Bindings for OBIX: Web Socket Bindings Version 1.0
Working Draft 04 15 Oktober 2013
Technical Committee:

OASIS Open Building Information Exchange (OBIX) TC
Chair:
Toby Considine (toby.considine@unc.edu), University of North Carolina at Chapel Hill
Editor:

Matthias Hub (matthias.hub@de.ibm.com), IBM
Additional artifacts:

None

Related work:

This specification is related to:
· OBIX Version 1.1. Latest version. http://docs.oasis-open.org/obix/obix/v1.1/obix-v1.1.html.
· Encodings for OBIX: Common Encodings Version 1.0. Latest version. http://docs.oasis-open.org/obix/obix-encodings/v1.0/obix-encodings-v1.0.html.
· Bindings for OBIX: REST Bindings Version 1.0. Latest version. http://docs.oasis-open.org/obix/obix-rest/v1.0/obix-rest-v1.0.html.
· Bindings for OBIX: SOAP Bindings Version 1.0. Latest version. http://docs.oasis-open.org/obix/obix-soap/v1.0/obix-soap-v1.0.html.
Declared XML namespaces:

· http://docs.oasis-open.org/obix/ns/2013

Abstract:

This document specifies WebSocket binding for OBIX.

Status:

This Working Draft (WD) has been produced by one or more TC Members; it has not yet been voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and re-approve it any number of times as a Committee Draft.

Initial URI pattern:
http://docs.oasis-open.org/obix/obix-websocket/v1.0/csd01/obix-websocket-v1.0-csd01.doc
(Managed by OASIS TC Administration; please don’t modify.)

Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

41
Introduction

1.1 Terminology
4
1.2 Normative References
4
1.3 Non-Normative References
4
2
WebSocket Binding
5
2.1 Requests
5
2.1.1 Connect request
6
2.1.2 Request, Response and Update messages
6
2.1.3 Watch creation
6
2.1.4 Continous Updates
7
2.1.5 Example Request Flow
7
2.2 Security
12
2.3 Localization
12
3
Conformance
13
3.1 Conditions for conforming OBIX Server
13
3.2 Conditions for conforming OBIX Client
13
Appendix A.
Acknowledgments
14
Appendix B.
Revision History
15
















1 Introduction

All text is normative unless otherwise labeled.
1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [OBIX] OBIX version 1.1, 8 July 2013.  OASIS Committee Specification Draft 01, http://docs.oasis-open.org/obix/obix/v1.1/csd01/obix-v1.1-csd01.doc  .

1.2 Normative References
[OBIX]
OBIX version 1.1, 8 July 2013.  OASIS Committee Specification Draft 01, http://docs.oasis-open.org/obix/obix/v1.1/csd01/obix-v1.1-csd01.doc  
[OBIX Encodings]
Encodings for OBIX Version 1.0, 8 July 2013.  OASIS Committee Specification Draft 01. http://docs.oasis-open.org/obix/obix-encodings/v1.0/csd01/obix-encodings-v1.0-csd01.doc 
[OBIX REST]
Bindings for OBIX: REST Bindings Version 1.0, 22 February 2013. 8 July 2013.  OASIS Committee Specification Draft 01, http://docs.oasis-open.org/obix/obix-rest/v1.0/csd01/obix-rest-v1.0-csd01.doc.
[RFC2119]
Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.
[RFC3986]
Berners-Lee, T., Fielding, R., Masinter, L., “Uniform Resource Identifier (URI): Generic Syntax”, IETF RFC 3986, January 2005.  http://www.ietf.org/rfc/rfc3986.txt.
[RFC6455]
Fette, I Melnikoverners, A, “The WebSocket Protocol”, IETF RFC 6455, December 2011. http://www.ietf.org/rfc/rfc6455.txt. 
[SOA-RM]
Reference Model for Service Oriented Architecture 1.0, October 2006. OASIS Standard. http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
WEB IDL?

1.3 Non-Normative References

[Reference]
[Full reference citation]
2 WebSocket Binding

The WebSocket binding specifies a simple mapping of OBIX requests to WebSocket. After connecting to endpoint URL and switching to the WebSocket protocol, OBIX messages can be exchanged continuously.
2.1 Requests
The following table describes the mapping of OBIX request and its WebSocket equivalent. As WebSocket is a message-based protocol it cannot be mapped directly, but as OBIX messages contain naming the messages can be send also using this kind of protocol. For more details regarding the request flow see the sections below.
	OBIX Request
	WebSocket
	Target

	Read
	After connect use WatchService functionality to subscribe to objects and read their state
	Lobby (single point of WebSocket connection)

	Write
	Send a obix:Request message containing an obj
	Any object with an href and writable=true

	Invoke
	Send a obix:Request message containing op element holding input parameters as children, expecting obix:Response message with corresponding request ID as response.
	Any op object with an href (especially Watch)

	Delete
	If an object has an delete operation defined this operation is used
	Any object with delete operation


2.1.1 Connect request

The connect URL is the name or IP of the OBIX server prefixed by the WebSocket protocol, i.e. either “ws” or “wss” for a secure connection using TLS. If the server supports multiple encodings a client MAY request the encoding with the “encoding” parameter on connect (e.g. “wss://myhome/?encoding=json”), if not specified the server uses its default encoding (it is recommend to support XML encoding as default). The response send to client upon successful connection MUST be the Lobby object.

2.1.2 Request, Response and Update messages

To ensure that a request and response in the asynchronous message exchange of WebSocket is bound together the concept of a request with a defined request ID (denoted as attribute “rid”) is introduced. A response to a request contains that specific request ID so that the client can match the request and response. If the server sends a message without the request and response context it uses the Update type to denote this case.

Following are the contract definitions of Request, Response and Update:

<obj href="obix:Request">

</obj>

<obj href="obix:Response">

</obj>

<obj href="obix:Update">

</obj>

For obix:Request and obix:Response there is a facet “rid” defined as xs:int, which MUST be included (e.g. the attribute can have the value ws:rid=”1” to denote the request ID 1. The obix:Request, obix:Response and obix:Update objects MUST not be empty but contain an obj or list.

2.1.3 Watch creation

As WebSocket follows a message exchange pattern the REST-style of OBIX needs to be represented differently. For that extensive use is made of the Watch concept. After a successful connection to the OBIX server the client can add a Watch to subscribe to object changes. This can be done using the make operation on the WatchService object, which is defined as following
:

<obj href="obix:WatchService">

  <op name="make" in="obix:Nil" out="obix:Watch"/>


</obj>

WatchService.make, when invoked in the context of a WebSockets session, behaves differently than when invoked with an ordinary OBIX session.  The following behaviors are modified:

· The lease time property is not used.

· The watch is removed upon the close of the WebSocket session (or upon explicit client request through Watch.delete).
· The watch remains active without the need for the client to invoke pollChanges or pollRefresh.
· Invocation of pollChanges by the client will return an empty list.
· Change events are sent by the server directly to the client directly as unsolicited Updates.

All other behaviors function in the same way as defined in the core OBIX Specification.  An OBIX Server that provides a watch in the context of a WebSocket connection MUST provide two additional properties for configuring the watch behavior, described below.  The Contract for a watch that supports connection via WebSockets is:

<obj href=”obix:Watch
”>
  <reltime name=”lease” min=”PT0S” writable=”true”/>
  <reltime name=”unsolicitedBufferDelay
” min=”PT0S” writable=”true”/>
  <int name=”maxBufferedEvents
”/>
  <op name=”add” in=”obix:WatchIn” out=”obix:WatchOut”/>

  <op name=”remove” in=”obix:WatchIn”/>

  <op name=”pollChanges” out=”obix:WatchOut”/>
  <op name=”pollRefresh” out=”obix:WatchOut”/>

  <op name=”delete”/>
</obj>
The Implicit Contract for unsolicitedBufferDelay is the period of time for which any events on watched objects will be buffered before being sent by the server in an Update.  Clients must be able to regulate the flow of messages from the server.  A common scenario is an OBIX client app on a mobile device where the bandwidth usage is important; for example, a server sending updates every 50 milliseconds as a sensor value jitters around will cause problems.  On the other hand, server devices may be constrained in terms of the available space for buffering changes.  Servers are free to set a maximum value on unsolicitedBufferDelay through the max Facet to constrain the maximum delay before the server will report events.  Servers may also use the maxBufferedEvents property to indicate the maximum number of events that can be retained before the buffer must be sent to the client to avoid missing events.  Note that unsolicitedBufferDelay MUST be writable by the client, as the client capabilities typically constrain the bandwidth usage, whereas maxBufferedEvents is typically constrained by server capabilities, and is therefore not generally writable by clients.

1) 
2) 




1. 
2. 
3. 
4. 
5. 
2.1.4 Continous Updates

As long as the connection is open the server MUST send (push) obix:Update messages to the client if a property of the watched objects is changed. That ensures that the client has a consistent state with the server. Batch?
2.1.5 Example Request Flow

See here an example flow in the XML encoding:
	Client
	Server

	Connect to wss://myhome/


	Returns the Lobby:

<obj is="obix:Lobby">

<ref name="about" is="obix:About"/>

<op name="batch" in="obix:BatchIn" out="obix:BatchOut"/>

<ref name="watchService" is="obix:WatchService"/>

<ref name="device" href="/device/” is="gateway:Device"></ref>

</obj>

	Call WatchService.make operation

<obj is=”obix:Request” rid=”1”>

<op name=”make” href=”watchService” />

</obj>


	Returns the Watch (the lease time is not used):

<obj is=”obix:Response” rid=”1”>

<obj is="obix:Watch" href="/watch/2">

<reltime name="lease" val="PT0S" />

</obj>

</obj>

	Call Watch.add operation to add /device/:

<obj is=”obix:Request” rid=”2”>

<op name=”add” is=”obix:Watch” href="/watch/2">

<obj is="obix:WatchIn">

<list names="hrefs">

<uri val="/device/" />

</list>

</obj>

</op>

</obj>
	List devices:

<obj is=”obix:Response” rid=”2”>

<list name="device" of="obj">

<obj href="/device/bathTemp" name="BathTemperature" location="Bathroom" is="gateway:Temperature" displayName="Temperature Bathroom">

<abstime name="Timestamp" val="2013-07-24T10:01:15.883+02:00"></abstime>

<real name="ActualValue" val="28.2" unit="obix:units/celsius" displayName="ActualValue"></real>

<bool name="Warm" val="true" displayName="Warm"></bool>

</obj>

<obj href="/device/kitchenTemp" name="KitchenTemperature" location="Kitchen" is="gateway:Temperature" displayName="Temperature Kitchen">

<abstime name="Timestamp" val="2013-07-24T10:01:15.883+02:00"></abstime>

<real name="ActualValue" val="26.1" unit="obix:units/celsius" displayName="ActualValue"></real>

<bool name="Warm" val="true" displayName="Warm"></bool>

</obj>

<obj href="/device/bathLight" name="BathLight" location="Bathroom" is="gateway:Switch" displayName="Light Bathroom">

<abstime name="Timestamp" val="2013-07-14T22:25:31.331+02:00"></abstime>

<bool name="Status" val="false" displayName="Status" writeable="true"></bool>

</obj>

</list>

</obj>

	Call Watch.remove operation to remove /device/:

<obj is=”obix:Request” rid=”3”>

<op name=”remove” is=”obix:Watch” href="/watch/2">

<obj is="obix:WatchIn">

<list names="hrefs">

<uri val="/device/" />

</list>

</obj>

</op>

</obj>
	Removed successfully, no response

	Watch.add /device/bathTemp:

<obj is=”obix:Request” rid=”4”>

<op name=”add” is=”obix:Watch” href="/watch/2">

<obj is="obix:WatchIn">

<list names="hrefs">

<uri val="/device/bathTemp" />

</list>

</obj>

</op>

</obj>
	Send bathTemp information within the WatchOut object:

<obj is=”obix:Response” rid=”4”>

<obj is="obix:WatchOut">

<list names="values">

<obj href="/device/bathTemp" name="BathTemperature" location="Bathroom" is="gateway:Temperature" displayName="Temperature Bathroom">

<abstime name="Timestamp" val="2013-07-24T10:01:15.883+02:00"></abstime>

<real name="ActualValue" val="28.2" unit="obix:units/celsius" displayName="ActualValue"></real>

<bool name="Warm" val="true" displayName="Warm"></bool>

</obj>

</list>

</obj>

</obj>

	Watch.pollChanges

<obj is=”obix:Request” rid=”5”>

<op name=”pollChanges” is=”obix:Watch” />

</obj>
	Send nothing as the state is current
<obj is=”obix:Response” rid=”5”>


</obj>

	To keep the WebSocket session open send an empty WebSocket frame like e.g. “”
	No response, just the session is kept open

	Watch.add /device/kitchenTemp:

<obj is=”obix:Request” rid=”6”>

<op name=”add” is=”obix:Watch” href="/watch/2">

<obj is="obix:WatchIn">

<list names="hrefs">

<uri val="/device/kitchenTemp" />

</list>

</obj>

</op>

</obj>
	Send kitchenTemp containing the current object:

<obj is=”obix:Response” rid=”6”>

<obj is="obix:WatchOut">

<list names="values">

<obj href="/device/kitchenTemp" name="KitchenTemperature" location="Kitchen" is="gateway:Temperature" displayName="Temperature Kitchen">

<abstime name="Timestamp" val="2013-07-24T10:01:15.883+02:00"></abstime>

<real name="ActualValue" val="26.1" unit="obix:units/celsius" displayName="ActualValue"></real>

<bool name="Warm" val="true" displayName="Warm"></bool>

</obj>

</list>

</obj>

</obj>

	
	Send update as an update from the temperature sensor was received:

<obj is=”obix:Update”>

<obj is="obix:WatchOut">

<list names="values">

<obj href="/device/kitchenTemp" name="KitchenTemperature" location="Kitchen" is="gateway:Temperature" displayName="Temperature Kitchen">

<abstime name="Timestamp" val="2013-07-24T10:03:15.883+02:00"></abstime>

<real name="ActualValue" val="26.2" unit="obix:units/celsius" displayName="ActualValue"></real>

<bool name="Warm" val="true" displayName="Warm"></bool>

</obj>

</list>

</obj>

</obj>

	Update bathLight

<obj is=”obix:Request” rid=”7”>

<obj href="/device/bathLight" name="BathLight" location="Bathroom" is="gateway:Switch" displayName="Light Bathroom">

<bool name="Status" val="true" displayName="Status" writeable="true"></bool>

</obj>

</obj>
	No direct response as not watched

	Disconnect from wss://myhome/
	


2.2 Security
Existing standards SHOULD be used when applicable for OBIX WebSocket implementations including:

· RFC 4346/2246 – The TLS Protocol (Transport Layer Security) 
2.3 Localization
Servers SHOULD localize appropriate data based on the desired locale of the client agent. Localization SHOULD include the display and displayName attributes. The desired locale of the client SHOULD be determined through authentication. A suggested algorithm is to check if the authenticated user has a preferred locale configured in the server’s user database.

Localization MAY include auto-conversion of units. For example if the authenticated user has  configured a preferred unit system such as English versus Metric, then the server might attempt to convert values with an associated unit facet to the desired unit system.
3 Conformance

An implementation is conformant with this specification if it satisfies all of the MUST and REQUIRED level requirements defined herein for the functions implemented. Normative text within this specification takes 
precedence over normative outlines, which in turn take precedence over examples.

An implementation is a conforming OBIX Server if it meets the conditions described in Section 3.1. An 
implementation is a conforming OBIX Client if it meets the conditions described in Section 3.2. An 
implementation is a conforming OBIX Server and a conforming OBIX Client if it meets the conditions of 
both Sections 3.1and 3.2.

3.1 Conditions for conforming OBIX Server

1. An OBIX server MUST accept WebSocket connections and MUST return the Lobby object on successful connection.

2. An OBIX server MUST support the makePush operation of the obix:WatchService object.

3. An OBIX server MUST support the obix:Request, obix:Response and obix:Update contracts and return the request id “rid” within the obix:Response object.

3.2 Conditions for conforming OBIX Client

1. An conformant OBIX client must support WebSocket connections and the request flow as stated in Section 2.1.

2. A conformant implementation MUST generate request IDs for each obix:Request message

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants:

Gareth Johnson, Tridium Inc. 

Appendix B. Revision History

	Revision
	Date
	Editor
	Changes Made

	WD01
	1-Aug-2013
	Matthias Hub
	Initial submission

	WD02
	8-Aug-2013
	Toby Considine
	Moved to standard template, added some normative references

	WD03
	13-Aug-2013
	Matthias Hub
	Incorporated review comments by Gareth Johnson

	WD04
	15-Oct-2013
	Matthias Hub
	Incorporated review comments from TC: removed separate watch concept – instead re-using standard watch concept, added definition of Watch properties 



�I’d suggest not redefining here, but instead providing a reference to the place in the core spec where it is defined.


�I’m wondering if it might be better to define a new type, obix:WsWatch, which derives from obix:Watch, but adds these two additional properties.  This might be a little cleaner from the standards doc perspective.  However, it would probably make it harder to allow smooth transfer of a watch from WebSockets to non-WebSockets or vice-versa (per Toby’s use case from TC discussion 2013-10-17).  The other option, which we sort of hinted at, was moving this into the core – we could make these default to null=”true” unless used in the context of a WebSocket connection.


�I’m not totally jazzed about this name – it’s fairly long and doesn’t communicate the concept as clearly as I’d like – open to suggestions for better names.


�Same for this name – if you like the concept and have a better idea, let’s hear it.





obix-websocket-v1.0-wd02
Working Draft 02
08 August 2013
Standards Track Draft
Copyright © OASIS Open 2013. All Rights Reserved.
Page 3 of 16

