OASIS IHC TC Face-to-Face Meeting
Meeting Agenda
November 17, 2004
9:00 A.M. – 12:00 P.M. EST

Marriott Wardman Park Hotel
2660 Woodley Road, NW
Washington, DC 20008
Phone: 1 202-328-2000


Type of Meeting: Technical Committee Meeting of the International Healthcare Continuum Technical Committee
Meeting Facilitator: DeLeys Brandman
Invitees:
    

	Brett Trusko
	OASIS

	Ian Jones
	BTplc

	Chung-Ming Ou
	Chunghwa Telecom Laboratories

	DeLeys Brandman
	CommerceNet

	Johan Gozali
	CrimsonLogic Pte Ltd

	Jagdip Talla
	CrimsonLogic Pte Ltd

	John Chelsom
	CSW Group Ltd.

	dave nurse
	CSW Group Ltd.

	sara price
	CSW Group Ltd.

	Ann Wrightson
	CSW Group Ltd.

	Liam Moran
	Digital Enterprise Research Institute (DERI)

	Rex Brooks
	HumanMarkup.org, Inc.

	Virinder Batra
	IBM

	John Casillas
	Individual

	Ed Dodds
	Individual

	Asuman Dogac
	Individual

	Peter Elkin
	Individual

	Mark Morwood
	Individual

	Dan Pattyn
	Individual

	Kelly Ray
	Individual

	Sylvia Webb
	Individual

	David Webber
	Individual

	Torsten Kirschner
	National Insurance Administration

	Naren Nagpal
	ReadiMinds Systems & Services Pte Ltd

	Karen Cox
	RosettaNet

	Kumar Sivaraman
	SeeBeyond Technology Corporation

	Manoj Saxena
	Webify Solutions, Inc.


I. 9:00 AM Call to order

II. Roll call

III. Approval of minutes from last meeting / Meeting Calendar for 2005
IV. Open issues
a) Rex Brooks - UML

b) Population of Stakeholder Matrix
c) Development of Level I Process Maps
d) Discussion of other entities targeted to join the committee
V. New business

e) Development of a Project Timeline/Plan
f) Development of a Straw man report
g) Prof Asuman Dogac on ARTEMIS project

VI. BCM Joint Meeting (11:00 – 12:00)
VII. Adjournment

OASIS International Health Continuum Technical Committee

Key Stakeholder Matrix

	Supply Chain Role
	Americas
	Asia
	Europe
	Africa

	Hospitals and Urgent Care Providers & Consortia
	TC Members:

Target Members:

DOC

Kaiser

Suttor

MA share

Regainstrief
	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members

Donald Gordon

	Medical Equipment Providers
	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members

	Pharmaceutical Providers and Outlets
	TC Members

Target Members

Rx Hub

Sure Scripts
	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members

	Consumable Health Care Product Providers
	TC Members

Target Members

Premier
	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members

	Health Insurance Providers
	TC Members

Target Members

Blues

AetnaCigna

Kaiser
	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members

	Medical  Research Centers
	TC Members

Mayo
Target Members

Northwestern

Duke

Vandi


	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members



	Information Technology (HW/SW) Providers
	TC Members

See Beyond
Target Members

Cerner
Epic

Cisco

HP
Sun
	TC Members

Target Members

Cisco

HP
Sun
	TC Members

Target Members

Cisco

HP
Sun
	TC Members

Target Members

Cisco

HP
Sun

	Health Info Mgmt Service Providers 
	TC Members

IBM
Target Members

EDS

Hyprrcom
	TC Members

Target Members

EDS

Orion
	TC Members

Target Members

EDS
	TC Members

Target Members

EDS

	Health Care Consumer Organization
	TC Members

Target Members

AARP

CALPERS
	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members

	Governmental Regulation Agencies
	TC Members

Target Members

FDA

NIH

CDC
	TC Members

Target Members


	TC Members

NIA
Target Members

NHS

WHO
	TC Members

Target Members

	Banking
	TC Members

Medical Banking

Target Members

SWIFT (RN)
	TC Members

Target Members 


	TC Members

Target Members TWIST (CN)
	TC Members

Target Members

	Medical Informatics
	TC Members

Mayo
Target Members

Stanford

Emergent

Intersystem
	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members

	Diagnostic Centers (Lab and Imaging Services)
	TC Members

Target Members

Labcorp

Quest
	TC Members

Target Members
	TC Members

Target Members
	TC Members

Target Members

	Health Informatics Networks (Clearinghouses and data exchanges)
	TC Members

Webify
Target Members

Regenstrief

Web MD

Proximed
	TC Members

Chungwa???
Target Members

SingHealth
	TC Members

Target Members
	TC Members

Target Members

	Healthcare Standards Groups
	TC Members:

HL7

RosettaNet

Target Members:

eHSCG

IHE


	TC Members:

HL7

RosettaNet

Human Markup

Target Members:


	TC Members:

HL7

RosettaNet
Target Members:


	TC Members:

HL7

RosettaNet
Target Members:




OASIS International Health Continuum Technical Committee

Level I Process Map Components

A Level I Process map for our intents and purposes will be an exercise for the identification of VERY high level processes into the healthcare system such as:
	
	Hospitals
	Physicians and Clinics
	Pharmaceutical R & D
	Consumable Health Care Product Providers
	Health Insurance Providers
	Consumers
	Regulatory Agencies
	Banking
	Diagnostic Centers (Lab and Imaging Services)

	Physicians and Clinics
	scheduling, ordering, reporting, credentialing
	 
	 
	 
	 
	 
	 
	 
	 

	Pharmaceutical R & D
	enrolling, reporting
	enrolling, reporting
	 
	 
	 
	 
	 
	 
	 

	Consumable Health Care Product Providers
	supply chain, education, sales
	supply chain, education, sales
	marketing, production, distribution
	 
	 
	 
	 
	 
	 

	Health Insurance Providers
	billing, network development, case mgmt, claims adjudication, reporting, contracting, credentialing, coordination of benefits
	billing, network development, case mgmt, claims adjudication, reporting, contracting, credentialing, coordination of benefits
	medical policy, benefits coordination
	formulary, medical policy, benefits mgmt, sales
	 
	 
	 
	 
	 

	Consumers
	scheduling, billing, care delivery, reporting, sales, supply chain
	scheduling, billing, care delivery, reporting, sales, supply chain, ordering, relationship mgmt
	marketing 
	supply chain, education, sales
	billing, reporting, advocating, relationship management
	 
	 
	 
	 

	Regulatory Agencies
	reporting, compliance mgmt, certification
	reporting, compliance mgmt, certification
	compliance, reporting, certification
	compliance, reporting, certification
	compliance, reporting, certification
	reporting, advocacy
	 
	 
	 

	
	Hospitals
	Physicians and Clinics
	Pharmaceutical R & D
	Consumable Health Care Product Providers
	Health Insurance Providers
	Consumers
	Regulatory Agencies
	Banking
	Diagnostic Centers (Lab and Imaging Services)

	Banking
	cash mgmt, billing, reconciliation, payment, lock box
	cash mgmt, billing, reconciliation, payment, lock box
	
	payment
	lock box, billing, reconciliation, eligibility, payment
	eligibility, payment, reporting, reconciliation, investor services
	
	 
	 

	Diagnostic Centers (Lab and Imaging Services)
	scheduling, reporting, ordering
	scheduling, reporting, ordering
	enrolling, reporting
	supply chain, education, sales
	billing, claims adjudication, reporting, contracting, coordination of benefits
	scheduling, billing, care delivery, reporting, sales
	reporting, compliance mgmt, certification
	cash mgmt, billing, reconciliation, payment, lock box
	 

	Health Informatics Networks (Clearinghouses and RHIOs)
	consolidating, data sharing, translation and data mapping, reporting, auditing
	consolidating, data sharing, translation and data mapping, reporting, auditing
	consolidating, data sharing, translation and data mapping, reporting, auditing
	consolidating, data sharing, translation and data mapping, reporting, auditing
	consolidating, data sharing, translation and data mapping, reporting, auditing
	consolidating, data sharing, translation and data mapping, reporting, auditing
	consolidating, data sharing, translation and data mapping, reporting, auditing
	consolidating, data sharing, translation and data mapping, reporting, auditing
	consolidating, data sharing, translation and data mapping, reporting, auditing


OASIS International Health Continuum Technical Committee

Targeted Timeline
It has become apparent that if we will need many more “hands” working on the use cases if we are to complete the report on time. Another strategy is to adopt existing use cases by other organization such as IHE. This will require active liaison activities by the IHC. 
Given that we have initially targeted that our report be complete in September of 2005 the following are initial deadlines:
December T-Con – Identify resources (individuals, groups or task force) to work on specific areas

HIMSS – February 2005 Completion of process maps

OASIS Meeting – April 2005 Owners of processes set schedules and present current progress on development of use cases

June 15 – Standards mapped to process and use cases

September 2005 - Paper top be presented at a European Health IT conference


OASIS International Health Continuum Technical Committee

Report Outline

Report on Existing International Healthcare Standards and Gaps in the Vision for an Interoperable and Integrated Healthcare Continuum

Part 1 – Why a fully integrated healthcare continuum is essential for reduction in cost, reduction in errors and improvement of quality in international healthcare
· Trends in Healthcare Worldwide

· Global Consumerism

· Reduction of Errors

· Improvement of Global Public Health

· Improved Quality and Clinical Outcomes

· The Economics of Efficiency

Part 2 – What is the IHC TC Project and Methodologies?

· Members

· Methodology

Part 3 – Gap Analysis

· Financial

· Governmental

· Clinical

· Supply Chain

· Informatics

Part 4 – Application of Findings to the International Standards Development Effort
· Financial

· Governmental

· Clinical

· Supply Chain

· Informatics

Part 5 - Suggestions for Improvements and Standards Development Efforts

· Value Proposition

· Organization

· Timeline

	January 2005

	S
	M
	T
	W
	T
	F
	S

	
	
	
	
	
	
	1

	2
	3
	4
	5
	6
	7
	8

	9
	10
	11
	12
	13
	14
	15

	16
	17
	18
	19
	20
	21
	22

	23
	24
	25
	26
	27
	28
	29

	30
	31
	
	
	
	
	



	March 2005

	S
	M
	T
	W
	T
	F
	S

	
	
	1
	2
	3
	4
	5

	6
	7
	8
	9
	10
	11
	12

	13
	14
	15
	16
	17
	18
	19

	20
	21
	22
	23
	24
	25
	26

	27
	28
	29
	30
	31
	
	

	May 2005

	S
	M
	T
	W
	T
	F
	S

	1
	2
	3
	4
	5
	6
	7

	8
	9
	10
	11
	12
	13
	14

	15
	16
	17
	18
	19
	20
	21

	22
	23
	24
	25
	26
	27
	28

	29
	30
	31
	
	
	
	

	August 2005

	S
	M
	T
	W
	T
	F
	S

	
	1
	2
	3
	4
	5
	6

	7
	8
	9
	10
	11
	12
	13

	14
	15
	16
	17
	18
	19
	20

	21
	22
	23
	24
	25
	26
	27

	28
	29
	30
	31
	
	
	

	September 2005 

	S
	M
	T
	W
	T
	F
	S

	
	
	
	
	1
	2
	3

	4
	5
	6
	7
	8
	9
	10

	11
	12
	13
	14
	15
	16
	17

	18
	19
	20
	21
	22
	23
	24

	25
	26
	27
	28
	29
	30
	

	December 2005 

	1S
	M
	T
	W
	T
	F
	S

	
	
	
	
	1
	2
	3

	4
	5
	6
	7
	8
	9
	10

	11
	12
	13
	14
	15
	16
	17

	18
	19
	20
	21
	22
	23
	24

	25
	26
	27
	28
	29
	30
	31

	November 2005 

	S
	M
	T
	W
	T
	F
	S

	
	
	1
	2
	3
	4
	5

	6
	7
	8
	9
	10
	11
	12

	13
	14
	15
	16
	17
	18
	19

	20
	21
	22
	23
	24
	25
	26

	27
	28
	29
	30
	
	
	

	October 2005 

	S 
	M
	T
	W
	T
	F
	S

	
	
	
	
	
	
	1

	2
	3
	4
	5
	6
	7
	8

	9
	10
	11
	12
	13
	14
	15

	16
	17
	18
	19
	20
	21
	22

	23
	24
	25
	26
	27
	28
	29

	30
	31
	
	
	
	
	

	July 2005

	S
	M
	T
	W
	T
	F
	S

	
	
	
	
	
	1
	2

	3
	4
	5
	6
	7
	8
	9

	10
	11
	12
	13
	14
	15
	16

	17
	18
	19
	20
	21
	22
	23

	24
	25
	26
	27
	28
	29
	30

	31
	
	
	
	
	
	

	April 2005

	S
	M
	T
	W
	T
	F
	S

	
	
	
	
	
	1
	2

	3
	4
	5
	6
	7
	8
	9

	10
	11
	12
	13
	14
	15
	16

	17
	18
	19
	20
	21
	22
	23

	24
	25
	26
	27
	28
	29
	30

	June 2005

	S
	M
	T
	W
	T
	F
	S

	
	
	
	1
	2
	3
	4

	5
	6
	7
	8
	9
	10
	11

	12
	13
	14
	15
	16
	17
	18

	19
	20
	21
	22
	23
	24
	25

	26
	27
	28
	29
	30
	
	

	February 2005

	S
	M
	T
	W
	T
	F
	S

	
	
	1
	2
	3
	4
	5

	6
	7
	8
	9
	10
	11
	12

	13
	14
	15
	16
	17
	18
	19

	20
	21
	22
	23
	24
	25
	26

	27
	28
	
	
	
	
	


Types of UML Diagrams


Each UML diagram is designed to let developers and customers view a software system from a different perspective and in varying degrees of abstraction. UML diagrams commonly created in visual modeling tools include: 
Use Case Diagram displays the relationship among actors and use cases. 
Class Diagram models class structure and contents using design elements such as classes, packages and objects. It also displays relationships such as containment, inheritance, associations and others.
Interaction Diagrams 

· Sequence Diagram displays the time sequence of the objects participating in the interaction.  This consists of the vertical dimension (time) and horizontal dimension (different objects).1 

· Collaboration Diagram displays an interaction organized around the objects and their links to one another.  Numbers are used to show the sequence of messages.1 

State Diagram displays the sequences of states that an object of an interaction goes through during its life in response to received stimuli, together with its responses and actions.1 

Activity Diagram displays a special state diagram where most of the states are action states and most of the transitions are triggered by completion of the actions in the source states. This diagram focuses on flows driven by internal processing.1 

Physical Diagrams  

· Component Diagram displays the high level packaged structure of the code itself.  Dependencies among components are shown, including source code components, binary code components, and executable components.  Some components exist at compile time, at link time, at run times well as at more than one time.1 

· Deployment Diagram displays the configuration of run-time processing elements and the software components, processes, and objects that live on them.  Software component instances represent run-time manifestations of code units.
Use Case Diagrams


A use case is a set of scenarios that describing an interaction between a user and a system.  A use case diagram displays the relationship among actors and use cases.  The two main components of a use case diagram are use cases and actors.
[image: image1.jpg]@@

Actor Use Case




An actor is represents a user or another system that will interact with the system you are modeling.  A use case is an external view of the system that represents some action the user might perform in order to complete a task.
I. When to Use: Use Cases Diagrams
Use cases are used in almost every project.  They are helpful in exposing requirements and planning the project. During the initial stage of a project most use cases should be defined, but as the project continues more might become visible. 
II. How to Draw: Use Cases Diagrams
Use cases are a relatively easy UML diagram to draw, but this is a very simplified example.  This example is only meant as an introduction to the UML and use cases.
Start by listing a sequence of steps a user might take in order to complete an action.  For example a user placing an order with a sales company might follow these steps. 
1. Browse catalog and select items. 

2. Call sales representative. 

3. Supply shipping information. 

4. Supply payment information. 

5. Receive conformation number from salesperson. 

These steps would generate this simple use case diagram:
[image: image2.jpg]-

Browse Catalog and Select ltems

/’i/; Sales Person

Give Shipping Info

-

Give Payment Info

@

Gt Confirmation #




This example shows the customer as an actor because the customer is using the ordering system.  The diagram takes the simple steps listed above and shows them as actions the customer might perform.  The salesperson could also be included in this use case diagram because the salesperson is also interacting with the ordering system.  
From this simple diagram the requirements of the ordering system can easily be derived.  The system will need to be able to perform actions for all of the use cases listed.  As the project progresses other use cases might appear.  The customer might have a need to add an item to an order that has already been placed.  This diagram can easily be expanded until a complete description of the ordering system is derived capturing all of the requirements that the system will need to perform. 
Class Diagrams


Class diagrams are widely used to describe the types of objects in a system and their relationships.  Class diagrams model class structure and contents using design elements such as classes, packages and objects.  Class diagrams describe three different perspectives when designing a system, conceptual, specification, and implementation.   These perspectives become evident as the diagram is created and help solidify the design.  This example is only meant as an introduction to the UML and class diagrams. 
Classes are composed of three things: a name, attributes, and operations.  Below is an example of a class.
[image: image3.jpg]Class Name ————— Customer

&name : String

Atributes ———— @ adiress - String

Operations — 3 | ®creditRating()





Class diagrams also display relationships such as containment, inheritance, associations and others.2  Below is an example of an associative relationship:
 [image: image4.jpg]Order Association

@ daieRecived Date l Custorer

&isPrepaid - Boolean
& number  String &name : String

Soris woney || ®pateress  stung
i

Saispatcno SoregiRatng0

“closeq)

Many-valued  Mandatory




The association relationship is the most common relationship in a class diagram.  The association shows the relationship between instances of classes.  For example, the class Order is associated with the class Customer.  The multiplicity of the association denotes the number of objects that can participate in then relationship. For example, an Order object can be associated to only one customer, but a customer can be associated to many orders. 
Another common relationship in class diagrams is a generalization.  A generalization is used when two classes are similar, but have some differences.  Look at the generalization below:
[image: image5.jpg]Customer

&name : String
&address : String

SereditRating()

+————— Generalization

Corprate Custorner Personal Custorner

& contactName : String | |&creditCard#: Long Integer
& creditRating : String
& -creditLimit : Double

Sremind()
SpillForMonth()





In this example the classes Corporate Customer and Personal Customer have some similarities such as name and address, but each class has some of its own attributes and operations.  The class Customer is a general form of both the Corporate Customer and Personal Customer classes.1  This allows the designers to just use the Customer class for modules and do not require in-depth representation of each type of customer. 
III. When to Use: Class Diagrams
Class diagrams are used in nearly all Object Oriented software designs. Use them to describe the Classes of the system and their relationships to each other.
IV. How to Draw: Class Diagrams
Class diagrams are some of the most difficult UML diagrams to draw.  To draw detailed and useful diagrams a person would have to study UML and Object Oriented principles for a long time.  Therefore, this page will give a very high level overview of the process.
Before drawing a class diagram consider the three different perspectives of the system the diagram will present; conceptual, specification, and implementation.  Try not to focus on one perspective and try to see how they all work together. 
When designing classes consider what attributes and operations it will have.  Then try to determine how instances of the classes will interact with each other. These are the very first steps of many in developing a class diagram.  However, using just these basic techniques one can develop a complete view of the software system.
[image: image6.jpg]Order

& dateRecived : Date Customer
&isPrepaid : Boolean @prame - String

QZZTE“'MDS"‘JL"“ ———————————={&address : String

creditRating()

Sdispatch()
Fclose()

Corprate Custorner Personal Customer

& contactName : String | [@creditCard#: Long Integer

®creditRating : String

@ creditLimit : Double

Sremind()
SyillForMonth()





This example is only meant as an introduction to the UML and use cases.
Interaction Diagrams


Interaction diagrams model the behavior of use cases by describing the way groups of objects interact to complete the task.  The two kinds of interaction diagrams are sequence and collaboration diagrams. This example is only meant as an introduction to the UML and interaction diagrams. 
V. When to Use: Interaction Diagrams
Interaction diagrams are used when you want to model the behavior of several objects in a use case.  They demonstrate how the objects collaborate for the behavior.  Interaction diagrams do not give an in depth representation of the behavior.  If you want to see what a specific object is doing for several use cases use a state diagram.  To see a particular behavior over many use cases or threads use an activity diagrams.
VI. How to Draw: Interaction Diagrams
Sequence diagrams, collaboration diagrams, or both diagrams can be used to demonstrate the interaction of objects in a use case.  Sequence diagrams generally show the sequence of events that occur.  Collaboration diagrams demonstrate how objects are statically connected.  Both diagrams are relatively simple to draw and contain similar elements. 1
Sequence diagrams:
Sequence diagrams demonstrate the behavior of objects in a use case by describing the objects and the messages they pass.  The diagrams are read left to right and descending.  The example below shows an object of class 1 start the behavior by sending a message to an object of class 2.  Messages pass between the different objects until the object of class 1 receives the final message.
[image: image7.jpg]Object

Class1

Object : Class2

Object

Class3





Below is a slightly more complex example.  The light blue vertical rectangles the objects activation while the green vertical dashed lines represent the life of the object.  The green vertical rectangles represent when a particular object has control.  The [image: image8.jpg]


represents when the object is destroyed.  This diagram also shows conditions for messages to be sent to other object.  The condition is listed between brackets next to the message.  For example, a [condition] has to be met before the object of class 2 can send a message to the object of class 3.  
[image: image9.jpg]Messaget 1

[Condton;

Messaged,

Return()

Return)





The next diagram shows the beginning of a sequence diagram for placing an order.  The object an Order Entry Window is created and sends a message to an Order object to prepare the order. Notice the names of the objects are followed by a colon.  The names of the classes the objects belong to do not have to be listed.  However the colon is required to denote that it is the name of an object following the objectName:className naming system.
Next the Order object checks to see if the item is in stock and if the [InStock] condition is met it sends a message to create a new Delivery Item object.
[image: image10.jpg]prepareq

instock] new()





The next diagram adds another conditional message to the Order object.  If the item is [OutOfStock] it sends a message back to the Order Entry Window object stating that the object is out of stack.  
[image: image11.jpg]prepareq

instock] new()

foutorstock]

Out of Stock Message(





This simple diagram shows the sequence that messages are passed between objects to complete a use case for ordering an item.
Collaboration diagrams:
Collaboration diagrams are also relatively easy to draw.  They show the relationship between objects and the order of messages passed between them.  The objects are listed as icons and arrows indicate the messages being passed between them. The numbers next to the messages are called sequence numbers.  As the name suggests, they show the sequence of the messages as they are passed between the objects.  There are many acceptable sequence numbering schemes in UML.  A simple 1, 2, 3... format can be used, as the example below shows, or for more detailed and complex diagrams a 1, 1.1 ,1.2, 1.2.1... scheme can be used.   
[image: image12.jpg]Passive

¢ 1 Message()

2: Message()
—





The example below shows a simple collaboration diagram for the placing an order use case.  This time the names of the objects appear after the colon, such as :Order Entry Window following the objectName:className naming convention. This time the class name is shown to demonstrate that all of objects of that class will behave the same way.
[image: image13.jpg]Passive

iw Prepare()

[InStock] 1.1 New()





As an example of an ATM Transaction you might have something like this:

[image: image14.png]System Startup Sequence Diagram

JEm—— am SashDispenser

Netvor ek

U Suitchon

H ottt

s

s

SotbitCashniiiCaeh H







[image: image15.png]System Shutdown Sequence Diagram

JEm——

am

Netvor ek

H Suitohor|

[ostomsagiom







[image: image16.png]Session Sequence Diagram

Corfester am

CustomerConzde

|:| cardinsented)

et

H ejeotCard]

Sezson

cosestiis]_J1

petomsession
H i "

>
ey

o

Tl sustomar wents G promn rarsastons |

corestes{sn, i, cord, pin).

I«

peromTsnsaoton])

E—

dnigin

X







[image: image17.png]Transaction Sequence Diagram

rnssston RS | g  e—— |
s iactiofoncuzonn : : : :
send(nessage, balanoss) Y logSendimessage) | H

|«

el PN st = prfon el Estension

ERp———)
p—|

D

piReceiprecap]

geMuCheiefstas nassege, v o )







[image: image18.png]Withdraval Transaction Collaboration

L.1: from = readMennChoiee(

“gcount o Wit fon’,

avallblehccouns menn) CusomerConsole

[whils ot valid amouat ] 1.2
‘mount = amountYalues [

szadMemnChaice(
Aot 1 Vi,
itdrawal amonnts mé) |

3 valit ot
checkCashOnHand(smovny)

Coshbispenser

2.1: dispenseCash(amonnt)

Lagenaes 22¢cmany

Receipt







[image: image19.png]Deposit Transaction Collaboration

1.1: = madMennChaice(
“Agcount o deposit ",
avallbleAccoms ment)

CusomerConsole

1.2: amount = eadMennChalce(
“Amount 1o depasit)

2. accepBnvelope()

Envelopeaccepor

1.3 cemate | 2acomany
2.3 send(message,
22¢cmany) ess
NerworkToBank Receipt







[image: image20.png]Transfer Transaction Collaboration

L.1: from = readMennChoiee(
“Acount o vanster fom’,

avallblshccouns menn)

T2 = mealemmCHone,
Account o Tanster 1,
avallbleAccouns ment)

Lagenaes

1.3: amount = read Amoung
Aot wansfer’)

21 coman s

CusomerConsole

Receipt







[image: image21.png]Inquiry Transaction Collaboration

12 cemaes

e

L.1: from = readMennChoiee(
“Ascount o inguie from”,

avallbleAccoms menn)

CusomerConsole

21 coman s

Receipt







[image: image22.png]Invalid PIN Extension Collaboration

e

2 sePIN(pin)

[tee foilures o exter
valid PIN 4
TeRinCert()

tpin

APIN("Plesse e-enter’)

e
Thies fallites  exter & vallid PIN |5

displap("Your card has been rtained)

CoxtReater

CusomerConsole

[status notinvalit PIN | 4

3= PIN(pin)

3:s0ms
sena(message,
balances)

NerworkToBank

Session

S50mES T ST SRR
valil PIN (send( returns o status other
than inporgect PIN, e extension s
prminad. 1f the fustomer re-enters
invalil PINS three times, the ATH card
i rtained and the extendion (and
363510 of Which it s  parg) is abortd.
1 e usex presses Cancel, this
extension 2 shored immedintly, and
he Tansaction that inited i abored
immetisely o3 well.





State Diagrams


State diagrams are used to describe the behavior of a system.  State diagrams describe all of the possible states of an object as events occur.  Each diagram usually represents objects of a single class and tracks the different states of its objects through the system. 
VII. When to Use: State Diagrams
Use state diagrams to demonstrate the behavior of an object through many use cases of the system.  Only use state diagrams for classes where it is necessary to understand the behavior of the object through the entire system.  Not all classes will require a state diagram and state diagrams are not useful for describing the collaboration of all objects in a use case.  State diagrams are other combined with other diagrams such as interaction diagrams and activity diagrams.
VIII. How to Draw: State Diagrams
State diagrams have very few elements.  The basic elements are rounded boxes representing the state of the object and arrows indicting the transition to the next state.  The activity section of the state symbol depicts what activities the object will be doing while it is in that state.   
[image: image23.jpg]——— Activity

+—————— Transitior




All state diagrams being with an initial state of the object.  This is the state of the object when it is created.  After the initial state the object begins changing states.  Conditions based on the activities can determine what the next state the object transitions to.
[image: image24.jpg]+———— Initail State

[Condition]

[Condition]

Transitions





Below is an example of a state diagram might look like for an Order object.  When the object enters the Checking state it performs the activity "check items."  After the activity is completed the object transitions to the next state based on the conditions [all items available] or [an item is not available].  If an item is not available the order is canceled.  If all items are available then the order is dispatched.  When the object transitions to the Dispatching state the activity "initiate delivery" is performed.  After this activity is complete the object transitions again to the Delivered state.
[image: image25.jpg][all terns available]

[an itern is not available]





State diagrams can also show a super-state for the object. A super-state is used when many transitions lead to a certain state.  Instead of showing all of the transitions from each state to the redundant state a super-state can be used to show that all of the states inside of the super-state can transition to the redundant state.  This helps make the state diagram easier to read.
The diagram below shows a super-state.  Both the Checking and Dispatching states can transition into the Canceled state, so a transition is shown from a super-state named Active to the state Cancel.  By contrast, the state Dispatching can only transition to the Delivered state, so we show an arrow only from the Dispatching state to the Delivered state.  
[image: image26.jpg]Aclive

(5l ftems ailable]





Activity Diagrams


Activity diagrams describe the workflow behavior of a system.  Activity diagrams are similar to state diagrams because activities are the state of doing something.  The diagrams describe the state of activities by showing the sequence of activities performed.  Activity diagrams can show activities that are conditional or parallel.
IX. When to Use: Activity Diagrams
Activity diagrams should be used in conjunction with other modeling techniques such as interaction diagrams and state diagrams.  The main reason to use activity diagrams is to model the workflow behind the system being designed.  Activity Diagrams are also useful for: analyzing a use case by describing what actions need to take place and when they should occur;  describing a complicated sequential algorithm;  and modeling applications with parallel processes.
However, activity diagrams should not take the place of  interaction diagrams and state diagrams.  Activity diagrams do not give detail about how objects behave or how objects collaborate.
X. How to Draw: Activity Diagrams
Activity diagrams show the flow of activities through the system.  Diagrams are read from top to bottom and have branches and forks to describe conditions and parallel activities.  A fork is used when multiple activities are occurring at the same time.  The diagram below shows a fork after activity1.  This indicates that both activity2 and activity3 are occurring at the same time.  After activity2 there is a branch.  The branch describes what activities will take place based on a set of conditions.  All branches at some point are followed by a merge to indicate the end of the conditional behavior started by that branch.   After the merge all of the parallel activities must be combined by a join before transitioning into the final activity state.   
[image: image27.jpg]Branch

Merge

Join ———»





Below is a possible activity diagram for processing an order.  The diagram shows the flow of actions in the system's workflow.  Once the order is received the activities split into two parallel sets of activities.  One side fills and sends the order while the other handles the billing.  On the Fill Order side, the method of delivery is decided conditionally.  Depending on the condition either the Overnight Delivery activity or the Regular Delivery activity is performed.  Finally the parallel activities combine to close the order.  
[image: image28.jpg]


1
Physical Diagrams


There are two types of physical diagrams: deployment diagrams and component diagrams.  Deployment diagrams show the physical relationship between hardware and software in a system.  Component diagrams show the software components of a system and how they are related to each other.  These relationships are called dependencies.
XI. When to Use: Physical Diagrams
Physical diagrams are used when development of the system is complete.  Physical diagrams are used to give descriptions of the physical information about a system.  
XII. How to Draw: Physical Diagrams
Many times the deployment and component diagrams are combined into one physical diagram.  A combined deployment and component diagram combines the features of both diagrams into one diagram.  
The deployment diagram contains nodes and connections.  A node usually represents a piece of hardware in the system.  A connection depicts the communication path used by the hardware to communicate and usually indicates a method such as TCP/IP.  
[image: image29.jpg]Connection

TcPip

Nodes





The component diagram contains components and dependencies.  Components represent the physical packaging of a module of code.  The dependencies between the components show how changes made to one component may affect the other components in the system.  Dependencies in a component diagram are represented by a dashed line between two or more components.  Component diagrams can also show the interfaces used by the components to communicate to each other. 
The combined deployment and component diagram below gives a high level physical description of the completed system.  The diagram shows two nodes which represent two machines communicating through TCP/IP.  Component2 is dependant on component1, so changes to component 2 could affect component1. The diagram also depicts component3 interfacing with component1.  This diagram gives the reader a quick overall view of the entire system.  
[image: image30.jpg]Cannection

Interface

component3
-~
Nodes
component! —
{— Components

component2





2005








