
2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

1

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

Introduction
The California Administrative Office of the Courts (“CA AOC”) initiated the Second
Generation Electronic Filing Specifications (“2GEFS” or “Specifications”) to facilitate
the development and implementation of interoperable electronic filing solutions in the
California courts. The Specifications include Court Filing 2.0, Court Policy 2.0,
Request-Response 2.0, and CMS-API 2.0. The CA AOC commissioned and financed the
development of the Specifications for application in California courts. Additionally, a
number of private companies volunteered time and expertise to develop, implement, and
test of the Specifications. This document introduces the 2GEFS Concepts Document,
Court Filing 2.0, Court Policy 2.0, Request-Response 2.0, and CMS-API 2.0. This
document also includes an Appendix A that includes definitions of technologies relevant
to the 2GEFS.

1. 2GEFS Concepts Document
The 2GEFS Concepts Document is a high-level document that defines the 2GEFS
terminology, architecture, concepts, and assumptions.1 The Concepts Document is an
excellent high-level overview of electronic court filing and the ideas upon which the
2GEFS are based. The 2GEFS Concepts Document is recommended reading for
administrators, managers, and system architects. Developers may also wish to read the
Concepts Document to understand the 2GEFS at a high-level.

2. Court Filing 2.0

2.1. Filing
The Filing Specification is the most important of the 2GEFS, because an electronic court
filing system could be built using the Filing Specification alone. Filing XML includes
information necessary to:

Initiate a case in a CMS, if a case does not exist;
File one or more documents into a case;
Add name, contact details, identifiers and descriptions and roles for people,

organizations, and things associated with the case;
Add charges or offenses to a case;

1 See http://www.xmllegal.org/Documents/2GEFS/2GEFS_Concepts_PDF_Ver1_1_2003_07_31.pdf

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

2

Add calendar information or send calendar information back to a filer;
Add service of process information; and
Add fee and payment information.

Filing XML is sent to a court’s EFM wrapped in an XML envelope. Filing applications
usually transmit enveloped Filing XML over HTTP on the Internet.

The Filing Specification includes a Confirmation schema, an Envelope schema, and a
Header schema. Filers use the Filing schema to send electronic filings to courts. Courts
use the Confirmation schema to send confirmations to filers.

2.2. Confirmation
Confirmation XML mirrors the elements in Filing XML, except that Confirmation XML
also includes a confirmation number, a confirmation date, a confirmation time, and a
confirmation filing status. Elements in Confirmation XML mirror elements in Filing
XML based on the assumption that filing information may change as the Filing XML
travels downstream from a filing application to a court. In case the information changes,
or even if it does not, the confirmation serves as a receipt and notice of the information
ultimately accepted by a court. As a result, there is a corresponding element in
Confirmation XML for every element in Filing XML.

2.3. Filing and Confirmation Envelope
When transmitting Filing XML and Confirmation XML, there is usually a need to send
information about the transmission itself. Transmission information is usually not
important to the filing or confirmation transaction. As a result, it is common practice to
envelope Filing XML and Confirmation XML in an XML envelope. Any XML envelope
can be used to send and receive 2GEFS Filing XML and Confirmation XML.

The 2GEFS includes a simple 2GEFS Envelope that can be used to transmit Filing XML
and Confirmation XML. Alternatively, a SOAP or ebXML envelope can be used. A
2GEFS Envelope XML and a SOAP XML envelope have the same structure. Both
envelopes have a root element named <Envelope> and two children elements,
<Header> and <Body>. The difference between the 2GEFS Envelope XML and a
SOAP envelope is that a SOAP envelope includes additional attributes that have meaning
to SOAP-aware processors and the namespaces are different. Otherwise, the envelopes
are the same. Courts in California are using the 2GEFS Envelope XML for testing and
are planning to implement the SOAP envelope for live filing.

2.4. Filing and Confirmation Header
Header XML can be used in the 2GEFS Envelope XML or in a SOAP envelope. In either
case, Header XML is placed within the envelope’s <Header> element. The SOAP
specification explicitly states that application-specific header information is not defined
by the SOAP specification and should be defined by the application. If SOAP is used for
transmission, then 2GEFS Header XML should go inside the SOAP <Header> element
as the first child element. SOAP attributes designed to tell SOAP applications whether to

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

3

understand or forward Header XML may be used based on the rules defined for each
element in the Header Specification.

3. Court Policy 2.0
The Policy Specification is the second most important of the 2GEFS because it provides a
standard format for communicating information about a court and the court’s divisions.
Court Policy XML is simply a configuration file that holds information unique to a court.
Court Policy XML is helpful in a court filing system where there is only one court. It is
necessary, as a practical matter, when expanding a system where there are multiple court
locations or multiple court divisions within a single court.

Theoretically, Court Policy XML could contain a wide variety of information.
Attempting to specify too much information in Court Policy XML is problematic because
of the complexity and difficulty in writing code for all logical uses. As a result, the
2GEFS Court Policy only attempts to support a minimum of what could theoretically be
in a court policy XML specification.

Court Policy XML includes the following information about a court:

Unique names and identifiers for a court, its divisions, and its groups;
Court clerk(s);
Fee schedules;
Court payment details (enough information to pay a court);
Code tables (frequently used code tables from the courts case management

system(s), such as case categories);
Exchanges (names and unique identifiers for specific electronic information

exchange points);
Hours of operation (including cut-off times for electronic and paper filing);
Accepted MIME types;
Maximum filing size;
Accepted credit cards; and
Accepted reply to protocols and formats

Court Policy XML should be available to all organizations involved in electronic filing
with the court, preferably over the Internet, for local or remote use. The Court Policy
Specification includes a standard means of Internet publication although Internet
publication is not absolutely necessary for the use of Court Policy XML.

4. Request-Response 2.0 and CMS-API 2.0
The Request-Response and CMS-API Specifications are closely related. The structure of
the CMS-API maps class-for-class, method-for-method, and argument-for-argument with
Request-Response XML. This makes mapping Request-Response XML to a CMS with an
implemented CMS-API relatively easy.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

4

Intended for internal court use, the CMS-API Specification defines an API designed to be
built into or onto a court CMS to input and output information in a CMS. The CMS-API
would most commonly be implemented to interface a clerk review module with the court
CMS. For security reasons, it would be unlikely a court would want to expose the CMS-
API to applications outside the court.

In contrast, Request-Response XML is used to send and receive XML requests and
responses from systems outside the court. There is no restriction on using Request-
Response XML inside the court, but the primary purpose is to provide a platform neutral
XML format for service providers to request information from the court and for the court
to respond back to service providers. This request-response transaction would take place
through a court’s EFM, providing security to court applications.

Neither Request-Response XML nor CMS-API is intended to provide a full and complete
API to a CMS. The current 2GEFS CMS-API specifies only “core 1” classes, methods,
and arguments. The purpose is to provide the minimum number of CMS calls necessary
for electronic court filing applications. The current CMS-API core 1 supports adding and
updating information included in Filing XML and a few additional “get” requests.

The CMS-API Specification defines a means to define extensions for additional calls that
could satisfy additional requirements, such as the automated creation of Court Policy
XML. Thus, the scope of Request-Response XML and CMS-API is, or could be, broader
than Filing XML, although it is currently not as broad as a full and complete API for a
CMS.

The following list shows the high-level organization of CMS-API and includes labels that
designate basic core level requirements:

CMS (core 1 and higher)
Court (core 1 and higher)
Filing (core 2 and higher)
Case (core 1 and higher)
Document (core 2 and higher)
Person (core 1 and higher)
Organization (core 1 and higher)
Codes (core 2 and higher)
Calendar (core 2 and higher)
Payment (core 2 and higher)
CourtPolicy (core 2 and higher)

Generally, methods in the API have the ability to (a) add, (b) get, (c) update, and (d)
delete information. For example, the CMS.AddCase method adds a new case to a CMS.
The Case.AddDocument method adds a new document to a case. Case.GetPeople
gets all of the people associated with a case. Some operations are appropriate for the
CMS-API, but not for Request-Response XML. For example, a CMS should have the

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

5

ability to programmatically update and delete information via an API. However, in most
cases, Request-Response XML should not provide the ability for an application outside
the court to update or delete information. Authorized “get” operations are more
appropriate for Request-Response XML.

Like the Filing Specification, the Request-Response Specification includes an Envelope
schema and a Header schema. The Envelope schema can be substituted with a SOAP
envelope. The Header schema is used for both a 2GEFS Envelope and a SOAP
envelope. The Filing and Request-Response Envelope and Header are exactly the same,
except that they exist in different namespaces.

5. Schema Framework
The 2GEFS XML schemas are standard W3C XML Schema built according to the rules
and best practices of the <xmlLegal> Schema Framework. To work with the 2GEFS, it is
beneficial to have a good understanding of W3C XML Schema. It is not necessary to
understand the rules and best practices of the <xmlLegal> Schema Framework.
However, the developer who understands the Schema Framework may find it easier to
write code around the 2GEFS. To extend the 2GEFS, it is necessary to understand the
rules and best practices of the Schema Framework.

The <xmlLegal> “Schema Framework” is a set of best practices and rules for developing
modular and interoperable XML Schemas. The Schema Framework supports a
decentralized and distributed set of schema repositories and services. The Framework
provides and supports version control, schema normalization, schema management and
maintenance, and consistent publishing rules for schema discovery and documentation.
The Framework also facilitates the creation of data dictionaries.

1.5.1. Philosophy and Assumptions
The <xmlLegal> Schema Framework builds on the idea that there are “vertical” and
“horizontal” domains in which XML standards can be created. See Scope section for
more information.

The Schema Framework recognizes that different applications have different data
requirements. These differing requirements are often legitimate. For example, a system
used to track terrorists is different than a system to record driver’s licenses, both of which
are different than a court filing system. As a result, the Framework supports many
different schemas that can be used in an interoperable way.

1.5.2. Scope
From a vertical perspective, the Schema Framework supports XML formats for court,
justice, legislative, transcript, and contract information.

From a horizontal perspective, the Schema Framework defines a set of common rules and
best practices for creating messages, forms, and documents within each vertical domain
in a consistent way.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

6

The intersection of the vertical and horizontal schema results in a common set of building
block and primitive schemas. Primitive schemas, for example, include Person,
Organization, and Address.

1.5.3. Modularization
The Schema Framework supports modular XML Schemas that are used as building
blocks to build other, more complex schemas, messages, protocols, forms and documents.
For example, Person, Organization, and Address schema can be used as building blocks
for a more complex Court Filing schema, Juvenile Complaint schema, or Rap Sheet
schema.

Modularization facilitates schema reuse and customization as well as code reuse all while
maintaining interoperability. Modularization also reduces the total size of individual
XML formats.

1.5.4. Normalization
<xmlLegal> Schemas follow defined rules of construction, some of which are required
by the W3C XML Schema specification, some of which are industry best practices, and
some of which are <xmlLegal> conventions and best practices. Schemas that follow the
Framework’s rules and best practices are “normalized.” Normalization greatly enhances
schema use and reuse, schema management, and interoperability.

1.5.5. Version Control
The Schema Framework has a strict version control system. Strict version control
enhances interoperability by ensuring that there is a mechanical (programmatic) means of
discovering the appropriate schema and validating instance documents based on the
schema. Strict version control also makes iterative schema and software development
easier.

1.5.6. Schema Repositories
The Schema Framework supports distributed and decentralized Internet-based schema
repositories as well as local schema repositories. Schema repositories contain schema
documentation and data dictionaries, as well as the schema themselves.

1.5.7. Intellectual Property
<xmlLegal> Schemas are licensed under a modified General Public License.2 The GPL
allows the royalty free use and distribution of schema provided that the rules of the
Schema Framework are followed. GPL modifications, for example, provide a legal
framework that ensures <xmlLegal> normalization and version control practices are
followed. These practices, in turn, help to ensure interoperability.

2 See http://www.xmllegal.org/Legal/GeneralPublicLicense.htm

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

7

Appendix A: Definitions

2GEFS Versions
The <xmlLegal> Schema Framework supports a precise version control system. The
format for version numbers is a 0-padded two- or three-digit number combined with an
optional string “Test.” The string “Test” means that the schema is still undergoing
drafting or testing.

During Phase 1 and 2, the 2GEFS went through several versions, as indicated in the table
below:

Specification Date Version
Filing July 2003 Test03
Filing May 2003 Test04
Filing July 2004 Test05
Filing August 2004 01
Policy July 2003 Test02
Policy May 2004 Test03
Policy July 2004 Test04
Policy August 2004 01
Request-Response July 2003 Test01
Request-Response May 2003 Test02
CMS-API July 2003 0.2.4
CMS-API May 2003 0.2.5

Application Programming Interface (“API”)
An “Application Programming Interface,” or “API,” is a defined gateway into a computer
information system. The gateway may be used to enter information into the system,
extract information from the system, or otherwise manipulate information in the system.

A non-technical person might analogize a software API to an electrical socket in a home
and a corresponding plug that fits into the socket. An API for a United States socket
defines three holes of a particular size, shape, and arrangement into which a plug with
corresponding prongs fits. An API for a German socket may require a plug with three
prongs, but the size, shape, and arrangement is different.

An API for software works the same way. Software developers use an API so they know
how to write code to fit data into the system. If a computer system does not have a
defined or easy-to-use API then it may be difficult or impossible to programmatically
enter, extract, or manipulate information in the system.

A user interface or terminal used by a person for manual data entry or extraction is
usually not called an API.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

8

Attribute
See definition of XML.

Base64 Encoding
“Base64 Encoding” is a means of transforming a binary electronic file into an encoded
text representation. Base64 encoding happens to result in text that does not include any
of the XML-reserved characters. XML reserved characters must be escaped. In short,
because base64-encoded text does not include any XML reserved characters, it is “XML-
safe” and is easy to insert into an XML document. Base64 encoding is an accepted
means of inserting a binary electronic document, such as a Microsoft Word document or
a PDF document, into XML. The disadvantage of base64-encoding is that the encoded
text is approximately 33% larger than the original binary file. This bloats the resulting
XML. If an XML file is too large, then it can result in performance problems for XML
software, such as parsers.

Case Management System (“CMS”)
A “CMS” is an application for supporting court operations. A CMS records and manages
information about court cases, records, calendars, finances, and other court information.
A CMS will sometimes have an existing interface that is different and distinct from the
“Clerk Review Software.” CMSs vary among courts and vendors. Some CMSs have
well-defined APIs, some CMSs have poor APIs, and some CMSs have no API at all.

Document management (“DMS”) capabilities are included in the CMS definition unless
specifically noted otherwise.

Clerk Review Software or Module (“Clerk Review”)
The “Clerk Review Software” is a web- or application-based interface available to court
administrators and other court personnel. The Clerk Review Software is used for
reviewing incoming e-filings and for performing other administrative tasks. The Clerk
Review Software can be separate from or part of a CMS.

Court Filing 1.0
See definition of Legal XML Court Filing 1.0.

Document Management System (“DMS”)
A “DMS” receives, manages, stores, and retrieves, electronic court documents. A DMS
may be part of a CMS or may be different software altogether. In this document, DMS
capabilities are included in the term CMS unless specifically noted otherwise.

Document Object Model (“DOM”)
The “Document Object Model” or “DOM” is a W3C standard API for XML documents.3

3 See http://www.w3.org/DOM/.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

9

Document Type Definition (“DTD”)
A “document type definition” (“DTD”) is a set of rules that define the type, number, and
order of elements that may appear in an XML document.4 The rules of a DTD are set out
in “declarations.”5 The following is a set of declarations that define an “Address”
document in XML:

<?xml version="1.0" ?>
<!DOCTYPE Address [
<!ELEMENT Address (Street+,City,State,PostalCode,Country) >
<!ELEMENT Street (#PCDATA) >
<!ELEMENT City (#PCDATA) >
<!ELEMENT State (#PCDATA) >
<!ELEMENT PostalCode (#PCDATA) >
<!ELEMENT Country (#PCDATA) >
]>

The first declaration in the DTD is for the “Address” element. According to the
declaration, the “Address” element may contain five other elements, namely, “Street,”
“City,” “State,” “PostalCode,” and “Country.” Each of these elements may contain
“#PCDATA,” which is text.6 The “+” on the end of “Street” means there may be one or
more “Street” elements within “Address.”7

There are other rules used to define the number of elements that may appear in the
document. Additionally, attributes may be specified in declarations corresponding to
individual elements.8 There are numerous other XML rules that are beyond the scope of
this document. 9

Electronic Document
The term “electronic document” refers to any type of electronic document format that
includes “formatting,” “logical structure,” and “data.” Examples of an electronic
document formats are Microsoft Word, Adobe Portable Document Format (“PDF”),
Corel Word Perfect, TIFF Images, and Hypertext Markup Language (“HTML”).

An XML document or an XML instance document is not an “electronic document” under
this definition. Under this definition an XML document + a stylesheet is equivalent to an
electronic document.

Electronic Filing or E-filing
“Electronic Filing” or “E-Filing” is an electronic document delivered to a court by
electronic means. “Electronic documents”, “electronic court documents” and similar
terms are synonymous unless the context provides otherwise.

4 W3C XML 1.0 Recommendation, http://www.w3.org/TR/1998/REC-xml-19980210#sec-prolog-dtd.
5 Id. at http://www.w3.org/TR/1998/REC-xml-19980210#NT-markupdecl.
6 Id. at http://www.w3.org/TR/1998/REC-xml-19980210#syntax.
7 Id. at http://www.w3.org/TR/1998/REC-xml-19980210#sec-element-content.
8 Id. at http://www.w3.org/TR/1998/REC-xml-19980210#attdecls.
9 Id. See generally XML 1.0 Recommendation.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

10

Electronic Filing Manager (“EFM”)
An “EFM” is an application (or applications) used to process electronic filings. An EFM
implements Court Filing and Request-Response transmissions, and accesses and
interprets Court Policy XML. If the EFM communicates with a CMS it does so using the
CMS API (via Court Adaptor Application middleware when needed). Parts of the EFM
are usually exposed outside the court’s firewall. The EFM then talks to the CMS via the
CMS-API. In this way, the CMS-API is not exposed in a non-secure environment.

Element
See definition of XML.

Filing Application
An application used by Filers to prepare electronic filings. A Filing Application may be a
desktop application or a web-based application provided by a Service Provider, or a
subsystem of a larger system such as a law firm's practice management system.

Georgia Interoperability Testing
Georgia Courts Automation Commission's (“GCAC”) mission is to encourage and
facilitate automation in courts in the State of Georgia. In furtherance of this mission,
GCAC sponsored a Court Filing Interoperability Pilot Project ("Interoperability Pilot").
The purpose of the Interoperability Pilot was to provide Georgia courts and attorneys
with proof-of-concept of electronic court filing and to better understand the need for, and
barriers to, developing court filing systems and standards in Georgia.

The Pilot had two phases: Phase I completed in July and August 2001, and Phase II
completed in October and November 2001. The Interoperability Pilot closed in
November 2001. Two live electronic filing systems resulted from the Interoperability
Pilot: a juvenile electronic filing system and a child support electronic filing system.

Hypertext Transport Protocol (“HTTP”)
“Hypertext Transport Protocol” or “HTTP” is a text-based messaging format used for
Internet communications. It is an Internet Engineering Task Fore (“IETF”) standard,
RFC 2616, http://www.ietf.org/rfc/rfc2616.txt. HTTP is the protocol used to send web
pages to and from web browsers and web servers. It is a very stable and well-understood
Internet standard.

Instance Document
An “instance document” is a well-formed and valid XML document based on a schema.

Legal XML Court Filing 1.0
“Legal XML Court Filing 1.0” is the July 24, 2000 Legal XML Court Filing
recommended standard. Legal XML published the Court Filing 1.0 DTD before Legal
XML became OASIS/Legal XML. OASIS/Legal XML does not have the Court Filing
1.0 DTD available on its website. The Court Filing 1.0 DTD was used in the Georgia

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

11

Interoperability Pilot Project and is available on the Georgia State University Electronic
Court Filing Website.10

Parser, Non-Validating Parser, and Validating Parser
A “Parser” is software used to process and XML instance document. A “Non-Validating
Parser” is software used only to determine whether an XML document is well-formed. A
“Validating Parser” is a parser that validates well-formed XML against a schema.
Although all parsers and validating parsers are supposed to implement the W3C XML 1.0
and XML Schema standards the same way, there are slight nuances among them that may
interfere with interoperability.

“schema”
In this document, the term “schema” with a lower-case “s” means either a DTD or an
XML Schema. The term “Schema” with a capital “S” means an XML Schema.

Secure Sockets Layer (“SSL”)
“Secure Sockets Layer” or “SSL” is a protocol developed by Netscape for transmitting
private documents via the Internet. SSL works by using a private key to encrypt data that
is transferred over the SSL connection. Both Netscape Navigator and Internet Explorer
support SSL, and many Web sites use the protocol to obtain confidential user
information, such as credit card numbers. By convention, URLs that require an SSL
connection start with https: instead of http:. See http://wp.netscape.com/eng/ssl3/.

Service Provider
A person or organization that provides electronic filing services or software to filers,
courts, or justice users.

Service Provider Application
Software applications developed or operated by a Service Provider.

Simple Mail Transfer Protocol (“SMTP”)
“Simple Mail Transfer Protocol” or “SMTP” is an Internet Engineering Task Force
(“IETF”) standard for transporting electronic mail, RFC 821,
http://www.ietf.org/rfc/rfc0821.txt. SMTP is the standard protocol used to send Internet
email. It is a very stable and well-understood Internet standard.

SOAP
“SOAP” is a W3C recommendation for an XML transmission protocol. SOAP is often
called an “envelope” because it serves as an XML wrapper around other XML. For
example, a SOAP envelope could wrap Filing XML prior to transmission over the
Internet.

10 See http://e-ct-file.gsu.edu/CourtFilings/Interoperability/.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

12

A non-technical person could analogize SOAP to a paper envelope using to mail a letter
via post. SOAP is the paper envelope. The user of SOAP is responsible for addressing
the SOAP enveloped, writing the letter, packaging the letter in the envelope, and sending
the envelope to its destination.

See http://www.w3.org/TR/soap12-part0/, http://www.w3.org/TR/2003/REC-soap12-
part1-20030624/, http://www.w3.org/TR/2003/REC-soap12-part2-20030624/.

Stylesheet
Stylesheets apply formatting to an XML instance document. There are two types of
stylesheets, CSS Stylesheets and XSL Stylesheets.

Uniform Resource Indicator (“URI”)
A “Uniform Resource Identifier” or “URI” is a compact string of characters for
identifying an abstract or physical resource. The syntax for URIs is defined by an IETF
in RFC 2396 at http://www.ietf.org/rfc/rfc2396.txt. URIs can come in various formats.
The most recognizable URI is a web address, such as:

http://www.ietf.org/rfc/rfc2396.txt

A “URN” is a type of “URI.”

Valid XML or Validation
It is possible, although not required, to “validate” well-formed XML using a DTD or an
XML Schema.11 Validating well-formed XML with a DTD or an XML Schema means
that the structure of the well-formed XML is checked by software, called a parser, to see
if it matches the rules specified in the declarations of the schema. If the well-formed
XML does not conform to the schema, then the parser will report a validation error.12

Web Service
A “Web Service” can be generically defined as an Internet-based address where XML
can be sent and received or requested and received. An XML over HTTP connection
could be considered a web service.

Web services technologies include, among other things, XML, SOAP, SOAP
Attachments (formerly called Direct Internet Message Encapsulation or “DIME”), and
Web Services Description Language (“WSDL”). The W3C has a web services activity.
More information can be found at http://www.w3.org/2002/ws/.

11 Id. http://www.w3.org/TR/1998/REC-xml-19980210#dt-valid.
12 Id.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

13

Well-Formed XML
“Well-formed XML” is an XML document that follows the simple rules that (1) every
document must have a single root element and (2) for every element there must be a
“begin tag” and a corresponding “end tag” that does not overlap with other begin and end
tags. 13 Note, elements (begin and end tag combinations) may be nested within other
elements, but tags may not overlap.14

For example, the following is well-formed XML:

<Address>
<Street>2356 Peachtree Street</Street>
<Street>Suite 2000</Street>
<City>Atlanta</City>
<State>Georgia</State>
<PostalCode>30302</PostalCode>
<Country>U.S.A.</Country>

</Address>

The following, however, is illegal according to the XML specification because the tags
overlap and are not well-formed:

<Bold>This is some<Italics>bad</Bold> XML</Italics>.

World Wide Web Consortium (“W3C”)
The Word Wide Web Consortium (“W3C”) is a well-known industry standards
organization. The W3C is responsible for developing and maintaining XML and related
XML technologies. See http://www.w3.org/.

XML
“XML” is an acronym for eXtensible Markup Language (“XML”). XML is a technical
standard developed by the W3C 15 and defined at http://www.w3.org/TR/REC-xml/.
Since early 1998, when the W3C recommended XML 1.0 as a standard, XML and related
W3C standards have gained widespread acceptance in the technical community as
“smart,” web-based information management technologies.

XML and related standards are used to create “document formats” by combining
customized “elements” and, optionally, “stylesheets.” XML elements look similar to
Hypertext Markup Language (“HTML”) elements. For example, the following is an
HTML element:

I agree to give you a peppercorn in exchange for your services.

13 Id. at http://www.w3.org/TR/1998/REC-xml-19980210#sec-well-formed.
14 Id.
15 World Wide Web Consortium Website, http://www.w3.org.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

14

An element is a combination of a “begin tag” and “end tag” and everything in between
the two tags.16 Some elements may only contain text. Some elements may contain other
elements (i.e., tags and text).17 Elements may also be empty (i.e., contain no text).18

Elements may have attributes, which are assigned “values.”19

In the example above, the element name is “FONT.” The “FONT” element has an
attribute named “Size” with an attribute value of “12.” Elements are nested within other
elements to create a hierarchy of “marked-up” text. A complete hierarchy of marked-up
text is an “XML document”20 also called an “instance document.” The following is an
example of a simple XML document with legal elements.

<Legal>
<Contract>

<Clause>
<Paragraph>
I agree to give you a peppercorn in exchange for your services.
</Paragraph>

</Clause>
</Contract>

</Legal>

HTML is a standardized set of about 90 pre-defined elements that web designers use to
create HTML documents (web pages).21 The problem with HTML is that it is a dumb
“document format.”22 Indeed, a significant disadvantage of HTML is that most of its
predefined set of tags do not have a meaningful relationship to the text within them. For
example, the following HTML element, with the addition of the “color” attribute, would
look colorful in a web browser:

I agree to give you a peppercorn in exchange for your
services.

However, the HTML element does not provide meaningful information to a
reader, a search engine, or any other information system about the meaning of the text
within the element. A web browser knows it should display the text in red, but it knows
nothing else about the text. More meaningful mark-up would look like this:

16 XML 1.0 Recommendation, http://www.w3.org/TR/1998/REC-xml-19980210#sec-starttags.
17 Id. http://www.w3.org/TR/1998/REC-xml-19980210#NT-content.
18 Id. at http://www.w3.org/TR/1998/REC-xml-19980210#NT-EmptyElemTag.
19 Id. at http://www.w3.org/TR/1998/REC-xml-19980210#NT-Attribute.
20 Id. at http://www.w3.org/TR/1998/REC-xml-19980210#sec-documents. Note, an “XML document”
should not be confused with an “electronic document.” Generally, an XML document, from a human and
legal perspective is not a complete document, unless it includes a stylesheet. That is, the combination of an
XML document and a stylesheet corresponds to an electronic document and most closely to the traditional
notion of a paper document.
21 HTML 4.01 Specification, http://www.w3.org/TR/html4/index/elements.html.
22 Winchel “Todd” Vincent, III, “What is the Best Format for E-CT-Filing,”
http://gsulaw.gsu.edu/gsuecp/CourtFilings/DocumentFormat/.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

15

<Contract Color=‘Red’>I agree to give you a peppercorn in exchange for your
services.</Contract>

Unfortunately, custom elements such as <Contract> are not allowed in HTML because
they are not defined by the HTML standard. XML, unlike HTML, is not a set of defined
elements. Rather, XML is a “grammar” (or “syntax”) that can be used to define any
number of custom elements. Using XML, the developers of document or data formats
can create industry-specific (e.g., legal-specific) elements, such as <Contract>,
<CourtFiling>, or <Transcript>, that can hold information important in their industry or to
their specific application.

XML Document
An “XML Document”23 is well-formed XML as defined by the W3C. An XML
Document is the same an instance document. An “XML document” is a term-of-art used
in the W3C XML 1.0 specification. The term applies only to the mark-up (i.e., the tags)
and the text in the document. An “XML document” according to the W3C XML 1.0
specification, does not include a stylesheet.

XML Namespaces
XML namespaces provide a simple method for qualifying element and attribute names
used in Extensible Markup Language documents by associating them with namespaces
identified by URI references.24 For example, if an element name is “Table,” XML
namespaces allow a developer to qualify the context of the element with a namespace and
an associated namespace prefix. Below is an example using “Table” as an element name
using namespace prefixes (that would have associated namespaces) distinguishing their
context:

<Furniture:Table>

<Math:Table>

XML Schema
“XML Schema” is a W3C recommended standard that improves on DTD technology.
XML Schema perform the same role and function as a DTD. That is, an XML Schema is
a set of rules that define the type, number, and order of elements that may appear in a
well-formed XML document. The two most important differences between a DTD and
an XML Schema are that:

XML Schema can be used to validate data types. For instance, an XML Schema
can be used to ensure that text within an element is an integer, a string of text, a
date, or a time. DTDs, on the other hand, cannot validate data types.

XML Schema are well-formed XML documents, while DTDs are not.

23 See http://www.w3.org/TR/REC-xml/#sec-documents.
24 See http://www.w3.org/TR/REC-xml-names/.

2GEFS Roadmap
By Winchel "Todd" Vincent III
November 13, 2004, Version 0.2

16

Because a DTD and an XML Schema are the same type of technologies, in this
document, the term “schema” with a lower-case “s” means both a DTD and a XML
Schema. “Schema” with an upper-case “S” means an XML Schema as defined in this
section.

XML Schema are more useful and powerful than DTDs. However, XML Schema are
also more complex. Additionally, a disadvantage of XML Schema in comparison to a
DTD is that, while tools for DTDs have existed for some time and are mature, tools for
XML Schema are relatively new and not as mature.

The following is part of an XML Schema that defines an Address format. This example
is not complete, but it is enough to compare with the DTD example included in these
definitions.

<xsd:complexType name="Address" mixed="true">
<xsd:sequence>

<xsd:element ref="Line" minOccurs="0" maxOccurs="5"/>
<xsd:element ref="Suburb" minOccurs="0"/>
<xsd:element ref="City" minOccurs="0"/>
<xsd:element ref="State" minOccurs="0"/>
<xsd:element ref="County" minOccurs="0"/>
<xsd:element ref="PostalCode" minOccurs="0"/>
<xsd:element ref="Country" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

XSL and XSLT
“XSL” stands for eXtensible Stylesheet Language. “XSL” is another W3C
recommended standard that compliments XML. XSL is a language for expressing
stylesheets. Stylesheets are used to make XML documents look like real documents or to
manipulate or change an XML document.

For example, in the <Contract> examples above, a reader would not want to see the begin
and end <Contract> tag surrounding the text within the tags. An XSL stylesheet can be
used to apply formatting (such as bold or red) to the text within the tags and, at the same
time, to make the tags disappear.

XSL has two parts. “XSL Transformations,” or “XSLT,” is one part. XSLT is a
powerful language that allows a programmer to change or transform an XML document
into another XML document or into another type of electronic document, such as an
Adobe PDF document, a Microsoft Word document, or a text document.

