PAGE

- 3 -

2 Privacy by Design for Software Engineers
This section describes the default context of Privacy by Design and lays out the meaning of its principles in terms specific to software engineers.

The Privacy by Design (PbD) framework was unanimously approved by international privacy and data protection authorities in as an international standard in October 2010.

The Privacy by Design framework consists of seven high-level and interrelated principles that extend traditional Fair Information Practice Principles (FIPPs) to prescribe the strongest possible level of privacy assurance. A mapping of PbD principles to the FIPPs is provided below.
Table: Privacy by Design Principles Mapped to Fair Information Practice Principles
	PbD Principles
	Meta-FIPPs
	Traditional FIPPs

	1. Proactive Not Reaction; Preventative Not Remedial
	Leadership & Goal-Setting

	2. Privacy as the Default (Setting)
	Data Minimization
	Purpose Specification

Collection Limitation

Use, Retention & Disclosure Limitation

	3. Privacy Embedded into Design
	Verifiable Methods

	4. Full Functionality –
Positive-Sum, not Zero-Sum
	Quantitative Results

	5. End-to-End
Life-Cycle Protection
	Safeguards
	Safeguards

	6. Openness and transparency
	Accountability
(beyond data subject)
	Accountability

Openness

Compliance

	7. Respect for User Privacy
	Individual Participation
	Consent

Accuracy

Access

 Redress

Source: Privacy by Design: The 7 Foundational Principles Implementation and Mapping of Fair Information Practices at www.ipc.on.ca/images/Resources/pbd-implement-7found-principles.pdf
As with traditional FIPPs, PbD principles set forth both substantive and procedural privacy requirements, and can be applied universally to information technologies, organizational systems and networked architectures. This Specification prescribes the application of PbD principles to software engineering documentation.

2.1 Review the PbD Principles and their Purposes

The Seven (7) Foundational Principles of Privacy by Design are:

1. Proactive not Reactive; Preventative Not Remedial

2. Privacy as the Default Setting

3. Privacy Embedded into Design

4. Full Functionality - Positive-Sum, Not Zero-Sum

5. End-to-End Security - Full Lifecycle Protection

6. Visibility and Transparency - Keep It Open

7. Respect for User Privacy - Keep It User-Centric

**Ensure that the whole team and executive level understand the PbD principles
This specification enables software organizations to embed privacy into the design and architecture of IT systems, without diminishing system functionality
2.1.1 Proactive not Reactive; Preventative not Remedial

** focus on sub-componentizing and emphases for the software engineer
This principle emphasizes early privacy risk mitigation methods, and requires a clear commitment, at the highest levels, to set and enforce high standards of privacy – generally higher than the standards set by laws and regulation. This privacy commitment is to be demonstrably shared throughout by user communities and stakeholders in a culture of continuous improvement.
2.1.1.1 Demonstrable Leadership
Software engineering methods and procedures SHOULD be in place to ensure that ensure a clear commitment, at the highest levels, to prescribe and enforce high standards of privacy protection, generally higher than prevailing legal requirements.

2.1.1.2 Defined Community of Practice
Software engineering methods and procedures SHOULD be in place to ensure that a demonstrable privacy commitment is shared by organization members, user communities and stakeholders.

2.1.1.3 Proactive and Iterative
Software engineering methods and procedures SHOULD be in place to ensure continuous processes are in place to identify privacy and data protection risks arising from poor designs, practices and outcomes, and to mitigate unintended or negative impacts in proactive and systematic ways.

2.1.2 Privacy as the Default
This principle emphasizes establishing firm, automatic, limits to all collection, use, retention and disclosure of personally data in a given system. Where the need or use of personal data is not clear, there is to be a presumption of privacy and the precautionary principle is to apply: the default settings are to be the most privacy protective.

This Privacy by Design principle:

· has the biggest impact on managing data privacy risks, by effectively eliminating risk at the earliest stages of the information life cycle.

· prescribes the strongest level of data protection and is most closely associated with limiting use(s) of personal data to the intended, primary purpose(s) of collection;

· is the most under threat in the current era of ubiquitous, granular and exponential data collection, uses and disclosures; and

The default starting point for designing all software-enabled information technologies and systems SHALL be NO collection of personally identifying information —unless and until a specific and compelling purpose is defined.

As a rule, default user settings SHOULD be maximally privacy-enhancing. This approach is sometimes described as “data minimization” or “precautionary principle,” and must be the first line of defense. Non-collection, non-retention and non-use of personally-identifiable information supports all of the other PbD principles.

2.1.2.1 Purpose Specificity
Privacy commitments SHALL be expressed by documenting clear and concise purpose(s) for collecting, using and disclosing personally-identifiable information. Purposes may be described in other terms, such as goals, objectives, requirements, or functionalities. For the purposes of engineering software:

· Purposes must be limited and specific; and

· Purposes must be written in such a way so to be amendable to engineering controls.

2.1.2.2 Limiting Collection, Use, and Retention
Software engineering methods and procedures SHOULD be in place to ensure that personal information is collected, used, disclosed and retained:
· in conformity with the specific, limited purposes;
· in agreement with the consent received from the data subject(s); and
· in compliance with applicable laws and regulations.

Consistent with data minimization principles, strict limits SHOULD be placed on each phase of the data processing life cycle engaged by the software under development. This includes:

1. Limiting Collection;
2. Collecting by Fair and Lawful Means;
3. Collecting from Third Parties;
4. Uses and Disclosures;
5. Retention; and
6. Disposal, Destruction and Redaction.
2.1.2.3 Limiting Collection

The software engineer SHALL ensure techniques, systems and procedures are put in place to:

1. specify essential versus optional personal information to fulfill identified purposes;

2. periodically review information requirements;

3. obtain explicit individual consent to collect sensitive personal information;

4. monitor the collection of personal information to ensure it is limited to that necessary for the purposes identified, and that all optional data is identified as such;

5. link stated purpose of collection to the data source identification;
6. ensure auditability of legal or business adherence to collection limitation;
7. associate time expirations to collection;
8. establish levels or types of identity such as gradations of non-identifiable, identifiable or identified data collection and processing that need to be supported; and

9. establish limits to collection associated with levels or types of data subject identity.
2.1.2.4 Collecting by Fair and Lawful Means

The software engineer SHALL ensure techniques, systems and procedures are put in place to

1. review and confirm methods, before they are implemented, that information is obtained
(a) fairly, without intimidation or deception, and
(b) lawfully, adhering to all relevant rules of law.
2. associate “fair and lawful” collection with the data source(s).
2.1.2.5 Collecting from Third Parties

The software engineer SHALL ensure techniques, systems and procedures are put in place to:

1. ensure that personal information collection from sources other than the individual are reliable ones that also collect information fairly and lawfully. This requires that:
a. due diligence be performed before establishing a relationship with a third-party data provider.

b. privacy policies, collection methods, and types of consents of third parties be reviewed before accepting personal information from third-party data sources.

2. document and, where necessary, seek consent where the software develops or acquires additional information about individuals.

2.1.2.6 Uses and Disclosures
The software engineer shall ensure techniques, systems and procedures are put in place to:

1. limit all uses and disclosures of personal information to the specified purposes (and for which the individual has provided implicit or explicit consent);
2. differentiate personal information by both type and quantity, and treat accordingly;

3. anticipate emergency and unintended disclosures (e.g. security breaches);

4. assign and observe time expirations associated with uses;

5. tie future uses to the original collection purpose;

6. establish whether selected “secondary” use(s) may be allowed under law;

7. secure individual consent, where necessary, for disclosures to third parties;

8. establish valid justification(s) for all disclosure without subject consent;

9. inform third parties of relevant collection, use, disclosure and retention requirements, and ensure adherence;

10. audit retention limits and resulting destruction; and

11. ensure security of data transfers.
2.1.2.7 Retention

The software engineer SHALL ensure techniques, systems and procedures are put in place to:

1. limit retention no longer than needed to fulfill the purposes (or as required by law or regulations) and thereafter appropriately dispose of such information;

2. document retention policies and disposal procedures;
3. retain, store, and dispose of archived and backup copies of records in accordance with its retention policies;
4. ensure personal information is not kept beyond the standard retention time unless a justified business or legal reason exists for doing so; and
5. consider contractual requirements when establishing retention practices that may be exceptions to normal policies/practices.

2.1.2.8 Disposal, Destruction and Redaction
The software engineer SHALL ensure techniques, systems and procedures are put in place to:
1. regularly and systematically destroy, erase, or make anonymous personal information no longer required to fulfill the identified purposes or as required by laws and regulations;
2. erase or destroy records in accordance with the retention policies, regardless of the method of storage (for example, electronic, optical media, or paper based);
3. dispose of original, archived, backup and ad hoc or personal copies of records in accordance with its destruction policies;
4. carry out disposal in a manner that prevents loss, theft, misuse, or unauthorized access;

5. document the disposal of personal information;
6. within the limits of technology, locate and remove or redact specified personal information about an individual as required; and
7. consider contractual requirements when establishing disposal, destruction, and redaction practices if these may result in exception to the entity’s normal policies.
2.1.3 Privacy Embedded in Design

This principle emphasizes integrating privacy protections into the methods by which information systems are designed and developed, as well as how the resulting systems operate in practice. A systemic, principled approach to embedding privacy is to be adopted —one that relies upon accepted standards and frameworks. Wherever possible, detailed privacy impact and risk assessments should be carried out, clearly documenting the privacy risks and all measures taken to mitigate those risks, including consideration of alternative design options and the selection of metrics. The privacy impacts of the resulting technology, operation or information architecture, and their uses, should be demonstrably minimized, and not easily degraded through use, misconfiguration or error.
2.1.3.1 Holistic and Integrative
The software engineer SHALL ensure that privacy commitments are embedded in holistic and integrative ways.
2.1.3.2 Systematic and Auditable
The software engineer SHALL ensure that a systematic, principled approach is adopted that relies upon accepted standards and process frameworks, and is amenable to external review.

2.1.3.3 Reviewed and Assessed
The software engineer SHALL ensure that detailed privacy impact and risk assessments are used as a basis for design decisions.

2.1.3.4 Human-Proof
The software engineer SHALL ensure that the privacy risks are demonstrably minimized and not increase through use, misconfiguration, or error.

2.1.4 Full Functionality — Positive-sum, Not Zero-sum
This principle seeks to accommodate all legitimate interests and objectives in a positive-sum “win-win” manner. When embedding privacy into a given technology, process, or system, it should be done in such a way that functionality is not impaired, and to the greatest extent possible, that all requirements are optimized. All non-privacy interests and objectives must be clearly documented, desired functions articulated, metrics agreed upon and applied, and zero-sum trade-offs rejected as often being unnecessary, in favour of solutions that enable multi-functionality and maximum privacy.
2.1.4.1 No Loss of Functionality
The software engineer SHALL ensure that embedding privacy does not impair functionality of a given technology, process or network architecture.

2.1.4.2 Accommodate Legitimate Objectives
The software engineer SHALL ensure that all interests and objectives are documented, desired functions articulated, metrics agreed, and trade-offs rejected, when seeking a solution that enables multi-functionality

2.1.4.3 Practical and Demonstrable Results
The software engineer SHALL ensure that optimized outcomes are published for others to emulate and to become best practice.
2.1.5 End to End Security – Lifecycle Protection
This principle emphasizes continuous protection of personal data across the entire domain in question, whether the personal data is at rest, in motion or in use from initial collection through to destruction. There should be no gaps in either protection of, or accountability for personal data. Applied security standards are to assure the confidentiality, integrity and availability of personal data throughout its lifecycle including, among other things, appropriate use of encryption techniques, strong access controls, logging and auditing techniques, and methods of secure destruction.
2.1.5.1 Protect Continuously
The software engineer SHALL ensure that personal data is continuously protected across the entire domain and throughout the data life-cycle, from creation to destruction.
2.1.5.2 Control Access
The software engineer SHALL ensure that access to personal data is commensurate with its degree of sensitivity, and be consistent with recognized standards and criteria.

2.1.5.3 Use Metrics
The software engineer SHALL ensure that applied security standards assure the confidentiality, integrity and availability of personal data and be amenable to verification.

2.1.6 Visibility and Transparency – Keep it Open

This principle emphasizes the need to establish accountability for software offerings by providing, to relevant stakeholders, appropriate information and timely evidence about whether, and how, the software or system operates according to stated promises and objectives. Typically, the purposes for demonstrating visibility and transparency are to enhance understanding and trust among deployers of the software, provide for informed choices among consumers and other end-users, and to demonstrate compliance to regulatory authorities. Robust visibility and transparency enhance the capacity for independent verification.
2.1.6.1 Open Collaboration
The software engineer SHALL ensure that privacy requirements, risks, implementation methods and outcomes are documented throughout the development lifecycle and communicated to project members and stakeholders.

2.1.6.2 Open to Review
The software engineer SHALL ensure that the design and operation of software systems demonstrably satisfy the strongest privacy laws, contracts, policies and norms (as required).

2.1.6.3 Open to Emulation
The software engineer SHALL ensure that the design and operation of privacy-enhanced information technologies and systems are open to scrutiny, praise and emulation by all.

2.1.7 Respect for User* Privacy – Keep it User-Centric

* User = Data Subject

This principle requires architects and operators to keep the interests of the individual user uppermost by offering strong privacy defaults, appropriate notice, and user-centric and user-friendly interfaces. A key objective of this Principle is to empower end-users to play active roles in the management of their own personal data through mechanisms designed to facilitate informed consent, direct access, verification of accuracy, and complaints.
2.1.7.1 Anticipate and Inform
The software engineer SHALL ensure that the software is designed with user/data subject privacy interests in mind, and convey privacy attributes (where relevant) in a timely, useful, and effective way.

2.1.7.2 Support Data Subject Input and Direction
The software engineer SHALL ensure that technologies, operations and networks allow users/data subjects to express privacy preferences and controls in a persistent and effective way.

2.1.7.3 Encourage Direct User/Subject Access
The software engineer SHALL ensure that software systems are designed to provide data subjects direct access to data held about them, and an account of uses and disclosures.
PAGE

