Sdurham Comments Regarding QueryAndResponseStandard[Draft]2002-08-05.doc

I have attached the copy of the document to which I am responding

[image: image1.wmf]QueryAndResponseS

tandard[Draft]2002_08_05.doc

Sub-element vs. attribute

LegalXML has a tendency to express simple quality values (numbers and text) as sub-elements rather than as attributes. I’m not sure if this was a formally adopted technical rule or just an unintended following of a model inadvertently established by some anonymous forefather. (How’s that for verbose?)

In most XML projects, when we wish to express a simple quality, such as ‘description’, rather than making a sub-element, we typically use attributes. Attributes are more concise with respect to assembling and parsing XML messages, with respect to defining schema and DTD, and with respect to raw message size.

The difference:

Sub-element Example:

<thing>

<description>blah blah</description>

</thing>

Attribute Example:

<thing description=”blah blah“/>

Unless there is a compelling reason to continue the practice of using sub-elements for simple values, I suggest we start using attributes.

query

I suggest these sub-elements be expressed as attributes:

queryName, queryDescription
parameter

I suggest these sub-elements be expressed as attributes:

‘parameterName’, ‘parameterDescription’, ‘parameterValue’, and ‘parameterDatatype’
Of parameterDatatype:

I could see an argument that ‘Datatype’ might evolve into something a bit more complex, which would require it to be a sub-element. However, just for short-term consistency, I lean towards making ‘parameterDatatype’ an attribute.

totalParameters

The ‘totalParameters’ attribute seems to be an unnecessary and redundant value when expressing queries.

The number of given parameters, or query arguments, is not all that important to the system that receives the query.

As a receiving system, I am only interested as to whether you, the submitter, gave me the arguments I am expecting. I don’t usually care that you gave me five arguments; I only care whether you gave me the specific arguments I require. Furthermore, if for some reason, the total number of arguments is important to me, I can parse and count them myself, and I probably would, rather than rely on your summary (no offense ().

responseRow
I attempted to express the following in earlier query and response comments. I am nothing, if not persistent….

I think we would be doing ourselves a huge favor if we reused the data structures that have already been defined in courtFiling, or some larger LegalXML dictionary.
The distinction between what I advocate and the current proposal is subtle.

The current proposal re-uses the LegalXML dictionary tag-names but it does not reuse the data structures that contain those tags.

The model might return ‘lastName’ and ‘firstName’ but it does not place those standard values within the standard parent element of ‘personName’.

An example:

The proposal suggests a result set for ‘GetCaseInformation’ as:

(See example 5.2.3)

<response>

<responseRow>

<fullCaseNumber>99SC09876</fullCaseNumber>

<caseTitle>Smith vs Easy Credit Agency</caseTitle>

<caseCategory>Small Claims</caseCategory>

<caseYear>1999</caseYear>

</responseRow>

<responseRow>

<fullCaseNumber>02F12345</fullCaseNumber>

<caseTitle>People vs Easy Credit Agency</caseTitle>

<caseCategory>Criminal</caseCategory>

<caseYear>2002</caseYear>

</responseRow>

</response>

I believe our overall LegalXML development will be easier and more consistent if we place the response data into the ‘caseInformation’ structure that has been defined in prior LegalXML work:

<response>

<responseRow>

<caseInformation>

<fullCaseNumber>99SC09876</fullCaseNumber>

<caseTitle>Smith vs Easy Credit Agency</caseTitle>

<caseCategory>Small Claims</caseCategory>

<caseYear>1999</caseYear>

</caseInformation>

</responseRow>

<responseRow>

<caseInformation>

<fullCaseNumber>02F12345</fullCaseNumber>

<caseTitle>People vs Easy Credit Agency</caseTitle>

<caseCategory>Criminal</caseCategory>

<caseYear>2002</caseYear>

</caseInformation>

</responseRow>

</response>

Why?

As a programmer, somewhere in my software, I will have already written the logic to parse and assemble ‘caseInformation’. (a sub-element of courtFiling) I know what caseInformation is supposed to contain, all of the data rules, and I know what those values mean.

If, instead, as currently proposed, those sub-values are defined as atomic value floating around in some ‘new’ data structure, then I am much less able to reuse my existing code. I am forced to write new query-specific code to parse and assemble fullCaseNumber, and caseTitle, and caseCategory as individual elements or as sub-elements of some ‘new’ structure.

In more complex data sets, such as actor, in which there might be complex and extended sub-elements such as address, and phone numbers… my suggested approach could save a programmer (CMS, EFSP, or otherwise) a lot of effort.

Authentication

What I believe is still absent from the query definition, is a facility to express ‘who’ is interacting with the CMS. In all system interactions, the ‘server’ should be explicitly aware of ‘who’ is initiating the interaction.
This is probably a general oversight of the LegalEnvelope/CourtFiling model which expresses this value, ‘authentication’, within filing data – ‘authentication’, should probably exist within ‘envelope’, making it required for any LegalXML message, and making it available to our query specs as well as any other LegalXML ‘body’.

Realistically, ‘authentication’ is just a placeholder or concept at this time. I don’t think we are prepared to define how ‘authentication’ can be implemented. But, even if just a placeholder, we can (and should) describe its purpose: to allow the outside system to indicate ‘who’ is requesting the data – to indicate who is responsible for initiating the message.

I see two resolutions:

1) Include ‘authentication’ as part of the proposed query specs.

2) Request that ‘authentication’ be moved from CourtFiling to the more generic ‘envelope’ element.

My feeling is that (2) would be a change consistent with the intended LegalXML 1.x envelope/body model

Privilege

I am still uneasy with the functional purposes of this value. I feel that it just isn’t appropriate for a ‘client’ to retrieve and, subsequently regurgitate privileges to a ‘server’. I keep trying to think of other systems that might mimic this approach – I can think of none. (But, I admit, I am not exactly a Yoda-like-guru of system security models.)

I understand CA’s intent when supporting the proposed model – “ let’s not ask the CMS to keep track of all system interactors “. But I think, if we were to go through various security scenarios, we’ll find that CA’s goals are not fulfilled by the proposed model and, furthermore, we may be facilitating (and, even encouraging) an insecure access model. (This is the kind of thing that Microsoft gets blasted for every week.)

I suggest we describe and mentally run through some access scenarios and see if the proposed security model succeeds or fails in meeting our respective goals.
GetActorRole

This query is confusing for me to digest and I think it is because it attempts to do double-duty.

For one thing, it is intended to get an actor’s role within a case. For another, it is intended to determine someone’s ability to access CMS data.

I see these functions as being quite distinct and I first suggest that we separate them into two queries.
With respect to the first function, of determining a person’s role within a case, I offer these comments:

· I think a more appropriate and useful query would be one to retrieve a complete LIST of parties, and roles, within a case. Something like: ‘GetActorList’ or ‘GetCaseParticipantList’ with arguments that allow us to express the case. Alternatively, I could also support enhancing ‘getCaseInformation’ to include the case’s list of participants.

At present, we have no query to review the list of case participants, which represents fundamental information for those EFSPs wishing to assist with courtFiling assembly.

With respect to the second function, of determining a person’s access rights, I offer these comments:

· The query would be more understandable if we gave it a better name. I think we should use a term such as ‘Requestor’, ‘Registrant’, or ‘Interactor’ or something… meaning that we wish to review the status of the person/system that will be/may be/is interacting with the system. “GetInteractorStatus”…’GetRequestorStatus”… something like that.

· Rather than retrieving an interactor’s privilege level, I think that we need only return an indication of the system’s recognition of the interactor. As an interactor, I need not know my specific privilege level to ascertain my ability to interact with a CMS. A simple status would seem sufficient – something allowing the system to express ‘yes, I know you and you may interact with this system’ or ‘no, I’m not about to let you have anything from this system.’ or ‘no, I don’t know you but you may get “public” data from this system.’

· The current model pre-supposes that the interactor MUST be a party of some case. The query arguments require a ‘fullCaseNumber’ and the results must return ‘role’. This is probably because of the double-duty we placed upon this query (see above).

I think a more appropriate model would be for the query to only require the interactor’s id (or ‘authentication’). I am aware that in many CMS’s, the interactor’s status will vary from case to case, and so I would support allowing the query to optionally express fullCaseNumber to get an interactor’s case specific status.
GetCourtPolicy

I have seen one of Dwight’s comments indicating that this query is included in the proposal because it has been included in the requirements document. I understand and concur with that logic

However, I stand by my prior comments that court policies are a very different beast, both functionally and technically, from the case data that our other queries are focused upon. It’s just unnecessary, and I feel, inappropriate, to lump policies into the same query model that we use to retrieve case information.
Furthermore, on the general topic of CourtPolicy, I am not yet ready to support the proposed model.

In general, it is my hope that we can develop a ‘policy’ model that is readily extendable and applicable to any system interaction, including ‘courtFiling’. I don’t think the proposed model accomplishes that goal (and, I understand, it was not intended to do so.)

I’m not yet prepared to offer an alternative model. Perhaps, Dr. Leff’s work would be an appropriate place to start. Perhaps, XML schema language, itself, will be sufficient.

An example of the difference between the given proposal and what I would like to see developed:

Instead of a model that expresses

“Here is the list of queries available at this court.”

“Here is the list of query arguments for ‘thisQuery’”

I would like the model to express:

Test 1: “If the message has XML-quality ‘query’, then the XML sub-quality of ‘queryName’ must have a value in (“thisQuery, thatQuery”).

Test 2: ”If we pass test 1, and the message has XML sub-quality of ‘queryName’ having value of ‘thisQuery’, it must further have XML sub-quality of ‘parameter’ having a value of “thisQueryArgument”…

Etc.

This is a very rough, exceptionally nebulous example of a concept I have tentatively referring to as ‘message assertions’. Rather than building an XML structure that is specifically designed (and limited) to expressing query policies… I would like our team to develop a structure that can be used to describe the restrictions/extensions of any incoming LegalXML message.

It might be said I support our development of ‘message policies’ instead of ‘query policies’.

A general model of a message assertion:

(If message has quality of this then) the message must (not) have sub-quality of that.

That’s as far as I have gotten. I know it’s pretty vague; I haven’t had time to dive into the available XML techniques for expressing assertions (XML schema and DTD are examples of this approach though).

If, perhaps, there are some folks that follow or support the direction I am leaning, we could jump on this critter together and come up with another draft. Any takers?
Sdurham Comments to QandA between Dwight Daniels and Tom Smith:

I have attached a copy of the QnA to which I am responding:

[image: image2.wmf]ATT721616.htm

3. 3.2 Response: Don't we need a way to associate a response to a given query?[DRD] Why? Are we envisioning questions being submitted but not responded to until some later date? I don't think we need this. At least I don't see any compelling reason for it.
Like Dwight, I probably would not choose to develop a query system that was asynchronous. Nevertheless, I can point out that my company, CourtLink, has quite a bit of development that implements asynchronous searches. Our customers submit searches, and we process them and notify them, via email, when the results are ready.

Even without that real world example, I would support Tom’s suggestion just under the premise of ‘best practice’.

I think it would be best practice, and consistent with RMI/RPC (remote method invocation; remote procedure calls) technologies, for a query response to have an explicit reference to the message identity of the original query. To me, an XML response should indicate to what initial message it is responding.

Again, this is something that is rather fundamental to any LegalXML transaction/result, query/response type of message. A ‘respondingToMessageIdentification’ value should probably be expressed in the LegalXML envelope, making it available to any LegalXML message.

We can either lobby to make changes to LegalXML envelope, asking for a new element to allow response messages to be associated to the original initiating messages, or we can implement a solution that is specific to our query specs.

- Shane Durham 8/16/2002

_1090827840.doc
XML Standards Development Project Electronic Court Filing Query and Response Standard [Draft]

Document Number

Current Version

August 5, 2002

Previous Version(s)

July 1, 2002

February 10, 2002

December 10, 2001

November 30, 2001

Workgroup Information

Workgroup Name: OASIS LegalXML Court Filing Technical Committee

Workgroup Co-Chairs: John Greacen, Mary Campbell McQueen

Workgroup Mailing List:

Workgroup Mailing List Archive:

Document Author(s)

Dwight R. Daniels (drdaniels@kpmg.com)

Previous Author(s)

Marty Halvorson (martyh@nmcourts.com)

Document Editor(s)

Roger Winters (Roger.Winters@metrokc.gov)

Short Statement of Status

Draft standard for approval by Technical Committee workgroup.

Abstract

This Draft Standard provides the XML DTD required for Court Filing Query and Response. It also contains a proposed subsection for the Court Policy DTD.

Status of Document

This is a Court Filing Technical Committee Draft Standard for review.

1Abstract

1Status of Document

51
Introduction

51.1
Conventions

61.2
Document Description

61.3
Assumptions and Requirements

61.4
Terminology

61.5
Date and Time Format

61.6
White Space Treatment

61.7
Extensions

72
The Document Type Definitions

72.1
Query

72.2
Response

83
Element Specification

83.1
query

83.1.1
queryName

83.1.2
queryDescription

83.1.3
privilege

93.1.4
inputParameters

103.2
response

103.2.1
responseRow

103.2.2
errorMessage

114
The Standard Queries

114.1
getActorRole

114.2
getAssociatedCases

114.3
getCaseCalendar

124.4
getCaseDocument

124.5
getCaseHistory

124.6
getCaseInformation

124.7
getCourtPolicy

134.8
Summary Table of Standard Queries

145
Examples

145.1
getActorRole

145.1.1
Court Policy Definition

165.1.2
Query

175.1.3
Response

175.2
getAssociatedCases

175.2.1
Court Policy Definition

205.2.2
Query

205.2.3
Response

215.3
getCaseCalendar

215.3.1
Court Policy Definition

225.3.2
Query

225.3.3
Response

235.4
getCaseDocument

235.4.1
Court Policy Definition

235.4.2
Query

245.4.3
Response

245.5
getCaseHistory

245.5.1
Court Policy Definition

275.5.2
Query

275.5.3
Response

285.6
getCaseInformation

285.6.1
Court Policy Definition

295.6.2
Query

295.6.3
Response

305.7
getCourtPolicy

305.7.1
Court Policy Definition

305.7.2
Query

315.7.3
Response

326
Proposed Court Policy DTD Subsection

337
Revision History

1 Introduction

This document is a Draft Standard developed by the OASIS Legal XML Court Filing Technical Committee workgroup. It is intended to describe the metadata that would be required for electronic retrieval of information available from a court that complies with this standard and to detail the structure that information would have. No information regarding the content of the information returned is included in the scope of this standard other than that which is required to accomplish the task.

The Query and Response DTD is meant to be generic and flexible. A court using it may define any query it agrees to support. It is anticipated that a court will publish the queries it supports in its Court Policy XML.
 The Court Filing Technical Committee has identified a list of standard queries that it highly recommends courts support to facilitate electronic filing.
 These queries are discussed in §4 and form the basis of the examples in §5 of this document. Additionally, §6 contains a proposed DTD for that subsection of Court Policy in which a court defines the queries it supports and the responses it returns to those queries.

This specification is the product of a consensus process. The workgroup received valuable input on many items, from participants representing multiple viewpoints. The positions and views were often not identical. When discussed items needed to be closed, this was usually done when the question “Is there anyone who cannot live with this?” met with silence. On some occasions, decisions were made based on an overwhelming majority.

1.1 Conventions

Within this document the term “shall” is used to describe mandatory items. The term “may” is used to describe optional items.

This draft standard conforms to the XML 1.0 Specification (http://www.w3.org/TR/REC-xml.html).

Courier New font is used for the Document Type Definition or portions thereof.

Ariel font is used for elements or attributes from a DTD that are when referred to in the body of the text.

“Times New Roman” font set in quotation marks and italicized is used to indicate a non-literal textual representation, e.g. of a transmitted file.

1.2 Document Description

This document includes a DTD that is to be used to validate the syntax of XML documents used to retrieve information from a court. Any annotations appearing inside the DTD, which add further definition and specification, shall be binding.

The examples provided in this document are non-normative. Where there is a conflict between an example and the DTD or the body of this document, or between the body of this document and the DTD, the DTD shall be considered normative and ruling.

1.3 Assumptions and Requirements

All assumptions and requirements from Court Filing apply.

1.4 Terminology

All terms defined in Court Filing apply.

1.5 Date and Time Format

All date and time formats from Court Filing apply.

1.6 White Space Treatment

It is often convenient to use “white space” (spaces, tabs, and blank lines) to set apart the markup for greater readability.

Court Filing Query and Response XML processors may:

1. Discard leading and trailing white space contained within any element content returned to the sender in a response message.

2. Convert strings of white space characters into a single space character (#x20) contained within any element or attribute content returned to the sender in a response message.

It is expected that Court Filing XML processors shall discard leading and trailing white space contained within any element or attribute content returned to the sender in a response message.

1.7 Extensions

Extension rules from Court Filing apply.

2 The Document Type Definitions

The Document Type Definitions that follow do not contain any content defined in Court Filing apart from the query, and response elements. In Court Filing, the query and response elements have a content model of ANY. This is a placeholder content model, and the query and response DTDs in this document can be used to replace the content model for both of these elements. The content models of both the query and response elements are structured such that they can stand on their own and hence can also be used independently of the Court Filing DTD.

2.1 Query

<!ELEMENT query (queryName, queryDescription?, privilege?, inputParameters)>

<!ELEMENT queryName (#PCDATA)>

<!ELEMENT queryDescription (#PCDATA)>

<!ELEMENT privilege EMPTY>

<!ATTLIST privilege level CDATA “public”>

<!ELEMENT inputParameters (parameter*)>

<!ATTLIST inputParameters totalParameters CDATA #REQUIRED>

<!ELEMENT parameter (parameterName, parameterDescription?, (parameterValue | parameterDatatype))>

<!ELEMENT parameterName (#PCDATA)>

<!ATTLIST parameterName required (yes | no) #IMPLIED>

<!ELEMENT parameterDescription (#PCDATA)>

<!ELEMENT parameterValue (#PCDATA)>

<!ELEMENT parameterDatatype (#PCDATA)>

2.2 Response

<!ELEMENT response (responseRow* | errorMessage)>

<!ELEMENT responseRow ANY>

<!ELEMENT errorMessage (#PCDATA)>

3 Element Specification

3.1 query

<!ELEMENT query (queryName, queryDescription?, privilege?, inputParameters)>

query provides a mechanism for submitting requests for information to a court. Within the elements available for making a query, a court may specify, in its Court Policy XML, the queries it will accept, the access level associated with those queries, required and optional input parameters, and the output information it provides.

3.1.1 queryName

<!ELEMENT queryName (#PCDATA)>

The queryName element identifies the query that is being submitted. The data submitted in the queryName element must provide an exact match of one of the supported queries listed in the court’s Court Policy XML. If an exact match is not found, an errorMessage shall be returned (see §3.2 below).

3.1.2 queryDescription

<!ELEMENT queryDescription (#PCDATA)>

The queryDescription is used to provide an explanation of the purpose of the query and what information it provides to the user. The queryDescription is intended to be human readable and should not be submitted with a query. If it is submitted, the queried application may ignore it.

3.1.3 privilege

<!ELEMENT privilege EMPTY>

<!ATTLIST privilege level CDATA “public”>

The privilige element identifies the degree of restriction placed upon the query by the court. Each court shall support, at a minimum, a “public” privilege level. The privilege level associated with a given query is specified by the court in its Court Policy XML and need not be included when submitting a query. If a privilege level is submitted with the query, the court is free to ignore it. If the person submitting the query does not have a sufficient privilege level, the query may be rejected or it may be honored, providing only information available at the person’s court-assigned privilege level.

3.1.4 inputParameters

<!ELEMENT inputParameters (parameter*)>

<!ATTLIST inputParameters totalParameters CDATA #REQUIRED>

The inputParameters element contains the parameters needed to fulfill a query. The totalParameters attribute is used to specify the total number of parameters that are being submitted with the query. If the query requires no parameters, this value will be zero. Method overloading is supported by the ability to define multiple sets of input parameters for a single query name (see examples below).

3.1.4.1 parameter

<!ELEMENT parameter (parameterName, parameterDescription?, (parameterValue | parameterDatatype))>

In a query, the parameter element is used specify the parameters being submitted with the query. Named parameters are supported by the parameterName element, and each parameter shall have a unique name in the query. Wherever possible, the parameterName should coincide with the established elements and attributes of the LegalXML data dictionary and contain the same information. The parameterDatatype element should not be included when submitting a query. It is intended for use in defining a query in Court Policy XML. If it is submitted, the queried application may ignore it.

<!ELEMENT parameterName (#PCDATA)>

<!ATTLIST parameter required (yes | no) #IMPLIED>

The parameterName element contains the name by which each parameter is known. All parameters within a query shall have unique names. The required attribute need not be included when submitting a query. It is intended for use in defining a query in Court Policy XML. If it is submitted, the queried application may ignore it.

<!ELEMENT parameterDescription (#PCDATA)>

The parameterDescription element contains provides an explanation of the nature and purpose of the parameter for presentation to the user, e.g., as a mouse over help feature or as a label next to the input field. The parameterDescription is intended to be human readable and should not be submitted with a query. If it is submitted, the queried application may ignore it.

<!ELEMENT parameterValue (#PCDATA)>

The parameterValue element contains the value of the parameter being submitted with the query.

<!ELEMENT parameterDatatype (#PCDATA)>

The parameterDatatype element specifies the data type of the parameter. This element should not be submitted with a query. It is intended for use in defining a query in Court Policy XML. If it is submitted, the queried application may ignore it.

Valid parameterDatatype values are the built-in datatypes of the XML Schema Part 2: Datatypes recommendation.

3.2 response

<!ELEMENT response (responseRow* | errorMessage)>

The response element returns information requested by a query. An empty response element shall indicate that the submitted query was successfully processed, but that no data was found when the query was executed.

3.2.1 responseRow

<!ELEMENT responseRow ANY>

The responseRow element contains the individual “rows” returned by the query.

3.2.2 errorMessage

<!ELEMENT errorMessage (#PCDATA)>

The errorMessage element is used to return information to the requestor when an error condition occurred while processing a query.

4 The Standard Queries

The Court Filing Technical Committee and its subcommittees have identified a list of standard queries that it highly recommends courts support to facilitate the electronic filing of documents. Given the differences in the data structures underlying the various case management systems utilized by courts, it is not possible to define normative input parameters and return values for the standard queries with exact precision. Different case management systems will require different input parameters to process a given query. Similarly, depending on the extent and nature of the data maintained in the different case management systems, as well as divergent court policies concerning the electronic dissemination of information, different courts may elect to return different information in response to the same query.

Nevertheless, these queries are intended to provide a degree of standardization so that practitioners will know which query to submit to obtain a desired piece of information. To accomplish this, a standard set of input parameters and response elements is defined for each of the standard queries, some of which are required and some of which are optional. Required elements have been limited to those that are inherent in the definition of the query and its purpose. Input parameters that are listed as optional in this specification may be defined as required by a given court in its Court Policy XML owing to the nature of its case management system or its policy concerning the dissemination of electronic information. Therefore, applications that support this specification must be capable of handling any and all of the input parameters and response elements listed for each of the standard queries, regardless of the specifics of a particular implementation. Courts are also free to return more information than is listed in the standard response elements. Wherever possible, the additional information should be returned using the established elements and attributes of the LegalXML data dictionary intended to convey that information.

4.1 getActorRole

The getActorRole query is used to retrieve the role of an actor involved in the specified case, e.g., a party or an attorney, and, optionally, that actor’s privilege level to view case information.

4.2 getAssociatedCases

The getAssociatedCases query is used to retrieve the fullCaseNumber and other information pertaining to the cases in which an actor is involved.

4.3 getCaseCalendar

The getCaseCalendar query is used to retrieve the events scheduled by the court regarding a case, e.g., hearing dates or submission deadlines. This will be comprised of the date, time, courtName, courtEventType and, where appropriate, courtEventReason of the event.

4.4 getCaseDocument

The getCaseDocument query is used to retrieve a single lead document and any of its attachments. The court may return the requested documentContent in a format it supports or it may choose to return only a hyperlink to the document. If the court’s practice is to supply hyperlinks, the requestor must then use the hyperlink to retrieve a copy of the document.

4.5 getCaseHistory

The getCaseHistory query is used to retrieve the contents of the case “docket,” i.e., the recorded history of actions in a particular case. Each action will entail the docketEntry and the date on which it was made, along with a courtDocumentReference, if applicable.

4.6 getCaseInformation

The getCaseInformation query is used to retrieve information about a case, e.g., the caseTitle (also known as the case’s “caption”), the caseCategory (also called case “type”), the caseYear, and/or any applicable lineageCaseNumber values.

4.7 getCourtPolicy

The getCourtPolicy query is used to retrieve the court’s Court Policy XML document.

4.8 Summary Table of Standard Queries

The following table summarizes the standard queries, their input parameters, and the corresponding responses.

		Query

		Input Parameters

		Response

		

		Element Name

		Req

		Element Name

		Req

		getActorRole

		fullCaseNumber

lastName OR entityName

firstName

middleName

		Y

Y

N

N

		role

privilege

		Y

N

		getAssociatedCases

		LastName OR entityName

firstName

middleName

		Y

N

N

		fullCaseNumber

caseTitle

caseCategory

caseYear

		Y

N

N

N

		getCaseCalendar

		fullCaseNumber

lastName OR entityName

firstName

middleName

		Y

N

N

N

N

		date

time

courtName

courtEventType

courtEventReason

		Y

Y

Y

Y

N

		getCaseDocument

		courtDocumentReference

		Y

		documentContent

		Y

		getCaseHistory

		fullCaseNumber

lastName OR entityName

firstName

middleName

		Y

N

N

N

		date

docketEntry

courtDocumentReference

		Y

Y

N

		getCaseInformation

		fullCaseNumber

lastName OR entityName

firstName

middleName

		Y

N

N

N

		fullCaseNumber

caseYear

caseTitle

caseCategory

lineageCaseNumber

filersCaseNumber

		Y

Y

N

N

N

N

		getCourtPolicy

		

		

		“Court Policy XML document”

		Y

5 Examples

In this section, an example is given for each of the standard queries. These examples are offered to illustrate the usage of the Query and Response DTD. They are not intended to be normative implementations of the standard queries. All of the examples assume that a connection has already been established and that it is therefore not necessary to specify the court to which the query will be directed.

The Court Policy Definitions of the queries are based on the Proposed Court Policy DTD Subsection provided in §6 below.

5.1 getActorRole

5.1.1 Court Policy Definition

<supportedQuery>

<query>

<queryName>getActorRole</queryName>

<queryDescription> Use this query to find out whether a person is a party to the case, an attorney, or plays some other role on the case. </queryDescription>

<privilege>public</privilege>

<queryParameters totalParameters = “3”>

<parameter>

<parameterName required = “yes”>fullCaseNumber</parameterName>

<parameterDescription> Case Number </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

<parameter>

<parameterName required = “yes”>lastName</parameterName>

<parameterDescription> Person’s Family Name </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

<parameter>

<parameterName required = “no”>firstName</parameterName>

<parameterDescription> Person’s First Name </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

</queryParameters>

</query>

<responseRecord>

<responseElement>

<elementName label = “Case Number”>fullCaseNumber</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Family Name”>lastName</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “First Name”>firstName</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Role”>role</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Security Level”>privilege</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

</responseRecord>

</supportedQuery>

<supportedQuery>

<query>

<queryName>getActorRole</queryName>

<privilege>public</privilege>

<queryParameters totalParameters = “2”>

<parameter>

<parameterName required = “yes”>fullCaseNumber</parameterName>

<parameterDatatype>string</parameterDatatype>

</parameter>

<parameter>

<parameterName required = “yes”>entityName</parameterName>

<parameterDatatype>string</parameterDatatype>

</parameter>

</queryParameters>

</query>

<responseRecord>

<responseElement>

<elementName label = “Case Number”>fullCaseNumber</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Organization”>entityName</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Role”>role</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Security Level”>privilege</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

</responseRecord>

</supportedQuery>

5.1.2 Query

<query>

<queryName>getActorRole</queryName>

<inputParameters totalParameters= “2”>

<parameter>

<parameterName>fullCaseNumber</parameterName>

<parameterValue>02F12345</parameterValue>

</parameter>

<parameter>

<parameterName>lastName</parameterName>

<parameterValue>Perkins</parameterValue>

</parameter>

</inputParameters>

</query>

5.1.3 Response

<response>

<responseRow>

<fullCaseNumber>02F12345</fullCaseNumber>

<lastName>Perkins</lastName>

<firstName>Arthur</firstName>

<role>attorney</role>

<privilege>party</privilege>

</responseRow>

<responseRow>

<fullCaseNumber>02F12345</fullCaseNumber>

<lastName>Perkins</lastName>

<firstName>Maria</firstName>

<role>judge</role>

<privilege>unlimited</privilege>

</responseRow>

</response>

5.2 getAssociatedCases

5.2.1 Court Policy Definition

<supportedQuery>

<query>

<queryName>getAssociatedCases</queryName>

<queryDescription> Use this query to get a listing of all currently active cases in which the person is involved. </queryDescription>

<privilege>public</privilege>

<queryParameters totalParameters = “3”>

<parameter>

<parameterName required = “yes”>lastName</parameterName>

<parameterDescription> Last Name </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

<parameter>

<parameterName required = “yes”>firstName</parameterName>

<parameterDescription> First Name </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

<parameter>

<parameterName required = “no”>middleName</parameterName>

<parameterDescription> Middle Name </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

</queryParameters>

</query>

<responseRecord>

<responseElement>

<elementName label = “Case Number”>fullCaseNumber</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Title”>caseTitle</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Case Type”>caseCategory</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Year Filed”>caseYear</elementName>

<elementDatatype>integer</elementDatatype>

</responseElement>

</responseRecord>

</supportedQuery>

<supportedQuery>

<query>

<queryName>getAssociatedCases</queryName>

<queryDescription> Use this query to get a list of all active cases in which the business, orgainization or agency is currently involved. </queryDescription>

<privilege>public</privilege>

<queryParameters totalParameters = “1”>

<parameter>

<parameterName required = “yes”>entityName</parameterName>

<parameterDescription> Business Name </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

</queryParameters>

</query>

<responseRecord>

<responseElement>

<elementName label = “Case Number”>fullCaseNumber</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Title”>caseTitle</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Case Type”>caseCategory</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Year Filed”>caseYear</elementName>

<elementDatatype>integer</elementDatatype>

</responseElement>

</responseRecord>

</supportedQuery>

5.2.2 Query

<query>

<queryName>getAssociatedCases</queryName>

<inputParameters totalParameters= “1”>

<parameter>

<parameterName>entityName</parameterName>

<parameterValue>Easy Credit Agency</parameterValue>

</parameter>

</inputParameters>

</query>

5.2.3 Response

<response>

<responseRow>

<fullCaseNumber>99SC09876</fullCaseNumber>

<caseTitle>Smith vs Easy Credit Agency</caseTitle>

<caseCategory>Small Claims</caseCategory>

<caseYear>1999</caseYear>

</responseRow>

<responseRow>

<fullCaseNumber>02F12345</fullCaseNumber>

<caseTitle>People vs Easy Credit Agency</caseTitle>

<caseCategory>Criminal</caseCategory>

<caseYear>2002</caseYear>

</responseRow>

</response>

5.3 getCaseCalendar

5.3.1 Court Policy Definition

<supportedQuery>

<query>

<queryName>getCaseCalendar</queryName>

<queryDescription> This query will give you a list of all hearings currently scheduled for the case. </queryDescription>

<privilege>public</privilege>

<queryParameters totalParameters = “1”>

<parameter>

<parameterName required = “yes”>fullCaseNumber</parameterName>

<parameterDescription> Case Number </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

</queryParameters>

</query>

<responseRecord>

<responseElement>

<elementName label = “Date”>date</elementName>

<elementDatatype>date</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Time”>time</elementName>

<elementDatatype>time</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Scheduled Event”>courtEventType</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Reason”>courtEventReason</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Location”>courtName</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

</responseRecord>

</supportedQuery>

5.3.2 Query

<query>

<queryName>getCaseCalendar</queryName>

<inputParameters totalParameters= “1”>

<parameter>

<parameterName>fullCaseNumber</parameterName>

<parameterValue>02F12345</parameterValue>

</parameter>

</inputParameters>

</query>

5.3.3 Response

<response>

<responseRow>

<date>20020715</date>

<time>0930</time>

<courtEventType>Pre-Trial Hearing</courtEventType>

<courtEventReason/>

<courtName>Nearby Justice Center</courtName>

</responseRow>

<responseRow>

<date>20020722</date>

<time>0930</time>

<courtEventType>Jury Trial</courtEventType>

<courtEventReason/>

<courtName>Nearby Justice Center</courtName>

</responseRow>

</response>

5.4 getCaseDocument

5.4.1 Court Policy Definition

<supportedQuery>

<query>

<queryName>getCaseDocument</queryName>

<privilege>party</privilege>

<queryParameters totalParameters = “1”>

<parameter>

<parameterName required = “yes”>

courtDocumentReference

</parameterName>

<parameterDatatype>integer</parameterDatatype>

</parameter>

</queryParameters>

</query>

<responseRecord>

<responseElement>

<elementName>documentContent</elementName>

<elementDatatype>base64Binary</elementDatatype>

<elementAttribute attributeType = “CDATA” attributeValue = “required”>

mimeType

</elementAttribute>

</responseElement>

</responseRecord>

</supportedQuery>

5.4.2 Query

<query>

<queryName>getCaseDocument</queryName>

<inputParameters totalParameters= “1”>

<parameter>

<parameterName>documentReference</parameterName>

<parameterValue>238491</parameterValue>

</parameter>

</inputParameters>

</query>

5.4.3 Response

<response>

<responseRow>

<documentContent mimeType = “application/pdf”> “a pdf document” </documentContent>

</responseRow>

</response>

5.5 getCaseHistory

5.5.1 Court Policy Definition

<supportedQuery>

<query>

<queryName>getCaseHistory</queryName>

<queryDescription> View the Case Docket </queryDescription>

<privilege>public</privilege>

<queryParameters totalParameters = “3”>

<parameter>

<parameterName required = “yes”>fullCaseNumber</parameterName>

<parameterDescription> Case Number </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

<parameter>

<parameterName required = “yes”>lastName</parameterName>

<parameterDescription> Family Name </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

<parameter>

<parameterName required = “no”>firstName</parameterName>

<parameterDescription> First Name </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

</queryParameters>

</query>

<responseRecord>

<responseElement>

<elementName label = “Date”>date</elementName>

<elementDatatype>date</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Time”>time</elementName>

<elementDatatype>time</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Case Docket”>docketEntry</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Document”>courtDocumentReference</elementName>

<elementDatatype>integer</elementDatatype>

</responseElement>

</responseRecord>

</supportedQuery>

<supportedQuery>

<query>

<queryName>getCaseHistory</queryName>

<queryDescription> View the Case Docket </queryDescription>

<privilege>public</privilege>

<queryParameters totalParameters = “2”>

<parameter>

<parameterName required = “yes”>fullCaseNumber</parameterName>

<parameterDescription> Case Number </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

<parameter>

<parameterName required = “yes”>entityName</parameterName>

<parameterDescription> Name of Business </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

</queryParameters>

</query>

<responseRecord>

<responseElement>

<elementName label = “Date”>date</elementName>

<elementDatatype>date</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Time”>time</elementName>

<elementDatatype>time</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Case Docket”>docketEntry</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Document”>courtDocumentReference</elementName>

<elementDatatype>integer</elementDatatype>

</responseElement>

</responseRecord>

</supportedQuery>

5.5.2 Query

<query>

<queryName>getCaseHistory</queryName>

<inputParameters totalParameters= “2”>

<parameter>

<parameterName>fullCaseNumber</parameterName>

<parameterValue>02F12345</parameterValue>

</parameter>

<parameter>

<parameterName>lastName</parameterName>

<parameterValue>Perkins</parameterValue>

</parameter>

</inputParameters>

</query>

5.5.3 Response

<response>

<responseRow>

<date>20020211</date>

<time/>

<docketEntry>Original Complaint filed on 02/11/2002 by the District Attorney.</docketEntry>

<courtDocumentReference/>

</responseRow>

<responseRow>

<date>20020211</date>

<time/>

<docketEntry>Richard Saggs filed as name of record.</docketEntry>

<courtDocumentReference/>

</responseRow>

<responseRow>

<date>20020211</date>

<time/>

<docketEntry>Felony charge of HS 11350 filed as count 1.</docketEntry>

<courtDocumentReference/>

</responseRow>

<responseRow>

<date>20020211</date>

<time/>

<docketEntry>Case calendered to courtroom 6 for Arraignment on 02/25/2002 at 8:30 AM.</docketEntry>

<courtDocumentReference/>

</responseRow>

</response>

5.6 getCaseInformation

5.6.1 Court Policy Definition

<supportedQuery>

<query>

<queryName>getCaseInformation</queryName>

<queryDescription> Provides information about the case. </queryDescription>

<privilege>public</privilege>

<queryParameters totalParameters = “1”>

<parameter>

<parameterName required = “yes”>fullCaseNumber</parameterName>

<parameterDescription> Case Number </parameterDescription>

<parameterDatatype>string</parameterDatatype>

</parameter>

</queryParameters>

</query>

<responseRecord>

<responseElement>

<elementName label = “Title”>caseTitle</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Case Type”>caseCategory</elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Year Filed”>caseYear</elementName>

<elementDatatype>integer</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Lower Court Case Number”>lineageCaseNumber </elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

<responseElement>

<elementName label = “Filer’s Case Number”>filersCaseNumber </elementName>

<elementDatatype>string</elementDatatype>

</responseElement>

</responseRecord>

</supportedQuery>

5.6.2 Query

<query>

<queryName>getCaseInformation</queryName>

<inputParameters totalParameters= “1”>

<parameter>

<parameterName>fullCaseNumber</parameterName>

<parameterValue>99SC09876</parameterValue>

</parameter>

</inputParameters>

</query>

5.6.3 Response

<response>

<responseRow>

<caseTitle>Smith vs Easy Credit Agency</caseTitle>

<caseCategory>Small Claims</caseCategory>

<caseYear>1999</caseYear>

<lineageCaseNumber/>

<filersCaseNumber>99-984720</filersCaseNumber>

</responseRow>

</response>

5.7 getCourtPolicy

5.7.1 Court Policy Definition

<supportedQuery>

<query>

<queryName>getCourtPolicy</queryName>

<privilege>party</privilege>

<queryParameters totalParameters = “0”/>

</query>

<responseRecord>

<responseElement>

<elementName>documentContent</elementName>

<elementDatatype>base64Binary</elementDatatype>

<elementAttribute attributeType = “CDATA” attributeValue = “required”>

mimeType

</elementAttribute>

</responseElement>

</responseRecord>

</supportedQuery>

5.7.2 Query

<query>

<queryName>getCourtPolicy</queryName>

<inputParameters totalParameters= “0”/>

</query>

5.7.3 Response

<response>

<responseRow>

<documentContent mimeType = “text/xml”> “Court Policy XML document” </documentContent>

</responseRow>

</response>

6 Proposed Court Policy DTD Subsection

<!ELEMENT supportedQueries (supportedQuery*)>

<!ELEMENT supportedQuery (query, responseRecord)>

<!ELEMENT query (queryName, queryDescription?, privilege?, queryParameters)

<!ELEMENT queryName (#PCDATA)>

<!ELEMENT queryDescription (#PCDATA)>

<!ELEMENT privilege (#PCDATA)>

<!ELEMENT queryParameters (parameter*)>

<!ATTLIST queryParameters totalParameters CDATA #REQUIRED>

<!ELEMENT parameter (parameterName, parameterDescription?, (parameterValue | parameterDatatype))>

<!ELEMENT parameterName (#PCDATA)>

<!ATTLIST parameterName required (yes | no) #IMPLIED>

<!ELEMENT parameterDescription (#PCDATA)>

<!ELEMENT parameterValue (#PCDATA)>

<!ELEMENT parameterDatatype (#PCDATA)>

<!ELEMENT responseRecord (responseElement*)>

<!ELEMENT responseElement (elementName, elementDatatype, elementAttribute*)>

<!ELEMENT elementName (#PCDATA)>

<!ATTLIST elementName label CDATA #IMPLIED>

<!ELEMENT elementDatatype (#PCDATA)>

<!ELEMENT elementAttribute (#PCDATA)>

<!ATTLIST elementAttribute attributeType CDATA #REQUIRED>

<!ATTLIST elementAttribute attributeValue (implied | required) “implied”>

7 Revision History

		Date

		Editor

		Change(s)

		1/7/02

		Dwight R. Daniels

		Major revision of entire document. Change of author to Dwight R. Daniels.

		1/24/02

		Roger Winters, Marty Halvorson

		Editing of revised document.

		1/28/02

		Dwight R. Daniels

		Incorporation of comments from 1/24/02 editing; further corrections and restructuring of document; addition of Query and Response Summary Table.

		2/10/02

		Dwight R. Daniels

		Change of eventType to courtEventType; modification of dateFilter content model. Other minor revisions and release for comment.

		7/1/02

		Dwight R. Daniels

		Fundamental change in approach and major revision of entire document.

		8/5/02

		Dwight R. Daniels

		Normalized the standard queries and placed them within their own section of the document.

� The concept of Case Management System Data Configuration XML, or CDC XML, has also been introduced into the discussion and suggested as the location where a court would define its supported queries. The relationship between CDC XML and Court Policy XML has not been finalized, but it seems likely that CDC XML will be one segment within the larger Court Policy XML. For this reason, this specification refers to Court Policy XML without thereby intending to indicate a specific, or even preferred, resolution to the issue. On CDC XML see EFM-CMS Interface Requirements, v. 7, §1.

� These are listed in EFM-CMS Interface Requirements, v. 7, §6.1, though the list is based on an earlier version of this Query and Response specification. It should be noted that the EFM-CMS Interface Requirements document is not a requirements document for the Query and Response DTD. On Query and Response, it offers “a preliminary attempt to identify predefined, or normative, queires” and refers to those that it identifies as “candidate predefined queries.” Therefore, while cognizant of the EFM-CMS Interface Requirements document, this specification does not feel obligated to adhere to all of its statements regarding Query and Response.

� A lineage case number is a previous case number. It may be used, for example, to supply the lower court case number of a case on appeal.

_1090906347/ATT721616.htm

Moria,

Here's the revised version of the QnR spec for posting and

distribution. I've also responded to Tom's comments as well. My responses

are embedded in Tom's email.

Dwight

-----Original Message-----
From: Rowley,

Moira [mailto:Moira.Rowley@acs-inc.com]
Sent: Tuesday, July 30, 2002

1:27 PM
To: 'shane.durham@lexisnexis.com'; 'steve.spohn@jud.ca.gov';

'lcoody@courtspecialists.com'; 'christopher.smith@jud.ca.gov';

'drdaniels@kpmg.com'
Subject: FW: QR Spec:

Comments

 Tom

 Smith's comments that we will discuss in email and in our next meeting.

 I will also post to the OASIS list. - Moira

 -----Original Message-----
From: T J Smith

 [mailto:TJSmith@itdecision.com]
Sent: Tuesday, July 30, 2002 3:38

 PM
To: Moira Rowley
Subject: QR Spec:

 Comments

 Here are my

 remaining comments re: the draft Q&R spec. Quoted material is from the

 spec so as to provide context. Italicized stuff is my comment. In the event it

 looks like garbage (format, not intellectual content of course) I've attached

 a version in Word.

 1.

 1.2 [bookmark: _Toc485445115][bookmark: _Toc13296972]Document

 Description: "This

 document includes a DTD that is to be used to validate the syntax of XML

 documents used to retrieve information from a court."
This document also includes Policy XML

 DTDs. Confused me for a

 bit.
[DRD] Modified document description to include a

 reference to this.

 2. 3 Element

 Specification:

 b.

 3.1.1 Query Name: Do we need version control to handle

 evolution of Q&R DTDs?[DRD] I'm not sure but I

 don't think so. I would envision most, if not all, changes being in the area

 of the so-called "standard queries," whose number may grow. But this

 would be documented in the QnR spec and would not affect the DTDs

 themselves.

 c.

 3.1.3 Privilege: "If a privilege level is submitted with

 the query, the court is free to ignore it."
No - in our model the court must be guiven the filer's privilege level to help decide if it

 should honor the query. Need to

 accomodate both models.
[DRD] Both models are accomodated. Any other

 statement forces the CA model on everyone. CA is free to insist that a court

 be given this information. However, since the court must

 first disclose this information, I personally believe this to open the

 door to major security breeches and consider this a severe defect in the

 CA model. Since Shane and I seem to be on opposite ends on many issues, I

 want to point out that I agree with him on this one, but that he and I would

 seem to be in the minority.

 d.

 3.1.4.1 Parameter: "Wherever possible,

 the parameterName should

 coincide with the established elements and attributes of the LegalXML data

 dictionary and contain the same information."
Where's that

 dictionary?
[DRD] I don't remember exactly where it is

 (though I do have a hard copy version of it), or even if it's ever been

 posted, but I'm referring to the reconciliation dictionary, which, as I

 understand it, is a living document. There also is/was a dictionary

 subgroup.

 3.

 3.2 Response: Don't we need a way to associate a

 response to a given query?[DRD] Why? Are we envisioning questions being

 submitted but not responded to until some later date? I don't think

 we need this. At least I don't see any compelling reason for

 it.

 4. 3.3.1.

 getActorRole: "The

 getActorRole query is used to retrieve the role of an actor involved in the

 case, e.g., a party or an attorney, and that actor's privilege level to view case

 information."
This presupposes

 the court modifies its CMS to track filers

 & privileges; in CA, we wish

 to require EFSPs to perform that function. Same issue as 3.1.3.[DRD] No, I don't think it

 does. It only presupposes that each CMS has some record of the parties to a

 case and the access level that is associated with their role on the

 case. Also, though I understand the reasoning behind the desire to keep

 the number of changes required of CMS vendors at a minimum, I don't think

 changes can be avoided altogether. At some point the CMS vendors are also

 going to have to step up to the plate. I also think we underestimate the

 willingness of CMS vendors to do so.

 5. 3.3.7.

 getCourtPolicy: "The getCourtPolicy query is used to retrieve

 the court's Court Policy XML document."

No - thought we'd agreed at

 one point that access to Court Policy XML should be outside the API. The API

 talks to the CMS, and the CMS knows nothing about Policy XML.[DRD] Something needs to

 know about Policy XML, whether it be a module put in front of the CMS or

 that is part of the CMS. Also, the current version of the CMS API spec lists

 getCourtPolicy as a "candidate predefined query." No official word exists

 on the "candidates" as to which were elected and which were voted

 down. In my opinion, we either honor them all or we honor none of

 them.

 6. Missing

 Queries? [DRD] The so-called "missing

 queries" are not in the current version of the CMS API spec. I refer you

 all to p. 4 n.2 of the QnR spec for my view of what the CMS API

 document constitutes.

 a.

 Filer registration functions missing: RegisterNewActor;

 InactivateActor.

 b.

 See table below.

 		

 QR

 Draft Standard 2-10-2002

 		

 QR

 Draft Standard 7-1-2002

 		

 CMS

 API

 		

 Get actor status

 (actorStatus)

 		

 GetActorRole?

 		

 GetActorStatus

 		

 Get associated case

 list for a particular actor

 (associatedCases).

 		

 GetAssociatedCases

 		

 GetCasesForActor

 		

 Get case calendar

 (caseCalendar).

 		

 getCaseCalendar

 		

 GetCalendarForCase

 		

 Get a specific case

 document, with or without any attachments

 (caseDocument).

 		

 getCaseDocument

 		

 GetDocument

 		

 Get case history

 (caseHistory).

 		

 getCaseHistory

 		

 GetCaseHistory

 		

 Get case

 information (caseInformation).

 		

 getCaseInformation

 		

 GetCaseInformation

 		

 Get court policy

 (courtPolicy).

 		

 getCourtPolicy

 		

 		

 		

 		

 GetAttorneyForParty

 		

 		

 		

 GetDocumentListForCase

 		

 		

 		

 GetMatters-ActionsOfCase

 		

 		

 		

 GetFilingFee

 		

 		

 		

 RegisterNewActor

 		

 		

 		

 InactivateActor

Tom Smith

 IT\Decision/CEFTS Program, CA

 AOC

 tjsmith@itdecision.com

 650.591.1795

 (Ofc)

 650.346.7689

 (Mobile)

 650.591.1425

 (Fax)

