 Role

Tester

4.1.2.1.17.4.2 Artifact

The results should be recorded in Test Log.

4.1.2.1.17.5 Activity: Analyse Test Failures

· Examine the Test Logs

· Capture nontrivial incident data

· Identify procedural errors in the test

· Locate and isolate failures

· Diagnose failure symptoms and characteristics

· Identify candidate solutions

· Document you findings appropriately

· Evaluate and verify your results

4.1.2.1.17.5.1 Role

Tester

4.1.2.1.17.5.2 Artifact

The results should be recorded in Change Request.

4.1.2.1.17.6 Activity: Determine Test Results

· Examine all test incidents and failures

· Create and maintain Change Requests

· Analyze and evaluate status

· Make an assessment of the current quality experience

· Make an assessment of outstanding quality risks

· Make an assessment of test coverage

· Draft the Test Evaluation Summary

· Advise stakeholders of key findings

· Evaluate and verify your results

4.1.2.1.17.6.1 Role

Test Analyst

4.1.2.1.17.6.2 Artifact

The results should be recorded in Test Evaluation Summary and Test Results.

4.1.2.1.18 Workflow Detail: Improve Test Assets

4.1.2.1.18.1 Activity: Define Test Approach (Refinement)

· As in “Define Test Approach” activity found in “Define Mission” Workflow

4.1.2.1.18.1.1 Role

Test Designer

4.1.2.1.18.1.2 Artifact

The results should be recorded in Test Environment Configuration, Test Plan and Test Strategy.

4.1.2.1.18.2 Activity: Identify Test Ideas (Refinement)

· As in “Identify Test Ideas” activity found in “Define Mission” Workflow

4.1.2.1.18.2.1 Role

Test Analyst

4.1.2.1.18.2.2 Artifact

The results should be recorded in Test-Ideas List.

4.1.2.1.18.3 Activity: Prepare Guidelines for the Project

· Identify the Project's Needs for Guidelines

· Prepare Guidelines for Project Use

· Maintain Guidelines

4.1.2.1.18.3.1 Role

Process Engineer

4.1.2.1.18.3.2 Artifact

The results should be recorded in Project Specific Guidelines.

Discipline: Deployment

[image: image9.emf]Deployment

•Plan Deployment

•Develop Deployment Plan

•Develop Support Material

•Develop Training Material

•Develop Support Material

•Produce Deployment Unit (WS)

•Write Release Notes

•Develop Installation Artifacts

•Create Deployment Unit (WS)

•Deploy WS to identified app

servers

•Publish WS (optional)

Deployment

•Plan Deployment

•Develop Deployment Plan

•Develop Support Material

•Develop Training Material

•Develop Support Material

•Produce Deployment Unit (WS)

•Write Release Notes

•Develop Installation Artifacts

•Create Deployment Unit (WS)

•Deploy WS to identified app

servers

•Publish WS (optional)

Figure 9: Deployment Workflow

4.1.2.1.19 Workflow Detail: Plan Deployment

4.1.2.1.19.1 Activity: Develop Deployment Plan

· Plan how to produce the software

· Plan how to package the software

· Plan how to distribute the software

· Plan how to install the software

· Migration

· Providing help and assistance to the users

4.1.2.1.19.1.1 Role

Deployment Manager

4.1.2.1.19.1.2 Artifact

The results should be recorded in Deployment Plan.

4.1.2.1.20 Workflow Detail: Develop Support Material

4.1.2.1.20.1 Activity: Develop Training Material

· Develop an outline for the training materials

· Write the training materials

4.1.2.1.20.1.1 Role

Course Developer

4.1.2.1.20.1.2 Artifact

The results should be recorded in Training Materials.

4.1.2.1.20.2 Activity: Develop Support Material

· Develop end-user support material

4.1.2.1.20.2.1 Role

Technical Writer

4.1.2.1.20.2.2 Artifact

The results should be recorded in End-User Support Material.

4.1.2.1.21 Workflow Detail: Produce Deployment Unit (Web service)

4.1.2.1.21.1 Activity: Write Release Notes

· Describe the major new features and changes in the release

· Describe any known bugs and limitations or workarounds to using the product

4.1.2.1.21.1.1 Role

Deployment Manager

4.1.2.1.21.1.2 Artifact

The results should be recorded in Release Notes.

4.1.2.1.21.2 Activity: Develop Installation Artifacts

· Produce all the software required to install and uninstall the product quickly, easily and safely without affecting other applications or system characteristics

4.1.2.1.21.2.1 Role

Implementer

4.1.2.1.21.2.2 Artifact

The results should be recorded in Installation Artifacts.

4.1.2.1.21.3 Activity: Create Deployment Unit (Web service)

· Create a deployment unit that is sufficiently complete to be downloadable, installable and run on a node as a group
· A deployment unit consists of a build (an executable collection of components), documents (end-user support material and release notes) and installation artifacts

4.1.2.1.21.3.1 Role

Configuration Manager

4.1.2.1.21.3.2 Artifact

The results should be recorded in Deployment Unit.

4.1.2.1.21.4 Activity: Deploy Web Service to identified app servers

· Identify the service end-point

· Create the deployment script and configure the deployment parameters

· Deploy the Web service

· Generate the WSDL

4.1.2.1.21.4.1 Role

Implementer

4.1.2.1.21.4.2 Artifact

The results should be recorded in Installation Artifacts.

4.1.2.1.21.5 Activity: Publish Web service [optional]

· Identify the UDDI registry
· Prepare the information needed for publishing
· Publish the Web service in the UDDI registry
· Perform a find and bind to test

4.1.2.1.21.5.1 Role

Implementer

4.1.2.1.21.5.2 Artifact

The results should be recorded in Installation Artifacts.

5 References

5.1 Normative

5.2 Non-Normative

1. “Rational Unified Process”, Version 2003.06.00.65, IBM-Rational Software.

2. “Rational Unified Process for Developing Web Services”, Version 1.0, Java Smart Services Laboratory and Rational Software Pte. Ltd., Aug 2003.

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this documentation:

· Ravi Shankar, CrimsonLogic Pte. Ltd.

· Jagdip Talla, CrimsonLogic Pte. Ltd.

· Andy Tan, Individual

· Roberto Pascual, IDA

Appendix B. Revision History

	Rev
	Date
	By Whom
	What

	wd-01
	2004-05-10
	Lai Peng CHAN
	Initial version

	wd-02
	2004-06-04
	Lai Peng CHAN
	Expanded section 3 with inputs gathered during knowledge sharing within JSSL team

	wd-03
	2004-06-24
	Lai Peng CHAN
	Minor revisions in Section 3

Revised based on comments from CrimsonLogic and Marc Haines

	wd-03a
	2004-09-20
	Lai Peng CHAN,

Chai Hong ANG
	Included case example using RUP

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

� The Functional Elements are to be specified as components, which are to be exposed as web services where appropriate.

� The activities in italics represent refinement of an activity previously defined.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 1
2
FWSI-IMSC-Document-03a.doc

20 September 2004
Copyright © OASIS Open 2004. All Rights Reserved.

Page 1 of 59

