
Proposal for Adding Font Feature Support to the Open
Document Format

Keith Stribley (ThanLwinSoft) &
Martin Hosken (SIL International & Payap University)

1 Introduction
The 3 major font technologies in use in most Open Document Format implementations are OpenType,
Apple Advanced Typography (AAT) and Graphite. Each of these technologies supports “Font Features”
as a way to control rendering of a specific font-family beyond that allowed by just font-weight and
font-style. This proposal suggests two alternative ways of storing font feature information in the Open
Document Format, so that font features may be utilized in ODF documents.

Most of the time, font features will only be used by advanced users knowledgeable in typography, who
want more control over the appearance of their document. However, there may also be cases where
ethnic groups without explicit software support for their locale or language require a feature to be
applied to get correct rendering.

It might be thought that features could be avoided by just creating separate fonts for each feature
combination. However, some fonts have a very large number of features, for which it would not be
practical to create individual fonts for each permutation.

1.1 Examples
The Doulos SIL font has 27 different Graphite features (which would require over 100 million fonts to
represent all combinations). For example, one feature allows alternate glyphs to be used for Capital R
Tail; another changes the glyph of Uppercase Eng:

• ⱤŊ normal appearance

• ⱤŊ feature 1039=1 and feature 1024=2
The Padauk font uses features to enable different linguistic preferences to be displayed by the same
font:

• normal �ကကြိုutal=1ု�ကကြိို(tallုuုvowel)
• normal ကွကုwtri=1 ကွကု(triangular wasway)

These examples used Graphite, but similar capabilities are possible in OpenType and AAT fonts.

2 Font Technologies
The font feature characteristics of each font technology are described below. Each technology uses an
identifier for each feature. Each feature can be set a numeric value. In Open Type, the feature identifier
can be a 4 byte ASCII tag, which is represented by a 32 bit integer using big endian encoding. For
example, the 4 character ASCII tag “dflt” has a numeric value of 0x64666c74 (1684434036 decimal).
In AAT feature identifiers are numeric, and are given a more understandable English name in the Apple

1 30 August 2010

Feature Registry. Graphite has a 32 bit feature identifier which may be interpretted as an ASCII tag (if
the highest byte is set) or as an unsigned number.

2.1 Open Type
Open Type is probably the most widely used of the font technologies and was developed jointly by
Microsoft and Adobe. It uses features both for linguistic shaping determined by the script and language
of the text and for discretional features. It is probably only useful to allow the discretional features to
be specified in an ODF document, since the others will be controlled by the renderer such as Uniscribe
on Windows and ICU1 or Harfbuzz on other platforms. The script information can in most cases be
determined from the Unicode code points of a piece of text and the language is already storable in ODF
within the fo:language, style:language-asian and style:language-complex, XML attributes
(but note section 4.1).

OpenType Features are given an ASCII 4 character tag and their values are mostly boolean, though
some features such as alternate glyph selection allow unsigned 16 bit values.2 Feature names are
controlled by a central registry. Most registered features have a clear English definition, which could be
localized by the application. However, a few features such as character variants cv01 to cv99 and
stylistic sets ss01 to ss20 do have font specific localized names held in the name table.

2.2 Apple Advanced Typography
AAT is a technology developed by Apple on top of TrueType. AAT uses font features to allow
additional control of rendering in addition to that available by font weight, style and variant. Apple
maintains a central Tag Registry of font features which may be used. The feature names and settings
names are held in the font's name table, but for registered features, the names could be localized by the
application itself instead.

In some cases an AAT feature may be allowed to have multiple setting values for the same feature. This
is determined by the feature flag in the feat table.

2.3 Graphite
The features in Graphite fonts are controlled by the font designer, and so are only known to the
application at runtime. Font designers or foundries may choose to share font feature definitions
between similar fonts, but that is not enforced. The list of features and their available settings is held
inside the font in the Feat table (note upper case initial). The Sill table may change the default values
of features based on the language of the text (see also section 4.1).

Graphite features are identified by an unsigned 32 bit integer. A 4 byte ASCII character tag can also be
used, in which case, the tag is Big Endian encoded.

2.4 Comparison of Features used by different Font Technologies
The following table compares some of the main characteristics of font features between the different
technologies.

1 International Components in Unicode
2 http://www.microsoft.com/typography/otspec/gsub.htm#ASF1 see the GlyphCount field in the AlternateSet table.

2 30 August 2010

http://www.microsoft.com/typography/otspec/gsub.htm#ASF1

Technology OpenType Apple Advanced
Typography

Graphite

Set of Font Features Microsoft Tag registry
http://www.microsoft.co
m/typography/otspec/fe
aturetags.htm.

AAT Font Feature
Registry
http://developer.apple.co
m/fonts/Registry/index.
html

Controlled by font
designer for each font.
Accessible from font.

Feature identifier 4 byte ASCII tag, space
0x20 padded if
necessary.

Unsigned 16 bit integer Unsigned 32 bit integer
or 4 byte ASCII tag, 0x0
padded if necessary.

Feature Values Normally 0 or 1, but
may be unsigned 16 bit
integer3

Unsigned 16 bit integer Signed 16 bit integer

Default Feature Values Determined by layout
engine implementation.

Feature flags in feat
table.

First value listed in Feat
table, but may be
overridden for a specific
language code in the
Sill table.

Localization of feature
names & settings

External, except for
cvXX, ssXX

In name table or
external

In name table

Applicable TrueType
Tables

See individual feature
descriptions.
http://www.microsoft.co
m/typography/otspec/fe
aturetags.htm

feat Feat, Sill

3 Options for storing font feature information in ODF
Two options are presented here for storing font feature information in an ODF document:

1. Extend the existing face name to include a list of font features appended to it.

2. Add an additional style attribute to store font feature name, value pairs.

The first option does not require a change to the ODF schema, but it ought to be documented properly.
An application, which is not aware of the extended naming scheme will fail to match the font correctly,
even ignoring the feature settings. The second option requires a change to the ODF specification, but is
much clearer and more consistent with other font parameters.

3.1 Extended Face Names
In this case, the ODF schema remains unmodified, but the description of the font-family name
attributes needs to state that a list of features can be appended to the svg:font-family, fo:font-
family, style:font-family-complex and style:font-family-asian attributes' values.

3 http://msdn.microsoft.com/en-us/library/dd319096.aspx

3 30 August 2010

http://www.microsoft.com/typography/otspec/featuretags.htm
http://www.microsoft.com/typography/otspec/featuretags.htm
http://www.microsoft.com/typography/otspec/featuretags.htm
http://msdn.microsoft.com/en-us/library/dd319096.aspx
http://developer.apple.com/fonts/Registry/index.html
http://developer.apple.com/fonts/Registry/index.html
http://developer.apple.com/fonts/Registry/index.html
http://www.microsoft.com/typography/otspec/featuretags.htm
http://www.microsoft.com/typography/otspec/featuretags.htm
http://www.microsoft.com/typography/otspec/featuretags.htm

OpenOffice since 3.2 has supported Graphite font features using an extended naming scheme. A colon
':' is used to separate the family name from the feature list. Individual features are separated using
ampersand '&'. '=' is used to separate the feature identifier from the feature value, which is a decimal
integer. For example, for the face “Doulos SIL”, with the 1039 feature set to a value of 1 and the 1024
feature set to a value of 2, the extended' face name would become:
"Doulos SIL:1039=1&1024=2"
This results in a font-face entry of:
<style:font-face style:name="Doulos SIL:1039=1&1024=2" svg:font-
family="'Doulos SIL:1039=1&1024=2'"/>
or, in a graphics document, specified directly in text-properties:
<style:text-properties fo:font-family="'Doulos SIL:1039=1&1024=2'"/>
The “Padauk” font uses ASCII tag names for it's Graphite features, so the triangular wa feature wtri=1
and the tall U feature utal=1 would combine to give a face name of:
"Padauk:wtri=1&utal=1"
If extended face names are adopted, then the OpenDocument specification should be modified to
include a comment describing such names and recommending that applications without feature support
should just drop everything following a colon from the family name, since otherwise they will fall-back
to a completely different font-family.

':' was chosen to start the feature list since it is very unlikely to appear in a face-name. ',' and ';' cannot
be used to separate features, since they are already used to delimit a list of fallback fonts, hence '&' was
chosen. '&' is not found in any of the currently registered OpenType feature names and is unlikely to be
used in a feature identifier tag.

If multiple values are required for the same feature, as in AAT without the mutually exclusive flag set,
then each value should be specified sequentially e.g 15=6&15=8. The order of setting features is not
significant for Graphite or AAT, though it might in certain circumstances affect the result with
OpenType fonts, depending on how the renderer handles the order of processing OpenType lookups.

3.2 Additional Style Attributes
The current draft of CSS3 has a font-feature-settings property, which uses a comma separated list
of feature_identifier=feature_value pairs. This has already been implemented for at least the Mozilla
web browser.4 CSS2 is already referenced by the ODF specification, so it might be reasonable to
borrow from CSS3 to improve consistency between file formats. A reasonable solution, might therefore
be to use attributes something like:
css3:font-feature-settings
style:font-feature-settings-complex
style:font-feature-settings-asian
These refer to the Latin, Complex Text Layout and Asian script fonts respectively.

For Open Type and Graphite fonts using ASCII tag names, feature_ identifier would be an ASCII tag.
For AAT and Graphite fonts with purely numeric feature identifiers, then the feature_ identifier will be
an unsigned integer. The feature_value will always be a decimal integer and in the case of Graphite
fonts, may be signed.

4 https://wiki.mozilla.org/Platform/2010-08-03#Layout

4 30 August 2010

https://wiki.mozilla.org/Platform/2010-08-03#Layout

<style:text-properties style:font-name="Doulos SIL" css3:font-feature-
settings="1024=2,1039=1" style:font-name-complex="Padauk" style:font-feature-
settings-complex="wtri=1,utal=1"/>

4 Other considerations

4.1 Font Language Override
The CSS3 proposal contains a font-language-override property,5 which can be used to specify a
different language for the font renderer than that used by the text of the document for say spell-
checking. This may be useful if a font defines rendering variants for one language, which are also
applicable for another language which is not explicitly supported by the font. In this case the user might
want to specify the font-language-override to be the language supported by an OpenType or
Graphite feature set, but have the text language to be the actual language for spell-checking purposes.
Another possibility is where the font supports features for a language, but the ODF application does not
yet support that language in it's language list. The list of language codes supported by a font, is
accessible from the font's tables.

Allowing font-language-override would give more flexibility, but risks giving a confusing user-
interface. However, it may be worth adding for consistency with CSS3, in which case it will also need
Asian and Complex Text Layout variants. The interim extended face name support for Graphite
features in OpenOffice 3.2 currently allows for overriding the language name with a special lang=xyz
feature setting, where xyz is the ISO639-3 language code as used by the font to select a specific
combination of features.

4.2 Existing ODF mark-up implemented using Font Features
There are cases where existing ODF attributes overlap with some specific font features. For example,
ODF already uses the svg:font-variant attribute, which allows for small-caps and Open Type has
a smcp “Small Captials” feature and AAT has the “Letter Case” feature (3), which supports a “Small
Caps” selector (3). The application may choose to implement the small-caps feature variant using a
relevant font-feature, even when it has not been specified explicitly. If the alternative ODF markup and
the font-feature-settings attribute explicitly conflict, then the authors suggest that the font-
feature-settings value should win. In the case of small-caps, this would allow the user to enable
the application's synthetic small-caps, if the font's small-caps feature appearance is undesired.

4.3 Feature identifiers which overlap between rendering technologies
An OpenDocument file may be rendered using one font technology on one platform/application and
with another on another platform/application. There may be a theoretical case where a numeric font
identifier is used both in a Graphite version of the font and an AAT version of the font, but with a
different meaning for the value. It is up to the Graphite font designer to avoid such a problem.
Similarly, a Graphite ASCII tag could in theory conflict with an OpenType tag with a different
meaning. It might be possible to add a prefix to feature names which specified a fixed technology.
However, this issue would be best addressed by the font designer not using the same tag name for
different purposes in separate rendering technologies. The other ODF parameters are font-technology

5 http://dev.w3.org/csswg/css3-fonts/#propdef-font-language-override

5 30 August 2010

http://dev.w3.org/csswg/css3-fonts/#propdef-font-language-override

agnostic, so it is probably best to keep that true for font-features as well. It is up to the application to
ignore font-feature-settings which are inappropriate for the font rendering technology which is
currently in use.

4.4 User Interface for specifying features
An ODF application supporting font features will need a way to allow the user to select which features
are applied to text and set the features' values. This means that feature names and where more than one
exists, feature setting labels, will need to be localized. This is allowed for in Graphite and AAT fonts
already, but for most of the OpenType features, the list of registered feature descriptions would need to
be localized as part of the application's normal localization process.

Documents containing a mix of Latin, CTL and Asian scripts will need the features to be selectable
according to the font in use for each script type.

5 Conclusion
This proposal has presented two possible solutions for storing font feature information in the Open
Document Format. The extended face names described in 3.1 have already been implemented for
Graphite fonts as an interim measure in OpenOffice 3.2, however the authors would recommend 3.2 as
the best long term solution. Alternative XML mark-up to feature mappings could be used instead of
those presented in 3.2, but the font-feature-settings attribute already has a precedent in CSS3
and gives a high level of control, with minimum implementation cost. For full flexibility, it is worth
considering whether the font-language-override attribute from CSS3 should also be added.

6 References
The OASIS Open Document Format for Office Applications, OASIS OpenDocument TC, 8 July 2010,

http://docs.oasis-open.org/office/v1.2/cd05/.
Adding Font Feature Support to ODF, A Proposal, Martin Hosken & Tim Eves, 6 August 2008.
OpenType Layout tag registry, Microsoft, 4 April 2002,

http://www.microsoft.com/typography/otspec/featuretags.htm.
The 'feat' table, Apple, 18 May 2000,

http://developer.apple.com/fonts/TTRefMan/RM06/Chap6feat.html.
Font Feature Registry, Apple, 25 April 1996, http://developer.apple.com/fonts/Registry/index.html.
Graphite Table Format : Extending TrueType for Graphite, Version 4 , 18 May 2010, Martin Hosken

and Sharon Correll , http://scripts.sil.org/svn-public/graphite/graphite/trunk/engine/doc/GTF.odt.
Uniscribe Functions (Windows), Microsoft, 6 July 2010,

http://msdn.microsoft.com/en-us/library/dd374093.aspx.
CSS Fonts Module Level 3, John Daggett, Editor's Draft 10 August 2010,

http://dev.w3.org/csswg/css3-fonts/#propdef-font-feature-settings.

6 30 August 2010

http://www.microsoft.com/typography/otspec/featuretags.htm
http://dev.w3.org/csswg/css3-fonts/#propdef-font-feature-settings
http://docs.oasis-open.org/office/v1.2/cd05/
http://msdn.microsoft.com/en-us/library/dd374093.aspx
http://scripts.sil.org/svn-public/graphite/graphite/trunk/engine/doc/GTF.odt
http://developer.apple.com/fonts/Registry/index.html
http://developer.apple.com/fonts/TTRefMan/RM06/Chap6feat.html

	1 Introduction
	1.1 Examples

	2 Font Technologies
	2.1 Open Type
	2.2 Apple Advanced Typography
	2.3 Graphite
	2.4 Comparison of Features used by different Font Technologies

	3 Options for storing font feature information in ODF
	3.1 Extended Face Names
	3.2 Additional Style Attributes

	4 Other considerations
	4.1 Font Language Override
	4.2 Existing ODF mark-up implemented using Font Features
	4.3 Feature identifiers which overlap between rendering technologies
	4.4 User Interface for specifying features

	5 Conclusion
	6 References

