

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 1 of 141

 1

eXtensible Access Control Markup Language 2

(XACML) Version 2.0 3

OASIS Standard, 1 Feb 2005 4

Document Identifier: oasis-access_control-xacml-2.0-core-spec-os 5

Location: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf 6

Editor: 7
Tim Moses, Entrust Inc. (tim.moses@entrust.com) 8

Abstract: 9

This specification defines version 2.0 of the extensible access-control markup language. 10

Status: 11

This version of the specification is an approved OASIS Standard within the OASIS Access 12
Control TC. 13

Access Control TC members should send comments on this specification to the 14
xacml@lists.oasis-open.org list. Others may use the following link and complete the 15
comment form: http://oasis-open.org/committees/comments/form.php?wg_abbrev=xacml. 16

For information on whether any patents have been disclosed that may be essential to 17
implementing this specification, and any offers of patent licensing terms, please refer to the 18
Intellectual Property Rights section of the Access Control TC web page (http://www.oasis-19
open.org/committees/tc_home.php?wg_abbrev=xacml). 20
For any errata page for this specification, please refer to the Access Control TC web page 21
(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml). 22

The non-normative errata page for this specification is located at 23

www.oasis-open.org/committees/access-control. 24
Copyright © OASIS Open 2004-2005 All Rights Reserved. 25

jhodges
This document is an extraction of the terminology and models sections from the XACML 2.0 spec, which is likely useful as a reference for the ORMS work.

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 8 of 141

 227

1. Introduction (non-normative) 228

1.1. Glossary 229

1.1.1 Preferred terms 230

Access - Performing an action 231

Access control - Controlling access in accordance with a policy 232

Action - An operation on a resource 233

Applicable policy - The set of policies and policy sets that governs access for a specific 234
decision request 235

Attribute - Characteristic of a subject, resource, action or environment that may be referenced 236
in a predicate or target (see also – named attribute) 237

Authorization decision - The result of evaluating applicable policy, returned by the PDP to the 238
PEP. A function that evaluates to “Permit”, “Deny”, “Indeterminate” or “NotApplicable", and 239
(optionally) a set of obligations 240

Bag – An unordered collection of values, in which there may be duplicate values 241

Condition - An expression of predicates. A function that evaluates to "True", "False" or 242
“Indeterminate” 243

Conjunctive sequence - a sequence of predicates combined using the logical ‘AND’ operation 244

Context - The canonical representation of a decision request and an authorization decision 245

Context handler - The system entity that converts decision requests in the native request format 246
to the XACML canonical form and converts authorization decisions in the XACML canonical form 247
to the native response format 248

Decision – The result of evaluating a rule, policy or policy set 249

Decision request - The request by a PEP to a PDP to render an authorization decision 250

Disjunctive sequence - a sequence of predicates combined using the logical ‘OR’ operation 251

Effect - The intended consequence of a satisfied rule (either "Permit" or "Deny") 252

Environment - The set of attributes that are relevant to an authorization decision and are 253
independent of a particular subject, resource or action 254

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 9 of 141

Named attribute – A specific instance of an attribute, determined by the attribute name and type, 255
the identity of the attribute holder (which may be of type: subject, resource, action or 256
environment) and (optionally) the identity of the issuing authority 257

Obligation - An operation specified in a policy or policy set that should be performed by the PEP 258
in conjunction with the enforcement of an authorization decision 259

Policy - A set of rules, an identifier for the rule-combining algorithm and (optionally) a set of 260
obligations. May be a component of a policy set 261

Policy administration point (PAP) - The system entity that creates a policy or policy set 262

Policy-combining algorithm - The procedure for combining the decision and obligations from 263
multiple policies 264

Policy decision point (PDP) - The system entity that evaluates applicable policy and renders an 265
authorization decision. This term is defined in a joint effort by the IETF Policy Framework 266
Working Group and the Distributed Management Task Force (DMTF)/Common Information Model 267
(CIM) in [RFC3198]. This term corresponds to "Access Decision Function" (ADF) in [ISO10181-3]. 268

Policy enforcement point (PEP) - The system entity that performs access control, by making 269
decision requests and enforcing authorization decisions. This term is defined in a joint effort by 270
the IETF Policy Framework Working Group and the Distributed Management Task Force 271
(DMTF)/Common Information Model (CIM) in [RFC3198]. This term corresponds to "Access 272
Enforcement Function" (AEF) in [ISO10181-3]. 273

Policy information point (PIP) - The system entity that acts as a source of attribute values 274

Policy set - A set of policies, other policy sets, a policy-combining algorithm and (optionally) a 275
set of obligations. May be a component of another policy set 276

Predicate - A statement about attributes whose truth can be evaluated 277

Resource - Data, service or system component 278

Rule - A target, an effect and a condition. A component of a policy 279

Rule-combining algorithm - The procedure for combining decisions from multiple rules 280

Subject - An actor whose attributes may be referenced by a predicate 281

Target - The set of decision requests, identified by definitions for resource, subject and action, 282
that a rule, policy or policy set is intended to evaluate 283

Type Unification - The method by which two type expressions are "unified". The type expressions 284
are matched along their structure. Where a type variable appears in one expression it is then 285
"unified" to represent the corresponding structure element of the other expression, be it another 286
variable or subexpression. All variable assignments must remain consistent in both structures. 287
Unification fails if the two expressions cannot be aligned, either by having dissimilar structure, or by 288
having instance conflicts, such as a variable needs to represent both "xs:string" and "xs:integer". 289
For a full explanation of type unification, please see [Hancock]. 290

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 16 of 141

The use of constraints limiting the applicability of a policy were described by Sloman [Sloman94]. 533

2.11. Abstraction layer 534

PEPs come in many forms. For instance, a PEP may be part of a remote-access gateway, part of 535
a Web server or part of an email user-agent, etc.. It is unrealistic to expect that all PEPs in an 536
enterprise do currently, or will in the future, issue decision requests to a PDP in a common format. 537
Nevertheless, a particular policy may have to be enforced by multiple PEPs. It would be inefficient 538
to force a policy writer to write the same policy several different ways in order to accommodate the 539
format requirements of each PEP. Similarly attributes may be contained in various envelope types 540
(e.g. X.509 attribute certificates, SAML attribute assertions, etc.). Therefore, there is a need for a 541
canonical form of the request and response handled by an XACML PDP. This canonical form is 542
called the XACML context. Its syntax is defined in XML schema. 543

Naturally, XACML-conformant PEPs may issue requests and receive responses in the form of an 544
XACML context. But, where this situation does not exist, an intermediate step is required to 545
convert between the request/response format understood by the PEP and the XACML context 546
format understood by the PDP. 547

The benefit of this approach is that policies may be written and analyzed independent of the 548
specific environment in which they are to be enforced. 549

In the case where the native request/response format is specified in XML Schema (e.g. a SAML-550
conformant PEP), the transformation between the native format and the XACML context may be 551
specified in the form of an Extensible Stylesheet Language Transformation [XSLT]. 552

Similarly, in the case where the resource to which access is requested is an XML document, the 553
resource itself may be included in, or referenced by, the request context. Then, through the use 554
of XPath expressions [XPath] in the policy, values in the resource may be included in the policy 555
evaluation. 556

2.12. Actions performed in conjunction with enforcement 557

In many applications, policies specify actions that MUST be performed, either instead of, or in 558
addition to, actions that MAY be performed. This idea was described by Sloman [Sloman94]. 559
XACML provides facilities to specify actions that MUST be performed in conjunction with policy 560
evaluation in the <Obligations> element. This idea was described as a provisional action by 561
Kudo [Kudo00]. There are no standard definitions for these actions in version 2.0 of XACML. 562
Therefore, bilateral agreement between a PAP and the PEP that will enforce its policies is required 563
for correct interpretation. PEPs that conform with v2.0 of XACML are required to deny access 564
unless they understand and can discharge all of the <Obligations> elements associated with the 565
applicable policy. <Obligations> elements are returned to the PEP for enforcement. 566

3. Models (non-normative) 567

The data-flow model and language model of XACML are described in the following sub-sections. 568

3.1. Data-flow model 569

The major actors in the XACML domain are shown in the data-flow diagram of Figure 1. 570

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 17 of 141

PEP

context
handler

4. request
notification

PIP

6. attribute
query

11. response
context

1. policy

8. attribute

environm ent

resource

subjects

7b. environm ent
attributes

PAP

obligations
service

13. obligations

PD P

access
requester

2. access request

9. resource
content

3. request 12. response

7c. resource
attributes

7a. subject
attributes

5. attribute
queries

10. attributes

 571

Figure 1 - Data-flow diagram 572

Note: some of the data-flows shown in the diagram may be facilitated by a repository. For instance, 573
the communications between the context handler and the PIP or the communications between the 574
PDP and the PAP may be facilitated by a repository. The XACML specification is not intended to 575
place restrictions on the location of any such repository, or indeed to prescribe a particular 576
communication protocol for any of the data-flows. 577

The model operates by the following steps. 578

1. PAPs write policies and policy sets and make them available to the PDP. These policies or 579
policy sets represent the complete policy for a specified target. 580

2. The access requester sends a request for access to the PEP. 581

3. The PEP sends the request for access to the context handler in its native request format, 582
optionally including attributes of the subjects, resource, action and environment. 583

4. The context handler constructs an XACML request context and sends it to the PDP. 584

5. The PDP requests any additional subject, resource, action and environment attributes from 585
the context handler. 586

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 18 of 141

6. The context handler requests the attributes from a PIP. 587

7. The PIP obtains the requested attributes. 588

8. The PIP returns the requested attributes to the context handler. 589

9. Optionally, the context handler includes the resource in the context. 590

10. The context handler sends the requested attributes and (optionally) the resource to the PDP. 591
The PDP evaluates the policy. 592

11. The PDP returns the response context (including the authorization decision) to the context 593
handler. 594

12. The context handler translates the response context to the native response format of the 595
PEP. The context handler returns the response to the PEP. 596

13. The PEP fulfills the obligations. 597

14. (Not shown) If access is permitted, then the PEP permits access to the resource; otherwise, it 598
denies access. 599

3.2. XACML context 600

XACML is intended to be suitable for a variety of application environments. The core language is 601
insulated from the application environment by the XACML context, as shown in Figure 2, in which 602
the scope of the XACML specification is indicated by the shaded area. The XACML context is 603
defined in XML schema, describing a canonical representation for the inputs and outputs of the 604
PDP. Attributes referenced by an instance of XACML policy may be in the form of XPath 605
expressions over the context, or attribute designators that identify the attribute by subject, 606
resource, action or environment and its identifier, data-type and (optionally) its issuer. 607
Implementations must convert between the attribute representations in the application environment 608
(e.g., SAML, J2SE, CORBA, and so on) and the attribute representations in the XACML context. 609
How this is achieved is outside the scope of the XACML specification. In some cases, such as 610
SAML, this conversion may be accomplished in an automated way through the use of an XSLT 611
transformation. 612

domain-specific
inputs

domain-specific
outputs

xacml Context/
Request.xml

xacml Context/
Response.xmlPDP

xacml
Policy.xml

 613

Figure 2 - XACML context 614

Note: The PDP is not required to operate directly on the XACML representation of a policy. It may 615
operate directly on an alternative representation. 616

See Section 7.2.5 for a more detailed discussion of the request context. 617

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 19 of 141

3.3. Policy language model 618

The policy language model is shown in Figure 3. The main components of the model are: 619

• Rule; 620

• Policy; and 621

• Policy set. 622

These are described in the following sub-sections. 623

1

0..*

1

0..*

1

0..*

Condition

Target

Rule

1

0..1

Policy

1

1

Obligation

1

1

1

0..*

1 0..*

ActionResourceSubject

PolicySet

1

0..*

1

1

Policy
Combining
Alogorithm

Rule
Combining
Algorithm

1

0..*

1

0..1

11

Effect

1

1

Environment

1

0..*

1
0..*

 624

Figure 3 - Policy language model 625

3.3.1 Rule 626

A rule is the most elementary unit of policy. It may exist in isolation only within one of the major 627
actors of the XACML domain. In order to exchange rules between major actors, they must be 628

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 20 of 141

encapsulated in a policy. A rule can be evaluated on the basis of its contents. The main 629
components of a rule are: 630

• a target; 631

• an effect and 632

• a condition. 633

These are discussed in the following sub-sections. 634

3.3.1.1. Rule target 635

The target defines the set of: 636

• resources; 637

• subjects; 638

• actions and 639

• environment 640

to which the rule is intended to apply. The <Condition> element may further refine the 641
applicability established by the target. If the rule is intended to apply to all entities of a particular 642
data-type, then the corresponding entity is omitted from the target. An XACML PDP verifies that 643
the matches defined by the target are satisfied by the subjects, resource, action and 644
environment attributes in the request context. Target definitions are discrete, in order that 645
applicable rules may be efficiently identified by the PDP. 646

The <Target> element may be absent from a <Rule>. In this case, the target of the <Rule> is 647
the same as that of the parent <Policy> element. 648

Certain subject name-forms, resource name-forms and certain types of resource are internally 649
structured. For instance, the X.500 directory name-form and RFC 822 name-form are structured 650
subject name-forms, whereas an account number commonly has no discernible structure. UNIX 651
file-system path-names and URIs are examples of structured resource name-forms. And an XML 652
document is an example of a structured resource. 653

Generally, the name of a node (other than a leaf node) in a structured name-form is also a legal 654
instance of the name-form. So, for instance, the RFC822 name "med.example.com" is a legal 655
RFC822 name identifying the set of mail addresses hosted by the med.example.com mail server. 656
And the XPath/XPointer value //xacml-context:Request/xacml-context:Resource/xacml-657
context:ResourceContent/md:record/md:patient/ is a legal XPath/XPointer value identifying a 658
node-set in an XML document. 659

The question arises: how should a name that identifies a set of subjects or resources be 660
interpreted by the PDP, whether it appears in a policy or a request context? Are they intended to 661
represent just the node explicitly identified by the name, or are they intended to represent the entire 662
sub-tree subordinate to that node? 663

In the case of subjects, there is no real entity that corresponds to such a node. So, names of this 664
type always refer to the set of subjects subordinate in the name structure to the identified node. 665
Consequently, non-leaf subject names should not be used in equality functions, only in match 666
functions, such as “urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match” not 667
“urn:oasis:names:tc:xacml:1.0:function:rfc822Name-equal” (see Appendix A). 668

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 21 of 141

3.3.1.2. Effect 669

The effect of the rule indicates the rule-writer's intended consequence of a "True" evaluation for 670
the rule. Two values are allowed: "Permit" and "Deny". 671

3.3.1.3. Condition 672

Condition represents a Boolean expression that refines the applicability of the rule beyond the 673
predicates implied by its target. Therefore, it may be absent. 674

3.3.2 Policy 675

From the data-flow model one can see that rules are not exchanged amongst system entities. 676
Therefore, a PAP combines rules in a policy. A policy comprises four main components: 677

• a target; 678

• a rule-combining algorithm-identifier; 679

• a set of rules; and 680

• obligations. 681

Rules are described above. The remaining components are described in the following sub-682
sections. 683

3.3.2.1. Policy target 684

An XACML <PolicySet>, <Policy> or <Rule> element contains a <Target> element that 685
specifies the set of subjects, resources, actions and environments to which it applies. The 686
<Target> of a <PolicySet> or <Policy> may be declared by the writer of the <PolicySet> or 687
<Policy>, or it may be calculated from the <Target> elements of the <PolicySet>, <Policy> 688
and <Rule> elements that it contains. 689

A system entity that calculates a <Target> in this way is not defined by XACML, but there are two 690
logical methods that might be used. In one method, the <Target> element of the outer 691
<PolicySet> or <Policy> (the "outer component") is calculated as the union of all the 692
<Target> elements of the referenced <PolicySet>, <Policy> or <Rule> elements (the "inner 693
components"). In another method, the <Target> element of the outer component is calculated as 694
the intersection of all the <Target> elements of the inner components. The results of evaluation in 695
each case will be very different: in the first case, the <Target> element of the outer component 696
makes it applicable to any decision request that matches the <Target> element of at least one 697
inner component; in the second case, the <Target> element of the outer component makes it 698
applicable only to decision requests that match the <Target> elements of every inner 699
component. Note that computing the intersection of a set of <Target> elements is likely only 700
practical if the target data-model is relatively simple. 701

In cases where the <Target> of a <Policy> is declared by the policy writer, any component 702
<Rule> elements in the <Policy> that have the same <Target> element as the <Policy> 703
element may omit the <Target> element. Such <Rule> elements inherit the <Target> of the 704
<Policy> in which they are contained. 705

access_control-xacml-2.0-core-spec-os 1 February 2005
Copyright © OASIS Open 2004. All Rights Reserved. Page 22 of 141

3.3.2.2. Rule-combining algorithm 706

The rule-combining algorithm specifies the procedure by which the results of evaluating the 707
component rules are combined when evaluating the policy, i.e. the Decision value placed in the 708
response context by the PDP is the value of the policy, as defined by the rule-combining 709
algorithm. A policy may have combining parameters that affect the operation of the rule-710
combining algorithm. 711

See Appendix C for definitions of the normative rule-combining algorithms. 712

3.3.2.3. Obligations 713

Obligations may be added by the writer of the policy. 714

When a PDP evaluates a policy containing obligations, it returns certain of those obligations to 715
the PEP in the response context. Section 7.14 explains which obligations are to be returned. 716

3.3.3 Policy set 717

A policy set comprises four main components: 718

• a target; 719

• a policy-combining algorithm-identifier 720

• a set of policies; and 721

• obligations. 722

The target and policy components are described above. The other components are described in 723
the following sub-sections. 724

3.3.3.1. Policy-combining algorithm 725

The policy-combining algorithm specifies the procedure by which the results of evaluating the 726
component policies are combined when evaluating the policy set, i.e. the Decision value placed 727
in the response context by the PDP is the result of evaluating the policy set, as defined by the 728
policy-combining algorithm. A policy set may have combining parameters that affect the 729
operation of the policy-combining algorithm. 730

See Appendix C for definitions of the normative policy-combining algorithms. 731

3.3.3.2. Obligations 732

The writer of a policy set may add obligations to the policy set, in addition to those contained in 733
the component policies and policy sets. 734

When a PDP evaluates a policy set containing obligations, it returns certain of those obligations 735
to the PEP in its response context. Section 7.14 explains which obligations are to be returned. 736

