When reviewing the following information, please keep in mind, that MDE is not synonymous with application.

An MDE corresponds more closely to what developers usually call an API (application programming interface).
An MDE is really just a group of functions – functions that are logically related to the same underlying process or data-store. (At least, that’s the way API are usually designed)
How a specific system is to be assembled…….which specific functions will be implemented…..which proprietary functions are included…..and, more importantly, the physical location of these functions…. are not restricted or dictated by our MDE organization. Developers can choose to combine MDE functions into an application in any manner they prefer.
So, it is a bit misguided to argue that such-n-suchQuery can’t exist as a member of such-n-suchMDE because, it might need to be implemented as a stand-alone, or might often be combined with other disparate queries. Regardless of how we conceptually organize our specification, the MDE functions can be implemented by an application in any combination.

So, with that in mind…:

The following is an illustration of the three different proposals for the MDE organization of the system’s query interactions.

In summary, three proposals have been offered:

(i) Define a QueryMDE that includes all queries of the system.

(ii) Define a distinct xxxMDE for each query we have defined

(iii) Distribute our query interactions among the other MDEs of the system.

(i) Define a QueryMDE that includes all queries of the system.

Here is an illustration of the proposal before our last Face-to-Face in Seattle:

	ReviewFilingMDE
	CourtRecordMDE
	QueryMDE

	ReviewFiling()
	DocketFiling()
	GetCaseList()

GetCase()

GetDocument()

GetFilingList()

GetFiling()

GetFeeCalculation()

(ii) Define a distinct xxxMDE for each query we have defined

Here is an illustration of the proposal recently offered by the comment review committee.

	ReviewFilingMDE
	CourtRecordMDE

	ReviewFiling()
	DocketFiling()

	GetCaseListMDE
	GetCaseMDE
	GetDocumentMDE

	GetCaseList ()
	GetCase()
	GetDocument()

	GetFeeCalculationMDE
	GetFilingListMDE
	GetFilingMDE

	GetFeeCalculation()
	GetFilingList()
	GetFiling()

The issue I have with both approaches above, is that the MDE architectural concept is made rather meaningless.
An MDE is intended to be a logical, functionally-related group of interactions.

In both models (i) and (ii), there is very little grouping of our interactions. The MDEs (Major Design Elements) end up having one defined interaction a piece! (not all that major, eh?)
(iii) Distribute our query interactions among the other MDEs of the system.

Here is an illustration of the proposal I have offered.

	ReviewFilingMDE
	CourtRecordMDE

	ReviewFiling()

GetFilingList()

GetFiling()

GetFeeCalculation()
	DocketFiling()

GetCaseList()

GetCase()

GetDocument()

I feel the third model illustrated here is the best way to organize our queries.

· In this model, the MDE concept has meaning – we see the interactions in a way that corresponds with the major steps of the filing process.
· This model offers some guidance to the implementer. For those developers attempting to digest the specification, this model gently suggests (but does not dictate) the group of functions that need to implemented when creating a Filing Review application, CourtRecord application, or combination of the two.
· It provides a consistently meaningful lexicon by which the community can discuss the features of their LegalXML applications. For example, one might be able to say ‘This application implements all of the ReviewFilingMDE interactions, and the CourtRecordMDE’s query interactions.“
- Shane Durham

LexisNexis

10/6/2005
October 6, 2005
Query and MDE Models
Page : 1 of 2

Shane Durham - LexisNexis

