

ODF Modularization toward

Document 2.0

 Hisashi Miyashita, Daisuke Sato,

 Hironobu Takagi, and Chieko Asakawa

IBM Research, Tokyo Research Laboratory

1. Introduction

For many purposes related to collaboration and liberation of information, Office

documents are now aggressively used. Therefore, ODF should be convenient for wide

range of developers to create situational applications with less effort. However, the

specification of ODF is designed as a huge monolithic schema. That leads to two serious

problems: 1) poor programmability and 2) lack of interoperability. First, since ODF is

monolithic, developers must understand the whole of the specification to create ODF

based applications. The whole ODF specification is so large and complex that

supporting all the functionalities needs high development and maintenance cost.

Second, since supporting all the ODF functionalities is very difficult, developers tend to

support only a part of the functions. This may cause interoperability problems since

systems using ODF for communication do not know what functionalities the target

systems support.

Modularization can be a remedy for this situation, which is a standard technique to

divide a huge schema. For example, XHTML™ Modularization 1.1 decomposes a large

set of XHTML functionalities into about 30 modules, each of which is easy to mange and

implement. Developers of XHTML can choose the required modules to fit their own

purpose. By using XHTML Modularization, XHTML Basic is defined as a minimal set of

modules that many Web clients such as portable devices can easily support.

Likewise, ODF should be decomposed into fine-grained modules. Each of them should

be easy to understand and implement for users to make and maintain wide ranges of

Office applications with less cost.

 2

2. Issues

Along the line with that motivation, we attempt to modularize the ODF specification, and

notice that the namespaces in ODF are appropriate units for modularization. The

original ODF specification has 21 namespaces. The 14 namespaces of them are defined

by the ODF specification and the 4 of them come from the other sources such as W3C

specification and the 3 of them are used for compatibility with other XML vocabularies.

That means 7 (3 + 4) namespaces are relatively well modularized since all of them fit

with the other namespaces.

We examined the dependencies of the 14 ODF original namespaces by analyzing the ODF

RELAX NG schema We extracted the element dependencies and categorized them by

namespaces from the schema. In Figure 1, we show the element dependency graph of

ODF namespaces.

anim

chart

dr3d

1

table

1

text

1

config

dc

draw

11

1

math

1

office

4

presentation

2

svg

1

1

15

fn fo

form

1

1meta

number

style

2

11

2

1

25

1

1

7

5

script

1

7

2

10

27

xforms

1

1

16

smil

1

16

2

22

1

20

1

17

5

15

1

17

1

5

3

2

1

xlink

Figure 1: The dependency graph of ODF namespaces by elements. This graph is

automatically plotted by Graphviz. Each vertex represents an ODF namespace. Vertices

filled with lighter color means they have more element definitions. Each edge denotes

dependencies of elements and the adjacent number means the number of source elements

depended on target namespace.

 As we can tell from the graph, these namespaces have many mutual dependencies and

cannot be defined as distinct modules. For example, “form” namespace naturally uses

“text” namespace since text is essential to describe forms. However, since “text”

namespace also refers to “form” namespace, “text” and “form” namespaces are mutually

dependent as follows.

<element name="text:database-name">

 <ref name="common-field-database-table"/>

 <text/>

</element>

<define name="common-field-database-table">

 <ref name="common-field-database-table-attlist"/>

 3

 <ref name="common-field-database-name"/>

</define>

<define name="common-field-database-name" combine="choice">

 <optional>

 <attribute name="text:database-name">

 <ref name="string"/>

 </attribute>

 </optional>

</define>

<define name="common-field-database-name" combine="choice">

 <ref name="form-connection-resource"/>

</define>

<define name="form-connection-resource">

 <element name="form:connection-resource">

 <attribute name="xlink:href">

 <ref name="anyURI"/>

 </attribute>

 <empty/>

 </element>

</define>

As the above schema definitions taken from ODF schema show, text:database-name

refers to form:connection-data. Therefore, “text” namespace is dependent of “form”

namespace, which means we cannot “text” namespace as a module without “form”

namespace.

We found the mutual dependencies discussed so far are mostly caused by some

nonessential dependencies between various modules. For example, “style” namespace

refers to office:binary-data as follows.

<define name="style-background-image">

 <optional>

 <element name="style:background-image">

 <ref name="style-background-image-attlist"/>

 <choice>

 <ref name="common-draw-data-attlist"/>

 <ref name="office-binary-data"/>

 <empty/>

 </choice>

 </element>

 </optional>

</define>

In this example, style:background-image element refers to office-binary-data, which is

defined in “office” namespace as follows.

<define name="office-binary-data">

 <element name="office:binary-data">

 <ref name="base64Binary"/>

 4

 </element>

</define>

Such kind of binary data is not specific to the core feature of “office” document but a

generic data type. Actually, office-binary-data definition is referred by three

namespaces, “draw”, “style” and “text.” Only by defining such a generic data type,

those three namespaces depend on “office” namespace. That means if we use the

features provided by “text” namespace, we have to refer at least “style” and “draw”

namespaces because the features depend on these namespaces as well.

2.1 Dependencies by Elements

We carefully examined the dependencies in the schema of ODF 1.1 to specify what

prevents the modularization. We categorized the dependencies into the following four

cases.

E-A) Essential dependencies.

The dependencies are essential for ODF. Without these, ODF does not function

well.

E-B) Backward dependencies to “office” namespace.

Since “office” namespace contains the document element, any dependency to “office”

namespace is harmful for modularization. One exception is that draw:object refers

to office:document. This dependency is essential because draw:object can contain

any ODF document as its child.

E-C) Dependencies to “style” namespace.

“style” namespace refers to many other namespaces such as “presentation”, “draw”

and “text” to annotate objects with styles. Thus, any dependency to “style”

namespace causes lots of dependencies to such namespaces.

E-D) Cross dependencies to the major namespaces but not necessary ones.

The major namespaces such as “presentation”, “chart”, and “form” namespaces

classifies the major divisions of ODF usages, namely, presentations, charts for

spreadsheet, and forms. If “text” namespace refers to “presentation” namespace, only

using “text” in a document also requires “presentation” namespace. Thus, such

dependencies may prevent modularization.

Dependencies applicable to Cases E-B, E-C, and E-D are what we call “inappropriate

dependencies.” In Figure 2, we denote the inappropriate dependencies in ODF by the

dotted lines. As we can tell from this figure, by removing these inappropriate

dependencies, we can greatly reduce mutual dependencies, which prevent

modularization, among the ODF namespaces. Eventually, each namespace can be a

good candidate for a module.

 5

anim

chart

config

dc

dr3d

draw

fo

form

math

meta

number

office

presentation

script

smil

style

svg

table text

xforms

xlink

Figure 2 The dependencies among the ODF namespaces. The dotted lines represent

inappropriate dependencies.

We also list up the details of the inappropriate dependencies in Table 1.

Element Name Referrer Case Description

office:annotation table,text E-B

This specifies an OpenDocument annotation. The annotation's

text is contained in <text:p> and <text:list> elements.

This elements annotates display , position, size, style, text

anchor, caption points and so on.

office:binary-data style, text, draw E-B A container element for binary data in Base 64.

office:change-info table, text E-B

Meta-data for change tracking is contained inside an

<office:change-info> element. It contains the author and

creation date of a tracked change, as well as an optional

comment.

office:dde-source table, text E-B This contains DDE connection data.

office:event-listeners table, text, form, draw E-B
A container element for event elements associated with an

object

office:forms
style, table, draw,

 presentation
E-B

A container for user interface controls which a user interacts

with.

style:text-properties text, number E-C
It conveys various information on styles can be stored in

attributes such as fo:font-variant and fo:text-transform.

style:list-level-properties text E-C
It conveys various information on list-level styles can be stored

in attributes such as fo:text-align and text:space-before..

style:map number E-C

It specifies the mapping to another style. Possible attributes

are style:condition, style:apply-style-name, and

style:base-cell-address.

 6

presentation:animations draw E-D

A container element for animation effects, which refers to

variaous "anim" elements.

"draw" namespace refers to this by draw:page element.

presentation:notes draw,style E-D

This element contains presentation notes consisting of a

preview of the drawing page and additional graphic shapes.

"draw" namespace refers to this by draw:page element

"style" namespace refers to this by style:master-page element.

presentation:header text E-D

This element specifies a header field

"text" namespace refers to this because paragraph-content

allows it.

presentation:footer text E-D

This element specifies a footer field.

"text" namespace refers to this because paragraph-content

allows it.

presentation:date-time text E-D

This element specifies a date and time field.

"text" namespace refers to this because paragraph-content

allows it.

form:connection-resource text E-D

This element specifies the source database by XLink.

"text" namespace refers to this through

common-field-database-table.

Table 1 A list of elements making inappropriate dependencies.

2.2 Dependencies by Attributes

In ODF 1.1, there is a number of global attributes (806 global attributes). That is, these

attributes are specified as qualified names such as “office:name” so that the other

elements can reuse them. The global attributes in ODF make many complicated

dependencies among the namespaces. In Figure 3, we show the namespace

dependencies by attributes.
office

presentation

2

text

3

draw

11

table

6

form

2

script

1

svg

4style

2

3

1

4

xlink

4

chart

2

2

dr3d

11

4

1

4

2

33

fo

6 4

13

10

1

2 4

3

9

2 24

2

15

4 4

7

6

3

anim

6

3

smil

291

config

dc

2

25 4

6 fn

8

xforms

13

math

meta

1

5

number

2

3

2

3

Figure 3 The dependency graph of namespace by attributes.

The dependencies by attributes are much more complicated than those by elements.

This is because almost all of the ODF attributes are defined globally not locally.

 7

 We examined the dependencies by global attributes and classified them into 4

categories.

A-A) The attributes defined by another official specification such as XLink.

108 attributes are in this category. “svg” (SVG), “fo” (XSL-FO), “smil” (SMIL),

“xforms” (XForms), “fn” (XPath Functions), “dc” (Dublin Core), “math” (MathML)

and “xlink” (XLink) namespaces contains the vocabularies defined by the other

specification than ODF. Therefore, the vocabularies defined in these namespaces must

be independent of other ODF constructs.

A-B) The attributes referred only by the namespace defining it but not applicable to

this category.

 600 global attributes in ODF are in this category. Every attribute in this

category is used only by the elements in the namespace that the attribute belong to. For

example, anim:id is used only by the elements defined in “anim” namespace. These

attributes should have been defined locally in order to prevent other namespaces from

referring to these attributes.

A-C) The attributes referred by only one namespace (only one) but not referred by the

namespace defining it.

33 attributes are applicable to this category. Every attribute in this category is

NOT used by any elements in the namespace that the attribute belong to. Instead, the

elements in the other namespace refer to it. For example, style:leader-char is not used

by any elements in “style” namespace. It is used by text:index-entry-tab-stop element in

“text” namespace. And in any other namespace, there is no element using it. Such

attributes in this category should have been defined locally or in the referring

namespaces. In this example, style:leader-char attribute should have been defined

locally or as text:leader-char attribute.

A-D) Other global attributes.

The rest of the attributes (65 attributes) are in this category. These are used as

truly global attributes.

For modularization, we have to reconsider the attributes in Categories A-C and A-D,

which form dependencies between namespaces. In Tables 2 and 3, we list up all the

attributes in Categories A-C and A-D, respectively.

Attribute Referer

draw:opacity style

draw:shape-id presentation

form:apply-design-mode office

form:automatic-focus office

office:server-map draw

office:target-frame form

presentation:class draw

presentation:group-id anim

presentation:master-element anim

presentation:node-type anim

 8

presentation:placeholder draw

presentation:preset-class anim

presentation:preset-id anim

presentation:preset-sub-type anim

presentation:user-transformed draw

style:leader-char text

style:legend-expansion chart

style:legend-expansion-aspect-ratio chart

style:num-format text

style:num-letter-sync text

style:num-prefix text

style:num-suffix text

style:rel-height draw

style:volatile number

table:cell-range chart

table:structure-protected office

text:first-row-end-column table

text:first-row-start-column table

text:global office

text:last-row-end-column table

text:last-row-start-column table

text:paragraph-style-name table

text:use-soft-page-breaks office

Table 2 A List of Attributes in Category A-C.

Attribute Referer

dr3d:ambient-color dr3d chart

dr3d:distance dr3d chart

dr3d:focal-length dr3d chart

dr3d:lighting-mode dr3d chart

dr3d:projection draw dr3d chart

dr3d:shade-mode draw dr3d chart

dr3d:shadow-slant dr3d chart

dr3d:transform dr3d chart

dr3d:vpn dr3d chart

dr3d:vrp dr3d chart

dr3d:vup dr3d chart

draw:caption-id draw dr3d

draw:caption-point-x office draw

draw:caption-point-y office draw

draw:class-names office draw dr3d

draw:color presentation draw

draw:corner-radius office draw

draw:display-name svg draw

 9

draw:id office draw dr3d

draw:layer office draw dr3d

draw:name svg office draw

draw:style-name style presentation office draw dr3d

draw:text-style-name office draw

draw:transform office draw

draw:z-index office draw dr3d

office:automatic-update text office

office:boolean-value text table form

office:currency text table form

office:date-value text table form

office:dde-application text office

office:dde-item text office

office:dde-topic text office

office:name text office draw

office:string-value text table form

office:target-frame-name text meta draw

office:time-value text table form

office:title text draw

office:value-type text table form

office:value text table form

presentation:class-names office draw dr3d

presentation:presentation-page-layout-name style draw

presentation:style-name office draw dr3d

presentation:use-date-time-name style presentation draw

presentation:use-footer-name style presentation draw

presentation:use-header-name style presentation draw

script:event-name script presentation

script:language text script office

style:data-style-name text style presentation

style:display-name text style

style:name text style number

style:page-layout-name style presentation

style:position text style

style:rel-width style draw

style:type text style

table:cell-range-address table chart

table:end-cell-address office draw dr3d

table:end-x office draw dr3d

table:end-y office draw dr3d

table:protection-key table office

table:table-background office draw dr3d

text:anchor-page-number office draw dr3d

text:anchor-type office draw dr3d

text:id text draw

 10

text:name text table

text:style-name text table

Table 3 A List of Attributes in Category A-D.

Owing to a lot of global attributes in Categories A-C and A-D, we are not able to simply

modularize ODF schema by namespaces.

2.3 Inconsistent Styles of Schema Definitions

Schema rewriting is an essential technique to modularize schemas. We have to extend,

reuse, and modify original schemas to make distinct modules. The ODF schema is,

however, not organized enough to easily handle them. The problems we found are

threefold: 1) the styles of contents models are inconsistent; 2) the naming conventions are

not consistent; and 3) the schema excessively uses redefinition by RELAX NG combine

feature.

As for 1), inconsistent styles of content models are harmful for schema extension. For

example, office:styles element is defined as follows.

<define name="office-styles">

<optional>

<element name="office:styles">

 <interleave>

 <ref name="styles"/>

 <zeroOrMore><ref name="style-default-style"/></zeroOrMore>

 <optional><ref name="text-outline-style"/></optional>

 <zeroOrMore><refname="text-notes-configuration"/></zeroOrMore>

 <optional><ref name="text-bibliography-configuration"/></optional>

<!-- ….omitted…-->

</interleave>

 </element>

 </optional>

</define>

In this example, <ref name=“styles”/> is referred as a single pattern. In other words, it

is not specified with any extra patterns such as zeroOrMore and optional. Meanwhile,

the second content in this element is specified with zeroOrMore (<zeroOrMore><ref

name="style-default-style"/></zeroOrMore>). Therefore, readers of this schema may

well think that the content referred by <ref name=”styles”/> cannot be repeated or

omitted. However, “styles” is actually defined as follows.

<define name="styles">

 <interleave>

 <zeroOrMore><ref name="style-style"/></zeroOrMore>

 <zeroOrMore><ref name="text-list-style"/></zeroOrMore>

 <!—omitted -->

 <zeroOrMore><ref name="number-boolean-style"/></zeroOrMore>

 11

 <zeroOrMore><ref name="number-text-style"/></zeroOrMore>

 </interleave>

</define>

By reading this definition, readers can understand the contents in styles can be repeated.

It is known that by unifying the schema styles into one, we can avoid such confusion.

As for 2), inconsistent naming conventions of ODF schema make maintenance work hard.

For example, there exist two styles, namely “*-attlist” and “*-attrs”, to specify attribute

lists in ODF schema. “*-content” names go with the case as well.

As for 3), many names in ODF schema are excessively redefined. For example,

style-graphic-properties-attlist is redefined 116 times in the single ODF schema. Such a

style is quite hard to read since we do not know the final result until we read all the

definitions of the name.

3. Proposal

As we have seen so far, the current ODF has many problems for modularization. In

particular, many dependencies among namespaces are major obstacles for modularization

but removing such dependencies without careful consideration may cause incompatibility.

In order to avoid these problems, we propose a step-by-step solution for ODF

modularization as a form of roadmap.

3.1 Roadmap

Since ODF is a very large format, changing it gives a considerable impact on many

implementations and developers. Especially when modularization brings compatibility

issues, we have to carefully step forward in well-ordered way. Here we show a possible

roadmap to well modularized ODF specification.

 The first stage toward modularization is that we separate the dependencies that cause

mutual dependencies between namespaces. The second stage is that we should unify

naming conventions, schema styles. The third stage is that we should reallocate the

namespaces of some elements and attributes in order for each namespace to represent

each module. The forth stage is that we should reorganize modules into fine-grained

ones for better usability. We show the impacts of the changes by these stages in Table 4.

In this table, impacts are classified into three types as follows

(I-1) Changes in ODF Schema file catalogue.

 By the stage involving Impact (I-1), we have to reallocate ODF Schema into one

or more files. Although in the current ODF specification, the schema is stored in a

single file, some parts in the schema will be moved into other files.

(I-2) Changes in ODF Schema definitions and ODF specification

 By the stage involving Impact (I-2), we have to change some definitions in ODF

Schema, which will cause some modifications in ODF specification since the description

in the specification heavily depends on schema definitions.

 12

(I-3) ODF document instance incompatibility

 By the stage involving Impact (I-3), compatibility of ODF document instances

may not be kept. In other words, the document valid by the old schema may not be valid

by the new schema after the stage is done. This is the most serious impact in ODF

modularization. Therefore we should carefully step forward if the change has this

impact.

 Impact

Stage

(I-1) Changes in

ODF Schema file

catalogue

(I-2) Changes in Schema

definitions and ODF

specification

(I-3) ODF document

instance incompatibility

Stage 1 Yes No (except for adding some

extension points)

No

Stage 2 No Yes No

Stage 3 Possibly Yes Yes Possibly Yes

Stage 4 Yes Yes Possibly Yes

Table 4 The Impacts of the Changes by Modularization.

Next, we explain the details of these stages.

Stage 1) Separating Dependencies

As we have explained in Sections 2.1 and 2.2, ODF schema has many

dependencies between namespaces that discourage modularization. In this stage, we

separate such dependencies into distinct modules. If the users want to use such

dependencies, they only have to load the corresponding module. After this stage is

completed, users can choose modules for their own purpose with less extra modules.

Since this stage only adds some extension points to ODF schema, possible impacts at this

stage are so small, and the necessary changes in ODF specification will be small as well.

Stage 2) Unifying Naming Conventions and Schema Styles

 For the further schema modification, the current ODF schema has considerable

problems in defined names and styles. In this stage, we unify inconsistent names and

styles. For example, all the attribute lists should be named *-attlist, and all the content

model should be named *-content, and so on. In addition, we should unify schema style

into Garden of Eden style, which has advantages on schema extensibility and readability.

These modifications may introduce some incompatibility in ODF schema because some

definitions in RELAX NG will be changed. Therefore, the descriptions in ODF

specification have to be updated. However, after this stage is complete, users can easily

read and extend ODF schemas.

Stage 3) Reallocating Namespaces

The namespaces in the current ODF Schema are not always appropriate for better

modularization. In this stage, we should reallocate the functions of ODF into

well-chosen namespaces. Since this change will cause incompatibility problems, we

should carefully consider many issues around ODF (for example, implementations such

as OpenOffice.org) as well.

Stage 4) For Better Modularization

 13

Modules should be fine-grained if possible since fine-grained modules are more

consumable for many purposes. After this stage is complete, each ODF module is so

small that we can compose the modules to just fit with our requirement.

3.2 Stage 1 --- Separating Dependencies

Overview

At this stage, we separate the dependencies in ODF schema, and then form basic modules

based on the namespaces. By considering the ODF namespaces, we propose the

following 11 major modules are adequate for our objectives.

1. “common” module as a fundamental library

2. “office” as a container module

3. “text” as a text module

4. “style” as a style module

5. “presentation” as a presentation module

6. “chart” as a chart module

7. “draw” as a drawing module

8. “table” as a table module

9. “form” as a form module

10. “property” module

11. “connection” module

We show a schematic diagram of ODF modularization at this stage in Figure 4. In this

diagram, each box with relief denotes a major module and boxes in a major module are

submodules that depend on the major module. And arrows represent dependencies

between modules. Notice that we omit arrows between a submodule and a major

module. When a major module depends on another module through its submodule, the

dependency is effective only if the submodule is loaded. For example, “table” module

depends on “text” module if and only if “table-text” module is loaded. Hereafter, we call

such module “glue”. And 8 official modules, “svg”, “xlink”, “fo”, “dc”, “smil”, “fn”,

“xforms” and “math”, are separately defined and they should be maintained with

considering the original specifications. We do not consider “dr3d”, “number”, “anim”,

“config”, and “script” modules here since the dependencies involving them are so simple

that we can deal with them in a similar way.

 14

“ office” core module

office- style office- draw office- presentationoffice- text office- chartoffice- table office- form

“ text” core modules “ style” core module

“ common” module

“ chart”

 module

“ presentation”

 module

text- draw

text- table

text- property

“ svg” “ xlink” “ fo”

style- draw style- table

style- text
style-

presentation

text-

connection
“ form”

 module

form-

connection

“ connection”

module

“ property”

module

“ table” core module

table- text

table- draw

“ draw” core module

draw- table

draw- text

draw- office

“ dc” “ smil” “ fn” “ math”“ xforms”

Figure 4 A Schematic Modularization Diagram.

One of the goals at this stage is enabling us to make a simple text processing system by

choosing the smallest set of modules for it. For example, by choosing common, “office”

core, “text” core, office-text modules, we can make the simplest profile for such text

processing as shown in Figure 5. Although it cannot use any styles, drawings, nor

tables, it still process texts by ODF.

“ office” core module

office- text

“ text” core modules

common module

Figure 5 An Example of Module Conformation

Our Approach

 If we simply create modules by the ODF namespaces, these modules are tightly coupled

with each other as we have seen so far in Sections 2.1 and 2.2. At this point, we have

two alternatives to remove the dependencies unfavorable for modularization: 1) moving

 15

the elements and attributes making those dependencies to other namespaces; or 2)

isolating these elements and attributes to distinct modules with keeping their own

namespaces. Each alternative has pros and cons. Although changing the namespace of

an element or an attribute breaks compatibility of documents, we can recognize modules

only by looking at the namespace of an element or an attribute.

However, we think Option 2) is favorable since at this early stage we should give first

priority to compatibility of documents. For this option, we create three new modules,

“common”, “property”, and “connection” modules. Simply put, “common” module

contains definitions of elements, attributes, and datatypes referred by many modules;

“property” module contains many properties such as text properties and list level

properties; and “connection” module provides the definitions on database connection,

which may be used by “form” and “text” modules. By following this direction, the

elements in Category E-B) in Table 1 are accommodated in “common” module;

style:text-properties and style:list-level-properties are accommodated in “property”

module; and form:connection-resource is put in “connection” module.

Design of Glue

Glue plays a role of bridge between two modules. For example, text-conneciton glue

injects a dependency between “text” and “connection” modules. This would looks like the

followings.

<?xml version="1.0" encoding="UTF-8"?>

<grammar xmlns="http://relaxng.org/ns/structure/1.0">

 <define name="connection-resource.extra" combine="interleave">

 <ref name="form-connection-resource"/>

 </define>

</grammar>

where connection-resource.extra is a new extension point introduced in

common-field-database-name in “text” module, which is originally defined as follows.

 <define name="common-field-database-name">

 <choice>

 <optional>

 <attribute name="text:database-name">

 <ref name="string"/>

 </attribute>

 </optional>

 <ref name="form-connection-resource"/>

 </choice>

 </define>

Since this definition directly depends on form-connection-resource, we change it as

follows to remove the dependency with introducing connection-resource.extra.

 <define name="common-field-database-name">

 <choice>

 16

 <optional>

 <attribute name="text:database-name">

 <ref name="string"/>

 </attribute>

 </optional>

 <ref name="connection-resource.extra"/>

 </choice>

 </define>

After this modification, “text” module does not directly depend on

form-connection-resource defining form:connection-resource element. By loading

text-connection glue, “text” module can use it since connection-resource.extra is

redefined.

By moving the dependencies by the elements in Categories E-C and E-D into appropriate

glue, we can remove the dependencies hindering modularization from the major modules.

Global Attributes

As we have seen in Section 2.2, the attributes in Categories A-C) and A-D) are

problematic for modularization. Although it is the best way to redesign them to reduce

the complicated dependencies, modifying any definitions of these attributes would break

compatibility of ODF instances. Therefore, at this stage, we should only move these

attributes to common module. Because any attribute has a datatype as its child and

does not have any children, moving them into common module does not make any

dependencies to common module. Other attributes in Categories A-A) and A-B) should

be left unmoved since they do not prevent modularization.

3.3 Stage 2 --- Unifying Naming Conventions and
Schema Styles

Overview

In the specification of ODF, ODF Schema plays an important role. It actually defines

and classifies the vocabularies of ODF. Therefore, keeping ODF schema clean and easy

to handle is deeply important also for modularization. If we can extend ODF schema

without changing the original version, the other external module will work well with

ODF without changing it. At this stage, we focus on unifying inconsistent naming

conventions and schema styles in ODF schema. This stage involves Impact I-2

described in Section 3.1 since we have to change some defined names and content

models in the schema. That leads updating many descriptions in ODF specification

since the specification heavily depends on the schema.

 17

Naming Conventions

ODF schema has few naming conventions in the defined names unlike the W3C XML

specification [XMLSpecGuide]. In the W3C XML specification, parameter entities (like

defined names in RELAX NG) strictly follow the following typologies.

- *.att

 It is used for any definition of attribute(s).

- *.class

 It is used for any content model

- *.mix

 It is used for free mixtures (repeatable OR) referred by some content model.

- local.*

 It is used for extension points.

- *.mdl

 It is used for content model fragments (not free mixtures) common or

customizable.

Unified naming conventions are helpful for schema users to understand and extend the

schema. Thus, we should do the same thing for ODF schema for further modularization

and extension. We propose the following naming conventions for ODF schema

- *.attlist

 It is for definitions of attribute(s).

- *.class

 It is for content models.

- *.element

 It is for element definitions

- *.extra

 It is for extension points.

- *.model

 It is for content any model fragments.

Note that all the conventions use a period “.” to specify the suffices since any periods are

not used for the current ODF schema.

Schema Style

XML schema design patterns are a useful technique that makes schemas readable and

extensible by unifying styles of schema definitions. The most common XML schema

design patterns are Russian Doll, Salami Slice, Venetian Blind, and Garden of Eden [DP].

In Table ?, we list up these 4 styles.

Design Pattern Description Pros. Cons.

Russian Doll Only a document element

is defined globally, and

others are defined locally.

Simple.

Can reuse the

entire construct or

nothing.

Salami Slice Define all the elements in

a document.

Can reuse schema

per element

Cannot extend any

content models.

 18

Venetian Blind Define all the content

models in a document.

Can reuse or

extend content

models in a

schema.

-Sometimes

Complicated.

-Cannot reuse

elements.

Garden of Eden Define both all the

elements and the contents

models in a document.

Can reuse and

extends elements

and contents

models.

Sometimes

Complicated.

 However, the current ODF schema does not follow a consistent schema style as we

discussed in Section 2.3. We propose “Garden of Eden” style is favorable for ODF

schema. According to our experiment of rewriting the current schema to “Garden of

Eden” style, 63 definitions can be reduced to the same definition. That means “Garden

of Eden” style simplify ODF schema with allowing maximum extensibility and

reusability.

3.4 Stage 3 --- Reallocating Namespaces

Namespace is an important feature in XML for modularization since namespace is vital

for two purposes: 1) multiple vocabularies and 2) structured extension. The first one,

multiple vocabularies, is essential for modularization. By using namespace, we can

accommodate multiple vocabularies in a single document without conflicting among

these. The second one, structured extension, is essential for schema extension. By

giving another namespace than those of ODF schema, users can allow their own

extensions and put them in the existing documents without confusion.

Therefore, giving a unique namespace to each module in ODF modularization is a

necessary step for the future. However, at Stage 1, some elements and attributes are

allocated to distinct modules even though they have the same namespace. At this stage,

we reallocate namespaces for the ODF modules.

Unfortunately, reallocating namespaces may involve document instance level

incompatibilities since the elements or attributes having different namespaces are

considered different vocabularies without any special specification such as markup

compatibility in OOXML.

3.5 Stage 4 --- For Better Modularization

Since this stage, the design of modularization is decided by the organization of the

current ODF namespace mainly for keeping compatibility. At this stage, however, we

redesign ODF modularization for more reusable, robust, and extensible one. We propose

the following aspects to be considered at this stage.

- Fine-granularity

Large and versatile modules are not adequate to use for many purposes. On the

contrary, fine-grained modules can be fitted for different kind of purposes by

appropriately choosing such modules.

 19

- Understandability

Easy module should be so understandable that developers use it with less effort.

Uniformity, Simplicity and Consistency in modules are essential for

understandability.

- Extensibility

Each module should be extensible enough to allow user’s customization and endure

for a long time. Deliberate definitions of content models and namespaces are

essential for extensibility.

- Composability

Modules should be as much composable as they can be for a wide range of usages.

Inappropriate dependencies among modules prevent us from composing them.

Although in this paper, we do not give a concrete design of better modularization of ODF,

we should give a good modularization design to ODF specification since this step will be

important in the long run.

4 Concluding Remarks

ODF Modularization is an important step for securing better programmability and

interoperability. We found, however, the current ODF specification is not designed to be

modularized mainly due to the complicated mutual dependencies. We propose

step-by-step solutions by 4 stages for modularization. At Stage 1, we concentrate on

separating dependencies that prevent modularization by introducing glue, which conveys

bridges between two modules. By this operation, we can decompose 11 major modules

and it should be stressed that the impact by this change is so small that ODF

specification is not required to be updated drastically. At Stage 2, we unify the naming

conventions by following typical XML specifications such as the W3C XML spec. And we

adopt “Garden of Eden” schema design pattern to ODF schema. These contribute

extensibility and readability of ODF schema. At Stage 3, we reallocate a unique

namespace to each module for programs to easily handle the modules by looking at their

namespaces. Finally, at Stage 4, we redesign the modules to attain fine-granularity,

understandability, extensibility, and composability. Since standardization is essential to

achieve these steps, we request many feedbacks for this proposal to build a consensus

among the parties interested in ODF.

5 References

[DP] Ayub Khan and Marina Sum, Introducing Design Patterns in XML Schemas, 2006,

http://developers.sun.com/prodtech/javatools/jsenterprise/nb_enterprise_pack/reference/te

chart/design_patterns.html

[XMLSpecGuide] Eve Maler, Guide to the W3C XML Specification (“XMLspec”) DTD,

Version 2.1, http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm

http://developers.sun.com/prodtech/javatools/jsenterprise/nb_enterprise_pack/reference/techart/design_patterns.html
http://developers.sun.com/prodtech/javatools/jsenterprise/nb_enterprise_pack/reference/techart/design_patterns.html
http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm

