Followup Discussion Items Regarding CF Blue Messaging, Security and Packaging

Date:

5/12/2004

Prepared By:
John Ruegg, LA County Information Systems Advisory Body (ISAB)

Prepared For:
OASIS CourtFiling TC – Action Item from April 28, 2004 Face-to-Face

The following questions have come up in our Court Filing Blue dialogues and were researched to see if existing standards would address any of the questions raised. Where a standard existed, the text and reference to the standard is included in the response.

This document has some lengthy reference material, so I have divided it into Section 1 w/o references and Section 2 with reference material.

SECTION 1 (Questions w/o reference material attached)

1. Where in the overall message and attachments structure are authentication, authorization and non-repudiation elements placed?

The SOAP Header

2. What elements are placed in the SOAP body?

EbXML Manifest elements which references all payloads and SOAP messaging return fields for SOAP faults etc. Line 944 of Manifest Recommends no payload data be contained in the SOAP body.

3. In what order to I sign, encrypt and encode payload(s)?

Sign, then encrypt, then encode. (note: I’d recommend MIME (base64 encoding for a “blob” Binary Large OBject) see line 1188.

4. Do you use different keys/certificates for signing, encrypting and https?

Yes, there are a number of different certificates you might employ. EbXML CPA / CPP specify a profile for communicating what security requirements a participant requires regarding encryption, secure transport, etc. For information only, following is a sample snippet from a CPA profile from the ebXML CPPA group. (A CPP/CPA is an external XML file for specifying the “Court Policy” for doing e-business with an organization.)

5. What are the steps to follow in signing ebXML messages with multiple payload(s)?

The ebMS specification has examples and a full description. Following is the Tibco step-by-step guide from their ebXML Implementation Guide

6. How does the ebMS specifications with egov extensions map to Dallas Powell legalXMLenvelope diagram?

The (Communication Layer) is equivalent to the (ebMS/e-Gov Communications Protocol Envelope) where both support multiple communication protocols.

The (5. LegalXML envelope) is equivalent to the (ebMS/e-Gov SOAP with Attachments MIME envelope). Multiple LegalXML envelope(s) would be multiple SOAP with Attachments MIME envelope(s) where ebMS supports a multiple messages transmission with an XML message number order element.

The (2. Court specific automation data) would be placed in a (ebMS/e-Gov MIME payload container)

The (1. Binary Document or 1a GJXDM Document) would be placed in a (ebMS/e-Gov MIME payload container) The Binary Document would be a multipart/related or multipart/mixed object to allow for separation of the XML document description elements and the “blob” (eg. pdf).

The (3a Digital Lock & 3. Certificate Digital Lock) are the digital signature and digital certificate of the Message Service (server) that packages the message which is equivalent to the (ebMS ds: Signature in the eb:MessageHeader and the Certificate would be in the KeyInfo portion of the ds: <Signature> element).

Also, as noted under 4.4.1 Signing of Payload, the ebMS Message Service Handler (MSH) program could sign the payload on behalf of the submitter for inclusion in the Payload Signatures of the e-gov <SecurityBlock> element but this does not mean non-repudiation of the submitter. Other payloads, like the Court specific automation data, if signed, would be included in the Security Block.

Additionally, the message senders/receivers are identified by the From: and To: elements in ebMS/eGov specification. Also, there are three service requester type roles and credentials. The service requestor roles are Principal Subject, Authorised Subject and Actioning Subject. Pages 1-20 of the ebMS / eGov specifications should be referenced for a more thorough discussion on service requestor(s) linked to the business message content versus the From: / To: sender/receiver elements and Message Service Handlers which address overall message non-repudiation and authentication at the messaging level.

7. How do I construct the payload when I have a compound document like the CF 1.1 where the lead-document may be binary (embedded with base-64 coding) and the CF envelope is XML?

MIME refers to a mixed entity as a compound document and suggests using “multipart/related” or “multipart/mixed” to divide the payload into a separate part like done in the example below with –unique-boundary-2. We would include a unique Content-Id for each MIME body-part binding the payload parts to the digital signature element in the SOAP header. The CF 1.1 XML document metadata and content description elements would be body part 1 application/xml and the “blob” would be body part 2 application/pdf or application/msword or whichever subtype was appropriate followed by a “Content-Transfer-Encoding: base64” description.

There is also a MIME Content type Message/external-body when the payload is actually located at an external location.

8. How do I embed a “flat-file” in a MIME payload?

A sample MIME multi-part example follows from the IETF RFC2387 MIME Multipart/Related Content-type publication.

9. Where do I put payment information within the eFiling?

Payment information is another payload with appropriate encryption/digital signatures applied to the payload and referenced in the egov security block and manifest. The payment would be a single and/or compound object in a payload container.

10. What if I want to compress the payloads before transmitting over the network?

There is a MIME “application/zip” media type –OR- a CPA agreement could specify –OR- the next version of ebMS v3.x is looking at a set of “payload services” schema additions which will include addressing compression.

11. What is the recommended usage of MIME types and parameters in ebMS with e-Gov extensions?

Strongly recommended that a unique (uuid or GUID) CONTENT-ID be included for every SOAP Header and payload MIME part. The SOAP MIME part should also include the starting MIME CONTENT-ID in the parameter list as shown below (lines 507-511).

12. Does the ebMS support multiple transport protocols with clear separation of ebXML messaging from transport?

Yes. SOAP and SOAP with Attachments can be transported over multiple transports including http, ftp and SMTP.

13. What media types does MIME have specified?

See RFC 1700 extract attached

SECTION 2 (Questions with reference material attached)

1. Where in the overall message and attachments structure are authentication, authorization and non-repudiation elements placed?

The SOAP Header

Reference: Message Service Specification 2.0 Page 24 of 70

1019 4.1.1 Signature Element
1020
An ebXML Message MAY be digitally signed to provide security countermeasures. Zero or more

1021
Signature elements, belonging to the XML Signature [XMLDSIG] defined namespace, MAY be present

1022
as a child of the SOAP Header. The Signature element MUST be namespace qualified in accordance

1023
with XML Signature [XMLDSIG]. The structure and content of the Signature element MUST conform to

1024
the XML Signature [XMLDSIG] specification. If there is more than one Signature element contained

1025
within the SOAP Header, the first MUST represent the digital signature of the ebXML Message as signed

1026
by the From Party MSH in conformance with section 4.1. Additional Signature elements MAY be

1027
present, but their purpose is undefined by this specification.

1028
Refer to section 4.1.3 for a detailed discussion on how to construct the Signature element when digitally

1029
signing an ebXML Message.

Reference: ebXML in eGovernment

OASIS eGovernment TC

Page 17 of 92

Validation of ebXML Messaging v0_7.doc

Last printed 26-Nov-03 11:28

4.4.1. Signing of Payload

Each payload is to be signed by the originator (actioning actor) of the payload as required. This could include the citizen, business user, business application or Government Employee. The Signature of the Payload must include the CID of the payload to ensure the binding of the signature to the correct payload. If the actioning actor cannot digitally sign the payload (for example if citizen digital signing has not been implemented within a country) then the Architectural Component that created the payload, for example the Portal, should sign the payload instead. This will allow for the end-to-end integrity of the payload, although removes the non-repudiation aspect of signing from the citizen, businesses user. As the signature of the payload also includes a reference to the PayloadID, the PayloadID must be unique with Government (see Section 4.5 - Payloads)

A possible solution to the inclusion of the payload signatures within the ebXML Message header can be:

The payload signature is included within the egXML Payload Section of the egXML Security Block that is included in the ebXML Header element.

<eg:PayloadSignitures>

<eg:PayloadSigniture URI=”cid://Payload1@egXML.gov.XY”>

<ds:Signiture>

…….

</ds:Signiture>

</eg:PayloadSigniture>

<eg:PayloadSigniture URI=”cid://Payload2@egXML.gov.XY”>

<ds:Signiture>

…….

</ds:Signiture>

</eg:PayloadSigniture>

</eg:PayloadSignitures>

The payload signatures could be included in the audit record as proof that the payload had not been tampered with during the interaction with Government.

4.4.2. Signing of Envelope

To ensure the integrity of the content and also to provide non-repudiation of the content of the envelope the ebXML Message should be digitally signed for by the Envelope creator MSH.

The envelope signature could be included in the audit record as proof that the envelope had not been tampered with during the interaction with Government.
2. What elements are placed in the SOAP body?

EbXML Manifest elements which references all payloads and SOAP messaging return fields for SOAP faults etc. Line 944 of Manifest Recommends no payload data be contained in the SOAP body.

Reference: Message Service Specification 2.0 Page 12 of 70

 [image: image1.png]Communications Protocal Envelops (KTTP, SMTF. sto)
SOAR wih Atachments MIVE snvaops
VIV Par Jessage
‘SOAP-ENV: Emvaiope Packege
SORPENV: Feacer
[Ee——

Hasder
ebiE Container
et

‘SOAP-ENV: Body.
et Maniest
et
VI Parta]

Payioss
Payoadts) %

i Containar(s)

Figure 2.1 ebXML Message Structure

 478
The SOAP Message is an XML document consisting

 479
of a SOAP Envelope element. This is the root

 480
element of the XML document representing a SOAP

 481
Message. The SOAP Envelope element consists of:

 482

One SOAP Header element. This is a generic

 483

mechanism for adding features to a SOAP

 484

Message, including ebXML specific header

 485

elements.

 486

One SOAP Body element. This is a container for

 487

message service handler control data and

 488

information related to the payload parts of the

 489

message.

Reference: OASIS ebXML Messaging Services April 2002

Message Service Specification 2.0 Page 23 of 70

.
939
3.2 Manifest Element

940
The Manifest element MAY be present as a child of the SOAP Body element. The Manifest element is

941
a composite element consisting of one or more Reference elements. Each Reference element identifies

942
payload data associated with the message, whether included as part of the message as payload

943
document(s) contained in a Payload Container, or remote resources accessible via a URL. It is

944
RECOMMENDED that no payload data be present in the SOAP Body. The purpose of the Manifest is:

945

to make it easier to directly extract a particular payload associated with this ebXML Message,

946

to allow an application to determine whether it can process the payload without having to parse it.

947
The Manifest element is comprised of the following:

948

an id attribute (see section 2.3.7 for details)

949

a version attribute (see section 2.3.8 for details)

950

one or more Reference elements

3. In what order to I sign, encrypt and encode payload(s)?

Sign, then encrypt, then encode. (note: I’d recommend MIME (base64 encoding for a “blob” Binary Large OBject) see line 1188.

Reference: Message Service Specification 2.0 Page 26 of 70

1093
Each payload object requiring signing SHALL be represented by a [XMLDSIG] Reference element that

1094
SHALL have a URI attribute resolving to the payload object. This can be either the Content-Id URI of

1095
the MIME body part of the payload object, or a URI matching the Content-Location of the MIME body part

1096
of the payload object, or a URI that resolves to a payload object external to the Message Package. It is

1097
strongly RECOMMENDED that the URI attribute value match the xlink:href URI value of the

1098
corresponding Manifest/Reference element for the payload object.

1099
Note: When a transfer encoding (e.g. base64) specified by a Content-Transfer-Encoding MIME header is used for

1100
the SOAP Envelope or payload objects, the signature generation MUST be executed before the encoding.

1183
Confidentiality for ebXML Payload Containers MAY be provided by functionality possessed by a MSH.

1184
Payload confidentiality MAY be provided by using XML Encryption (when available) or some other

1185
cryptographic process (such as S/MIME [S/MIME], [S/MIMEV3], or PGP MIME [PGP/MIME]) bilaterally

1186
agreed upon by the parties involved. The XML Encryption standard shall be the default encryption

1187
method when XML Encryption has achieved W3C Recommendation status.

1188
Note: When both signature and encryption are required of the MSH, sign first and then encrypt.

4. Do you use different keys/certificates for signing, encrypting and https?

Yes, there are a number of different certificates you might employ. EbXML CPA / CPP specify a profile for communicating what security requirements a participant requires regarding encryption, secure transport, etc. For information only, following is a sample snippet from a CPA profile from the ebXML CPPA group. (A CPP/CPA is an external XML file for specifying the “Court Policy” for doing e-business with an organization.)

Reference: Message Service Specification 2.0 Page 27 of 70

1152
4.1.4.1 Persistent Digital Signature

1153
The only available technology that can be applied to the purpose of digitally signing an ebXML Message

1154
(the ebXML SOAP Header and Body and its associated payload objects) is provided by technology that

1155
conforms to the W3C/IETF joint XML Signature specification [XMLDSIG]. An XML Signature conforming

1156
 specification can selectively sign portions of an XML document(s), permitting the documents to be

1157
augmented (new element content added) while preserving the validity of the signature(s).

1158
If signatures are being used to digitally sign an ebXML Message then XML Signature [DSIG] MUST be

1159
used to bind the ebXML SOAP Header and Body to the ebXML Payload Container(s) or data elsewhere

1160
on the web that relate to the message.

1161
An ebXML Message requiring a digital signature SHALL be signed following the process defined in this

1162
section of the specification and SHALL be in full compliance with XML Signature [XMLDSIG].

1163
4.1.4.2 Persistent Signed Receipt

1164
An ebXML Message that has been digitally signed MAY be acknowledged with an Acknowledgment

1165
Message that itself is digitally signed in the manner described in the previous section. The

1166
Acknowledgment Message MUST contain a [XMLDSIG] Reference element list consistent with those

1167
contained in the [XMLDSIG] Signature element of the original message.

1168
4.1.4.3 Non-persistent Authentication

1169
Non-persistent authentication is provided by the communications channel used to transport the ebXML

1170
Message. This authentication MAY be either in one direction or bi-directional. The specific method will be

1171
determined by the communications protocol used. For instance, the use of a secure network protocol,

1172
such as TLS [RFC2246] or IPSEC [RFC2402] provides the sender of an ebXML Message with a way to

1173
authenticate the destination for the TCP/IP environment.

1174
4.1.4.4 Non-persistent Integrity

1175
A secure network protocol such as TLS [RFC2246] or IPSEC [RFC2402] MAY be configured to provide

1176
for digests and comparisons of the packets transmitted via the network connection.

1177
4.1.4.5 Persistent Confidentiality

1178
XML Encryption is a W3C/IETF joint activity actively engaged in the drafting of a specification for the

1179
selective encryption of an XML document(s). It is anticipated that this specification will be completed

1180
within the next year. The ebXML Transport, Routing and Packaging team for v1.0 of this specification

1181
has identified this technology as the only viable means of providing persistent, selective confidentiality of

1182
elements within an ebXML Message including the SOAP Header.

1183
Confidentiality for ebXML Payload Containers MAY be provided by functionality possessed by a MSH.

1184
Payload confidentiality MAY be provided by using XML Encryption (when available) or some other

1185
cryptographic process (such as S/MIME [S/MIME], [S/MIMEV3], or PGP MIME [PGP/MIME]) bilaterally

1186
agreed upon by the parties involved. The XML Encryption standard shall be the default encryption

1187
method when XML Encryption has achieved W3C Recommendation status.

1188
Note: When both signature and encryption are required of the MSH, sign first and then encrypt.

1189
4.1.4.6 Non-persistent Confidentiality

1190
A secure network protocol, such as TLS [RFC2246] or IPSEC [RFC2402], provides transient

1191
confidentiality of a message as it is transferred between two ebXML adjacent MSH nodes.

1192
4.1.4.7 Persistent Authorization

1193
The OASIS Security Services Technical Committee (TC) is actively engaged in the definition of a

1194
specification that provides for the exchange of security credentials, including Name Assertion and

1195
Entitlements, based on Security Assertion Markup Language [SAML]. Use of technology based on this

1196
anticipated specification may provide persistent authorization for an ebXML Message once it becomes

1197
available.

1198
4.1.4.8 Non-persistent Authorization

1199
A secure network protocol such as TLS [RFC2246] or IPSEC [RFC2402] MAY be configured to provide

1200
for bilateral authentication of certificates prior to establishing a session. This provides for the ability for an

1201
ebXML MSH to authenticate the source of a connection and to recognize the source as an authorized

1202
source of ebXML Messages.

Reference: Collaboration-Protocol Profile and Agreement Specification Page 104 of 156 (lines 4721-4827) Copyright © OASIS, 2002. All Rights Reserved

<tp:BusinessTransactionCharacteristics

tp:isNonRepudiationRequired="true"

tp:isNonRepudiationReceiptRequired="true"

tp:isConfidential="transient"

tp:isAuthenticated="persistent"

tp:isTamperProof="persistent"

tp:isAuthorizationRequired="true"/>

……

<!-- Certificates used by the "Buyer" company -->

<tp:Certificate tp:certId="CompanyA_AppCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_AppCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId="CompanyA_SigningCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_SigningCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId="CompanyA_EncryptionCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_EncryptionCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId="CompanyA_ServerCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_ServerCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId="CompanyA_ClientCert">

<ds:KeyInfo>

<ds:KeyName>CompanyA_ClientCert_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId="TrustedRootCertA1">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA1_Key </ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId="TrustedRootCertA2">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA2_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId="TrustedRootCertA3">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA3_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId="TrustedRootCertA4">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA4_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:Certificate tp:certId="TrustedRootCertA5">

<ds:KeyInfo>

<ds:KeyName>TrustedRootCertA5_Key</ds:KeyName>

</ds:KeyInfo>

</tp:Certificate>

<tp:SecurityDetails tp:securityId="CompanyA_TransportSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef tp:certId="TrustedRootCertA1"/>

<tp:AnchorCertificateRef tp:certId="TrustedRootCertA2"/>

<tp:AnchorCertificateRef tp:certId="TrustedRootCertA4"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<tp:SecurityDetails tp:securityId="CompanyA_MessageSecurity">

<tp:TrustAnchors>

<tp:AnchorCertificateRef tp:certId="TrustedRootCertA3"/>

<tp:AnchorCertificateRef tp:certId="TrustedRootCertA5"/>

</tp:TrustAnchors>

</tp:SecurityDetails>

<tp:DeliveryChannel tp:channelId="asyncChannelA1" tp:transportId="transportA1" tp:docExchangeId="docExchangeA1">

<tp:MessagingCharacteristics tp:syncReplyMode="none" tp:ackRequested="always" tp:ackSignatureRequested="always" tp:duplicateElimination="always"/>
</tp:DeliveryChannel>

<tp:DeliveryChannel tp:channelId="syncChannelA1" tp:transportId="transportA2" tp:docExchangeId="docExchangeA1">

<tp:MessagingCharacteristics tp:syncReplyMode="signalsAndResponse" tp:ackRequested="always" tp:ackSignatureRequested="always" tp:duplicateElimination="always"/>

</tp:DeliveryChannel>

<tp:Transport tp:transportId="transportA1">

<tp:TransportSender>

<tp:TransportProtocol tp:version="1.1">HTTP</tp:TransportProtocol> <tp:AccessAuthentication>basic</tp:AccessAuthentication>

<tp:TransportClientSecurity>

<tp:TransportSecurityProtocol tp:version="3.0">SSL</tp:TransportSecurityProtocol> <tp:ClientCertificateRef tp:certId="CompanyA_ClientCert"/>

<tp:ServerSecurityDetailsRef tp:securityId="CompanyA_TransportSecurity"/> </tp:TransportClientSecurity>

</tp:TransportSender>
5. What are the steps to follow in signing ebXML messages with multiple payload(s)?

The ebMS specification has examples and a full description. Following is the Tibco step-by-step guide from their ebXML Implementation Guide

Reference: LAST SAVED ON 7/18/2003 4:00 PM PAGE 13 OF 19
TIBCO PROPRIETARY AND CONFIDENTIAL (note: On OASIS ebXML public documents site)
15. Signing & Verifying ebXML Messages

15.1. Generating the Signature element

1) Build the SOAP:Header without the ds:Signature element.

2) Build the SOAP:Body with Manifest if you have any payloads. (Assuming content-ids required by

the Manifest are either pre-assigned or the MIME is built already.)

3) Build the SOAP envelope document based on the SOAP:Header and SOAP:Body that you built

earlier in steps 1 and 2.

4) If required compute message digest on the SOAP envelope document generated in step 3. The

output should be something like the following. Note that some output needs to be dictated by the

input. These are:

URI value (in this case, it is empty string)

There MUST be a single Transforms element which contains three Transform elements.

First Transform must have an Algorithm value of:

http://www.w3.org/2000/09/xmldsig#enveloped-signature

Second Transform MUST have an Algorithm value as shown below.

Third Transform element MUST have an Algorithm value of:

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

<Reference URI="">

<Transforms>

<Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-

19991116">

<XPath> not(ancestor-orself::*[@

SOAP:actor="urn:oasis:names:tc:ebxml
msg:service:nextMSH"] | ancestor-orself::*[@

SOAP:actor="http://schemas.xmlsoap.org/soap/actor/next"]

)

</XPath>

</Transform>

<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>...</ds:DigestValue>

</Reference>

5) Compute message digest(s) on the payload(s) that require signature. Note that some output needs

to be dictated by the input. These are:

URI value (in this case, it is ‘cid:123456789’. It is essentially the same value as used in the

xlink:href attribute of Manifest/Referece element.)

<Reference URI="cid:123456789">

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>345x3rvEPO0vKtMup4NbeVu8nk=</DigestValue>

</Reference>

6) Repeat step 5 if there are multiple payloads that require to be included in the signature.

7) Create CanonicalizationMethod element. Set attribute Algorithm to

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

8) Create SignatureMethod element. Set attribute Algorithm to

http://www.w3.org/2000/09/xmldsig#dsa-sha1

9) Create SignedInfo element based on data generated in steps 4-8.

10) Canonicalize SignedInfo generated in step 9

11) Create SignatureValue element with value based signature generated from the canonicalized

SignedInfo in step 10.

12) Create Signature element based on SignedInfo from step 9 and SigantureValue from step 11.

13) Include Signature element generated in step 12 in the SOAP:Header.

Note that white spaces contained in the SOAP envelope MUST be preserved between time of signing and

time of dispatching to trading partners.
Reference: ebMS Version 2.0

1045
4.1.3 Signature Generation
1046
An ebXML Message is signed using [XMLDSIG] following these steps:

1047
1) Create a SignedInfo element with SignatureMethod, CanonicalizationMethod and Reference

1048
elements for the SOAP Envelope and any required payload objects, as prescribed by XML

1049
Signature [XMLDSIG].

1050
2) Canonicalize and then calculate the SignatureValue over SignedInfo based on algorithms

1051
specified in SignedInfo as specified in XML Signature [XMLDSIG].

1052
3) Construct the Signature element that includes the SignedInfo, KeyInfo (RECOMMENDED) and

1053
SignatureValue elements as specified in XML Signature [XMLDSIG].

1054
4) Include the namespace qualified Signature element in the SOAP Header just signed.

1055
The SignedInfo element SHALL have a CanonicalizationMethod element, a SignatureMethod element

1056
and one or more Reference elements, as defined in XML Signature [XMLDSIG].

1057
The RECOMMENDED canonicalization method applied to the data to be signed is

1058
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

1059
described in [XMLC14N]. This algorithm excludes comments.

1060
The SignatureMethod element SHALL be present and SHALL have an Algorithm attribute. The

1061
RECOMMENDED value for the Algorithm attribute is:

1062
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

1063
This RECOMMENDED value SHALL be supported by all compliant ebXML Message Service software

1064
implementations.

1065
The [XMLDSIG] Reference element for the SOAP Envelope document SHALL have a URI attribute

1066
value of "" to provide for the signature to be applied to the document that contains the Signature element.

1067
The [XMLDSIG] Reference element for the SOAP Envelope MAY include a Type attribute that has a

1068
value "http://www.w3.org/2000/09/xmldsig#Object" in accordance with XML Signature [XMLDSIG]. This

1069
attribute is purely informative. It MAY be omitted. Implementations of the ebXML MSH SHALL be

1070
prepared to handle either case. The Reference element MAY include the id attribute.

1071
The [XMLDSIG] Reference element for the SOAP Envelope SHALL include a child Transforms

1072
element. The Transforms element SHALL include the following Transform child elements.

1073
The first Transform element has an Algorithm attribute with a value of:

1074
<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

OASIS ebXML Messaging Services April 2002

Message Service Specification 2.0 Page 26 of 70

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

1075
The result of this statement excludes the parent Signature element and all its descendants.

1076
The second Transform element has a child XPath element that has a value of:

1077
<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">

1078
<XPath> not (ancestor-or-self::node()[@SOAP:actor="urn:oasis:names:tc:ebxml-msg:actor:nextMSH"] |

1079
ancestor-or-self::node()[@SOAP:actor="http://schemas.xmlsoap.org/soap/actor/next"])

1080
</XPath>

1081
</Transform>

1082
The result of this [XPath] statement excludes all elements within the SOAP Envelope which contain a

1083
SOAP:actor attribute targeting the nextMSH, and all their descendants. It also excludes all elements

1084
with actor attributes targeting the element at the next node (which may change en route). Any

1085
intermediate node or MSH MUST NOT change, format or in any way modify any element not targeted to

1086
the intermediary. Intermediate nodes MUST NOT add or delete white space. Any such change may

1087
invalidate the signature.

1088
The last Transform element SHOULD have an Algorithm attribute with a value of:

1089
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

1090
The result of this algorithm is to canonicalize the SOAP Envelope XML and exclude comments.

1091
Note: These transforms are intended for the SOAP Envelope and its contents. These transforms are NOT intended

1092
for the payload objects. The determination of appropriate transforms for each payload is left to the implementation.

1093
Each payload object requiring signing SHALL be represented by a [XMLDSIG] Reference element that

1094
SHALL have a URI attribute resolving to the payload object. This can be either the Content-Id URI of

1095
the MIME body part of the payload object, or a URI matching the Content-Location of the MIME body part

1096
of the payload object, or a URI that resolves to a payload object external to the Message Package. It is

1097
strongly RECOMMENDED that the URI attribute value match the xlink:href URI value of the

1098
corresponding Manifest/Reference element for the payload object.

1099
Note: When a transfer encoding (e.g. base64) specified by a Content-Transfer-Encoding MIME header is used for

1100
the SOAP Envelope or payload objects, the signature generation MUST be executed before the encoding.

1101Example of digitally signed ebXML SOAP Message:

1102<?xml version="1.0" encoding="utf-8"?>

1103<SOAP:Envelope xmlns:xlink="http://www.w3.org/1999/xlink"

1104xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

1105xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd"

1106xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

1107xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

1108http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd

1109http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

1110http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

1111<SOAP:Header>

1112<eb:MessageHeader eb:id="..." eb:version="2.0" SOAP:mustUnderstand="1">

1113...

1114</eb:MessageHeader>

1115<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

1116<SignedInfo>

1117<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

1118<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

1119<Reference URI="">

1120<Transforms>

1121<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

1122<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">

1123<XPath> not(ancestor-or-self::node()[@SOAP:actor=

1124"urn:oasis:names:tc:ebxml-msg:actor:nextMSH"]

1125| ancestor-or-self::node()[@SOAP:actor=

1126"http://schemas.xmlsoap.org/soap/actor/next"])

1127</XPath>

1128</Transform>

1129<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

1130</Transforms>

1131<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

OASIS ebXML Messaging Services April 2002

Message Service Specification 2.0 Page 27 of 70

Copyright (C) The Organization for the Advancement of Structured Information Standards [OASIS], 2002. All Rights Reserved.

1132<DigestValue>...</DigestValue>

1133</Reference>

1134<Reference URI="cid://blahblahblah/">

1135<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

1136<DigestValue>...</DigestValue>

1137</Reference>

1138</SignedInfo>

1139<SignatureValue>...</SignatureValue>

1140<KeyInfo>...</KeyInfo>

1141</Signature>

1142</SOAP:Header>

1143<SOAP:Body>

1144<eb:Manifest eb:id="Mani01" eb:version="2.0">

1145<eb:Reference xlink:href="cid://blahblahblah/" xlink:role="http://ebxml.org/gci/invoice">

1146<eb:Schema eb:version="2.0" eb:location="http://ebxml.org/gci/busdocs/invoice.dtd"/>

1147</eb:Reference>

1148</eb:Manifest>

1149</SOAP:Body>

1150</SOAP:Envelope>

6. How does the ebMS specifications with egov extensions map to Dallas Powell legalXMLenvelope diagram?

The (Communication Layer) is equivalent to the (ebMS/e-Gov Communications Protocol Envelope) where both support multiple communication protocols.

The (5. LegalXML envelope) is equivalent to the (ebMS/e-Gov SOAP with Attachments MIME envelope). Multiple LegalXML envelope(s) would be multiple SOAP with Attachments MIME envelope(s) where ebMS supports a multiple messages transmission with an XML message number order element.

The (2. Court specific automation data) would be placed in a (ebMS/e-Gov MIME payload container)

The (1. Binary Document or 1a GJXDM Document) would be placed in a (ebMS/e-Gov MIME payload container) The Binary Document would be a multipart/related or multipart/mixed object to allow for separation of the XML document description elements and the “blob” (eg. pdf).

The (3a Digital Lock & 3. Certificate Digital Lock) are the digital signature and digital certificate of the Message Service (server) that packages the message which is equivalent to the (ebMS ds: Signature in the eb:MessageHeader and the Certificate would be in the KeyInfo portion of the ds: <Signature> element).

Also, as noted under 4.4.1 Signing of Payload, the ebMS Message Service Handler (MSH) program could sign the payload on behalf of the submitter for inclusion in the Payload Signatures of the e-gov <SecurityBlock> element but this does not mean non-repudiation of the submitter. Other payloads, like the Court specific automation data, if signed, would be included in the Security Block.

Additionally, the message senders/receivers are identified by the From: and To: elements in ebMS/eGov specification. Also, there are three service requester type roles and credentials. The service requestor roles are Principal Subject, Authorised Subject and Actioning Subject. Pages 1-20 of the ebMS / eGov specifications should be referenced for a more thorough discussion on service requestor(s) linked to the business message content versus the From: / To: sender/receiver elements and Message Service Handlers which address overall message non-repudiation and authentication at the messaging level.

Reference: Dallas Powell discussion on CourtFiling Blue

Here is a diagram of the concepts that I would like to see. These concepts create a tug-of-war when we begin to discuss the envelope and what communication standards we are going to use.

[image: image2.wmf]5. LegalXML envelope

3. Certificate Digital Lock

3a. Digital Lock

4. Certificate for Signature A

4a. Digital Signature for A

Communication Layer

2. Court specific automation data

1. Binary Document

1a. GJXDM Document

5. LegalXML envelope

The digital lock is a digital signature, but not from an individual but the server that packaged and sent the envelope. The software (in many cases the EFSP) would use a certificate on the server to sign the envelope and include the certificate. This lock creates document integrity which extends beyond the transmission period. If the LegalXML envelope is stored, with the digital lock, then at any time in the future the documents that were extracted from the envelope can be tested for integrity. This does not mean there is non-repudiation for the submitter.

Reference: OASIS ebXML in eGovernment
4.4.1. Signing of Payload

Each payload is to be signed by the originator (actioning actor) of the payload as required. This could include

the citizen, business user, business application or Government Employee. The Signature of the Payload must

include the CID of the payload to ensure the binding of the signature to the correct payload. If the actioning

ebXML in eGovernment

OASIS eGovernment TC

Page 17 of 92

Validation of ebXML Messaging v0_7.doc

Last printed 26-Nov-03 11:28

actor cannot digitally sign the payload (for example if citizen digital signing has not been implemented within a

country) then the Architectural Component that created the payload, for example the Portal, should sign the

payload instead. This will allow for the end-to-end integrity of the payload, although removes the non-repudiation

aspect of signing from the citizen, businesses user.
4.2.1. From and To Elements

The ebXML MS From and To elements must uniquely identify the originator and recipient of the message envelope

and its contents. The originator and recipient that are identified by the From and To elements are the ebXML MS

envelope creator and consumer parties rather than the subjects requesting the service.

To Pattern matching approach can be used ensure that the PartyId element within the From and To Elements is

Globally unique across the who of Government anywhere in the world, to facilitate routing of Messages between

different National Governments, and still allow each individual Government a degree of freedom of how it

allocated identifiers within the their own administration.

An initial Pattern for the PartyId could be:

CountryCode - Country Specified Unique Organisation Identifier

The Role element within the From and To elements can be used to provide more information about the Parties

identified within the From and To elements, and the roles and responsibilities that the Party must adopt as laid

down in a Generic Government CPA. An initial list of roles would include all the architectural elements within

Government Messaging, as well as an indicator of if they were acting as a Government Service Requestor,

Provider or Intermediary.
[image: image3.png]4.6. ebAML Message structure for e-Government Communication

Communications Protocal Envelope (HTTP, SMTP, etc)

SOAP with Attachments MIME envelope

MIME Part

SOAP-ENV: Envelope

SOAP-ENV: Header

eb: MessageHeader

eg:SecurityBlock

eg:PayloadSignatures.
eg:PayloadSignature

ds:Signature

eg:PayloadSignature

ds:Signature

ds:Signature

SOAP-ENV: Body

eb:Manifest

MIME Part(s)

Payload

Payload

7. How do I construct the payload when I have a compound document like the CF 1.1 where the lead-document may be binary (embedded with base-64 coding) and the CF envelope is XML?

MIME refers to a mixed entity as a compound document and suggests using “multipart/related” or “multipart/mixed” to divide the payload into a separate part like done in the example below with –unique-boundary-2. We would include a unique Content-Id for each MIME body-part binding the payload parts to the digital signature element in the SOAP header. The CF 1.1 XML document metadata and content description elements would be body part 1 application/xml and the “blob” would be body part 2 application/pdf or application/msword or whichever subtype was appropriate followed by a “Content-Transfer-Encoding: base64” description.

There is also a MIME Content type Message/external-body when the payload is actually located at an external location.

Reference: Appendix A - RFC 2045 “Multipurpose Internet Mail Extensions

(MIME) Part One:

Format of Internet Message Bodies”
Subject: A multipart example

Content-Type: multipart/mixed;

boundary=unique-boundary-1

This is the preamble area of a multipart message.

Mail readers that understand multipart format

should ignore this preamble.

If you are reading this text, you might want to

consider changing to a mail reader that understands

how to properly display multipart messages.

--unique-boundary-1

... Some text appears here ...

[Note that the blank between the boundary and the start

of the text in this part means no header fields were

given and this is text in the US-ASCII character set.

It could have been done with explicit typing as in the

next part.]

--unique-boundary-1

Content-type: text/plain; charset=US-ASCII

This could have been part of the previous part, but

illustrates explicit versus implicit typing of body

parts.

--unique-boundary-1

Content-Type: multipart/parallel; boundary=unique-boundary-2

--unique-boundary-2

Content-Type: audio/basic

Content-Transfer-Encoding: base64

... base64-encoded 8000 Hz single-channel

mu-law-format audio data goes here ...

--unique-boundary-2

Content-Type: image/jpeg

Content-Transfer-Encoding: base64

... base64-encoded image data goes here ...

--unique-boundary-2--

--unique-boundary-
8. How do I embed a “flat-file” in a MIME payload?

A sample MIME multi-part example follows from the IETF RFC2387 MIME Multipart/Related Content-type publication.

Reference: page 4

RFC 2387 Multipart/Related August 1998

5.1 Application/X-FixedRecord

 The X-FixedRecord content-type consists of one or more octet-streams

 and a list of the lengths of each record. The root, which lists the

 record lengths of each record within the streams. The record length

 list, type Application/X-FixedRecord, consists of a set of INTEGERs

 in ASCII format, one per line. Each INTEGER gives the number of

 octets from the octet-stream body part that constitute the next

 "record".

 The example below, uses a single data block.

 Content-Type: Multipart/Related; boundary=example-1

 start="<950120.aaCC@XIson.com>";

 type="Application/X-FixedRecord"

 start-info="-o ps"

 --example-1

 Content-Type: Application/X-FixedRecord

 Content-ID: <950120.aaCC@XIson.com>

 25

 10

 34

 10

 25

 21

 26

 10

 --example-1

 Content-Type: Application/octet-stream

 Content-Description: The fixed length records

 Content-Transfer-Encoding: base64

 Content-ID: <950120.aaCB@XIson.com>

 T2xkIE1hY0RvbmFsZCBoYWQgYSBmYXJtCkUgSS

 BFIEkgTwpBbmQgb24gaGlzIGZhcm0gaGUgaGFk

 IHNvbWUgZHVja3MKRSBJIEUgSSBPCldpdGggYS

 BxdWFjayBxdWFjayBoZXJlLAphIHF1YWNrIHF1

 YWNrIHRoZXJlLApldmVyeSB3aGVyZSBhIHF1YW

 NrIHF1YWNrCkUgSSBFIEkgTwo=

 --example-1--

Levinson Standards Track [Page 5]

9. Where do I put payment information within the eFiling?

Payment information is another payload with appropriate encryption/digital signatures applied to the payload and referenced in the egov security block and manifest. The payment would be a single and/or compound object in a payload container.

10. What if I want to compress the payloads before transmitting over the network?

There is a MIME “application/zip” media type –OR- a CPA agreement could specify –OR- the next version of ebMS v3.x is looking at a set of “payload services” schema additions which will include addressing compression.

11. What is the recommended usage of MIME types and parameters in ebMS with e-Gov extensions?

Strongly recommended that a unique (uuid or GUID) CONTENT-ID be included for every SOAP Header and payload MIME part. The SOAP MIME part should also include the starting MIME CONTENT-ID in the parameter list as shown below (lines 507-511).

Reference:Message Service Specification 2.0 Page 14 of 70

496
2.1.2 Message Package

497
All MIME header elements of the Message Package are in conformance with the SOAP Messages with

498
Attachments [SOAPAttach] specification. In addition, the Content-Type MIME header in the Message

499
Package contain a type attribute matching the MIME media type of the MIME body part containing the

500
SOAP Message document. In accordance with the [SOAP] specification, the MIME media type of the

501
SOAP Message has the value "text/xml".

502
It is strongly RECOMMENDED the initial headers contain a Content-ID MIME header structured in

503
accordance with MIME [RFC2045], and in addition to the required parameters for the Multipart/Related

504
media type, the start parameter (OPTIONAL in MIME Multipart/Related [RFC2387]) always be present.

505
This permits more robust error detection. The following fragment is an example of the MIME headers for

506
the multipart/related Message Package:

507
Content-Type: multipart/related; type="text/xml"; boundary="boundaryValue";

508
start=messagepackage-123@example.com

509

510
--boundaryValue

511
Content-ID: <messagepackage-123@example.com>

512
Implementations MUST support non-multipart messages, which may occur when there are no ebXML

513
payloads. An ebXML message with no payload may be sent either as a plain SOAP message or as a

514
[SOAPAttach] multipart message with only one body part.

12. Does the ebMS support multiple transport protocols with clear separation of ebXML messaging from transport?

Yes. SOAP and SOAP with Attachments can be transported over multiple transports including http, ftp and SMTP.

Reference figure: Message Service Specification 2.0 Page 10 of 70

[image: image4.png]ebXML Application

Authentication, Authorization
and
Non-Repudiation services

i

Header Processing

1

Encryption
and/or
Digital

Signatures

Error Handling

Message Packaging

1

Delivery Module
Send/Receive
Transport mapping and
binding

Figure 1.1 Typical Relationship
between ebXML Message Service
Handler Components

13. What media types does MIME have specified?

See RFC 1700 extract attached

Reference: RFC 1700 – MIME types/subtypes

MEDIA TYPES

[RFC1521] specifies that Content Types, Content Subtypes, Character

Sets, Access Types, and Conversion values for MIME mail will be

assigned and listed by the IANA.

Content Types and Subtypes

Type Subtype Description
Reference

---- -------

text plain

[RFC1521,NSB]

 richtext

[RFC1521,NSB]

 tab-separated-values [
Paul Lindner]

multipart mixed

[RFC1521,NSB]

 alternative

[RFC1521,NSB]

 digest

[RFC1521,NSB]

 parallel

[RFC1521,NSB]

 appledouble

[MacMime,Patrik Faltstrom]

 header-set
[Dave Crocker]

message rfc822

[RFC1521,NSB]

 partial

[RFC1521,NSB]

 external-body
[RFC1521,NSB]

 news

[RFC 1036, Henry Spencer]

application octet-stream
[RFC1521,NSB]

 postscript

[RFC1521,NSB]

 oda

[RFC1521,NSB]

 atomicmail

[atomicmail,NSB]

 andrew-inset

[andrew-inset,NSB]

 slate

[slate,terry crowley]

 wita

[Wang Info Transfer,Larry Campbell]

 dec-dx

[Digital Doc Trans, Larry Campbell]

 dca-rft

[IBM Doc Content Arch, Larry Campbell]

 activemessage
[Ehud Shapiro]

 rtf

[Paul Lindner]

 applefile

[MacMime,Patrik Faltstrom]

 mac-binhex40

[MacMime,Patrik Faltstrom]

 news-message-id

[RFC1036, Henry Spencer]

 news-transmission

[RFC1036, Henry Spencer]

 wordperfect5.1
[Paul Lindner]

 pdf

[Paul Lindner]

 zip

[Paul Lindner]

 macwriteii

[Paul Lindner]

 msword

[Paul Lindner]

 remote-printing
[RFC1486,MTR]

image jpeg

[RFC1521,NSB]

 gif

[RFC1521,NSB]

 ief Image Exchange Format
[RFC1314]

 tiff Tag Image File Format
[MTR]

audio basic

[RFC1521,NSB]

video mpeg

[RFC1521,NSB]

 quicktime

[Paul Lindner]

The "media-types" directory contains a subdirectory for each content

type and each of those directories contains a file for each content

subtype.

 |-application-

 |-audio-------

 |-image-------

 |-media-types-|-message-----

 |-multipart---

 |-text--------

 |-video-------

 URL = ftp://ftp.isi.edu/in-notes/iana/assignments/media-types
Character Sets

All of the character sets listed the section on Character Sets are

registered for use with MIME as MIME Character Sets. The

correspondance between the few character sets listed in the MIME

specification [RFC1521] and the list in that section are:

Type

Description Reference

----------- ---------

US-ASCII see ANSI_X3.4-1968 below [RFC1521,NSB]

ISO-8859-1 see ISO_8859-1:1987 below [RFC1521,NSB]

ISO-8859-2 see ISO_8859-2:1987 below [RFC1521,NSB]

ISO-8859-3 see ISO_8859-3:1988 below [RFC1521,NSB]

ISO-8859-4 see ISO_8859-4:1988 below [RFC1521,NSB]

ISO-8859-5 see ISO_8859-5:1988 below [RFC1521,NSB]

ISO-8859-6 see ISO_8859-6:1987 below [RFC1521,NSB]

ISO-8859-7 see ISO_8859-7:1987 below [RFC1521,NSB]

ISO-8859-8 see ISO_8859-8:1988 below [RFC1521,NSB]

ISO-8859-9 see ISO_8859-9:1989 below [RFC1521,NSB]

Access Types

Type Description Reference

----------- ---------

FTP
[RFC1521,NSB]

ANON-FTP [RFC1521,NSB]

TFTP [RFC1521,NSB]

AFS [RFC1521,NSB]

LOCAL-FILE [RFC1521,NSB]

MAIL-SERVER [RFC1521,NSB]

Conversion Values

Conversion values or Content Transfer Encodings.

Type Description Reference

----------- ---------

7BIT [RFC1521,NSB]

8BIT [RFC1521,NSB]

BASE64 [RFC1521,NSB]

BINARY [RFC1521,NSB]

QUOTED-PRINTABLE [RFC1521,NSB]

MIME / X.400 MAPPING TABLES

MIME to X.400 Table

 MIME content-type
X.400 Body Part

Reference

 text/plain

 charset=us-ascii

ia5-text

[RFC1494]

 charset=iso-8859-x

EBP - GeneralText

[RFC1494]

 text/richtext

no mapping defined

[RFC1494]

 application/oda

EBP - ODA

[RFC1494]

 application/octet-stream
bilaterally-defined

[RFC1494]

 application/postscript

EBP - mime-postscript-body
[RFC1494]

 image/g3fax

g3-facsimile

[RFC1494]

 image/jpeg

EBP - mime-jpeg-body
[RFC1494]

 image/gif

EBP - mime-gif-body
[RFC1494]

 audio/basic

no mapping defined
[RFC1494]

 video/mpeg

no mapping defined
[RFC1494]

 Abbreviation: EBP - Extended Body Part

X.400 to MIME Table

 Basic Body Parts

 X.400 Basic Body Part
MIME content-type

Reference

 ia5-text

text/plain;charset=us-ascii
[RFC1494]

 voice

No Mapping Defined
[RFC1494]

 g3-facsimile

image/g3fax

[RFC1494]

 g4-class1

no mapping defined
[RFC1494]

 teletex

no mapping defined
[RFC1494]

 videotex

no mapping defined
[RFC1494]

 encrypted

no mapping defined
[RFC1494]

 bilaterally-defined

application/octet-stream
[RFC1494]

 nationally-defined
no mapping defined
[RFC1494]

 externally-defined
See Extended Body Parts
[RFC1494]

 X.400 Extended Body Part
MIME content-type
Reference

 GeneralText

text/plain;charset=iso-8859-x
[RFC1494]

 ODA

application/oda

[RFC1494]

 mime-postscript-body
application/postscript

[RFC1494]

 mime-jpeg-body
image/jpeg

[RFC1494]

 mime-gif-body

image/gif

[RFC1494]

