1.1 TLS 1.2 Mechanisms
Details for TLS1.2 and its key derivation and MAC mechanisms can be found in [TLS 1.2]. TLS 1.2 mechanisms differ from TLS 1.0 and 1.1 mechanisms in that the base hash used in the underlying TLS PRF (pseudo-random function) can be negotiated. Therefore each mechanism parameter for the TLS 1.2 mechanisms contains a new value in the parameters structure to specify the hash function. 

This section also specifies CKM_TLS_MAC which should be used in place of CKM_TLS_PRF to calculate the verify_data in the TLS "finished" message.
This section also specifies CKM_TLS_KDF which can be used in place of CKM_TLS_PRF to implement key material exporters.

	
	Functions

	Mechanism
	Encrypt

&

Decrypt
	Sign

&

Verify
	SR

&

VR1
	Digest
	Gen.
 Key/

Key

Pair
	Wrap

&

Unwrap
	Derive

	CKM_TLS12_MASTER_KEY_DERIVE
	
	
	
	
	
	
	

	CKM_TLS12_MASTER_KEY_DERIVE_DH
	
	
	
	
	
	
	

	CKM_TLS12_KEY_AND_MAC_DERIVE
	
	
	
	
	
	
	

	CKM_TLS12_KEY_SAFE_DERIVE
	
	
	
	
	
	
	

	CKM_TLS_KDF
	
	
	
	
	
	
	

	CKM_TLS_MAC
	
	
	
	
	
	
	


1.1.1 Definitions

Mechanisms:

CKM_TLS12_MASTER_KEY_DERIVE 

CKM_TLS12_MASTER_KEY_DERIVE_DH

CKM_TLS12_KEY_AND_MAC_DERIVE

CKM_TLS12_KEY_SAFE_DERIVE


CKM_TLS_KDF

CKM_TLS_MAC

1.1.2 TLS 1.2 mechanism parameters
· CK_TLS12_MASTER_KEY_DERIVE_PARAMS; CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR
CK_TLS12_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the  CKM_TLS12_MASTER_KEY_DERIVE mechanism.  It is defined as follows:

typedef struct CK_TLS12_MASTER_KEY_DERIVE_PARAMS {

  CK_SSL3_RANDOM_DATA RandomInfo;
  CK_VERSION_PTR pVersion;
  CK_MECHANISM_TYPE prfHashMechanism;
} CK_TLS12_MASTER_KEY_DERIVE_PARAMS;
The fields of the structure have the following meanings:


RandomInfo
client’s and server’s random data information.


pVersion
pointer to a CK_VERSION structure which receives the SSL protocol version information

prfHashMechanism
base hash used in the underlying TLS1.2 PRF operation used to derive the master key.
CK_TLS12_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a CK_TLS12_MASTER_KEY_DERIVE_PARAMS.
· CK_TLS12_KEY_MAT_PARAMS; CK_TLS12_KEY_MAT_PARAMS_PTR
CK_TLS12_KEY_MAT_PARAMS is a structure that provides the parameters to the  CKM_TLS12_KEY_AND_MAC_DERIVE mechanism.  It is defined as follows:

typedef struct CK_TLS12_KEY_MAT_PARAMS {

  CK_ULONG ulMacSizeInBits;
  CK_ULONG ulKeySizeInBits;
  CK_ULONG ulIVSizeInBits;
  CK_BBOOL bIsExport;
  CK_SSL3_RANDOM_DATA RandomInfo;
  CK_SSL3_KEY_MAT_OUT_PTR pReturnedKeyMaterial;
  CK_MECHANISM_TYPE prfHashMechanism;
} CK_TLS12_KEY_MAT_PARAMS;
The fields of the structure have the following meanings:


ulMacSizeInBits
the length (in bits) of the MACing keys agreed upon during the protocol handshake phase. If no MAC key is required (e.g. for AEAD ciphers), the length should be set to 0.


ulKeySizeInBits
the length (in bits) of the secret keys agreed upon during the protocol handshake phase 


ulIVSizeInBits
the length (in bits) of the IV agreed upon during the protocol handshake phase. If no IV is required, the length should be set to 0 

bIsExport
must be set to CK_FALSE because export cipher suites must not be used in TLS 1.1 and later.

RandomInfo
client’s and server’s random data information.


pReturnedKeyMaterial
points to a CK_SSL3_KEY_MAT_OUT structures which receives the handles for the keys generated and the IVs 

prfHashMechanism
base hash used in the underlying TLS1.2 PRF operation used to derive the master key.
CK_TLS12_KEY_MAT_PARAMS_PTR is a pointer to a CK_TLS12_KEY_MAT_PARAMS.
· CK_TLS_KDF_PARAMS; CK_TLS_KDF_PARAMS_PTR
CK_TLS_KDF_PARAMS is a structure that provides the parameters to the CKM_TLS_KDF mechanism.  It is defined as follows:
typedef struct CK_TLS_KDF_PARAMS {

  CK_MECHANISM_TYPE prfMechanism;

  CK_BYTE_PTR pLabel;

  CK_ULONG ulLabelLength;

  CK_SSL3_RANDOM_DATA RandomInfo;

  CK_BYTE_PTR pContextData;

  CK_ULONG ulContextDataLength;

} CK_TLS_KDF_PARAMS;

The fields of the structure have the following meanings:


prfMechanism
the hash mechanism used in the TLS1.2 PRF construct or CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct. 


pLabel
a pointer to the label for this key derivation 


ulLabelLength
length of the label in bytes


RandomInfo
the random data for the key derivation


pContextData
a pointer to the context data for this key derivation. NULL_PTR if not present


ulContextDataLength
length of the context data in bytes. 0 if not present.

· CK_TLS_MAC_PARAMS; CK_TLS_MAC_PARAMS_PTR
CK_TLS_MAC_PARAMS is a structure that provides the parameters to the  CKM_TLS_MAC mechanism.  It is defined as follows:

typedef struct CK_TLS_MAC_PARAMS {

  CK_MECHANISM_TYPE prfMechanism;
  CK_ULONG ulMacLength;
  CK_ULONG ulServerOrClient;
} CK_TLS_MAC_PARAMS;

The fields of the structure have the following meanings:


prfMechanism
the hash mechanism used in the TLS12 PRF construct or CKM_TLS_PRF to use with the TLS1.0 and 1.1 PRF construct. 


ulMacLength
the length of the MAC tag required or offered.  Always 12 octets in TLS 1.0 and 1.1.  Generally 12 octets, but may be negotiated to a longer value in TLS1.2.


ulServerOrClient
1 to use the label "server finished", 2 to use the label "client finished".   All other values are invalid.

CK_TLS_MAC_PARAMS_PTR is a pointer to a CK_TLS_MAC_PARAMS.

1.1.3 TLS MAC

The TLS MAC mechanism is used to generate integrity tags for the TLS "finished" message. It replaces the use of the CKM_TLS_PRF function for TLS1.0 and 1.1 and that mechanism is deprecated.

CKM_TLS_MAC takes a parameter of CK_TLS_MAC_PARAMS.  To use this mechanism with TLS1.0 and TLS1.1, use CKM_TLS_PRF as the value for prfMechanism in place of a hash mechanism. Note: Although CKM_TLS_PRF is deprecated as a mechanism for C_DeriveKey, the manifest value is retained for use with this mechanism to indicate the use of the TLS1.0/1.1 pseudo-random function.
In TLS1.0 and 1.1 the "finished" message verify_data (i.e. the output signature from the MAC mechanism) is always 12 bytes.  In TLS1.2 the "finished" message verify_data is a minimum of 12 bytes, defaults to 12 bytes, but may be negotiated to longer length.

Table xx, General-length TLS MAC: Key And Data Length
	Function
	Key type
	Data length
	Signature length

	C_Sign
	generic secret
	any
	>=12 bytes

	C_Verify
	generic secret
	any
	>=12 bytes


.

1.1.4 Master key derivation

Master key derivation in TLS 1.2, denoted CKM_TLS12_MASTER_KEY_DERIVE, is a mechanism used to derive one 48-byte generic secret key from another 48-byte generic secret key.  It is used to produce the "master_secret" key used in the TLS protocol from the "pre_master" key.  This mechanism returns the value of the client version, which is built into the "pre_master" key as well as a handle to the derived "master_secret" key.

It has a parameter, a CK_TLS12_MASTER_KEY_DERIVE_PARAMS structure, which allows for the passing of random data to the token as well as the returning of the protocol version number which is part of the pre-master key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template).  Other attributes may be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS_KDF and CKM_TLS_MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.  However, since these facts are all implicit in the mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE.  If omitted, these attributes each take on some default value.

· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well.  If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too.  If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the CK_TLS12_MASTER_KEY_DERIVE_PARAMS structure’s pVersion field will be modified by the C_DeriveKey call.  In particular, when the call returns, this structure will hold the SSL version associated with the supplied pre_master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte “pre_master” secret with an embedded version number. This includes the RSA cipher suites, but excludes the Diffie-Hellman cipher suites.

1.1.5 Master key derivation for Diffie-Hellman

Master key derivation for Diffie-Hellman in TLS 1.2, denoted CKM_TLS12_MASTER_KEY_DERIVE_DH, is a mechanism used to derive one 48-byte generic secret key from another arbitrary length generic secret key.  It is used to produce the "master_secret" key used in the TLS protocol from the "pre_master" key. 

It has a parameter, a CK_TLS12_MASTER_KEY_DERIVE_PARAMS structure, which allows for the passing of random data to the token. The pVersion field of the structure must be set to NULL_PTR since the version number is not embedded in the "pre_master" key as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template).  Other attributes may be specified in the template, or else are assigned default values.

The mechanism also contributes the CKA_ALLOWED_MECHANISMS attribute consisting only of CKM_TLS12_KEY_AND_MAC_DERIVE, CKM_TLS12_KEY_SAFE_DERIVE, CKM_TLS_KDF and CKM_TLS_MAC.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.  However, since these facts are all implicit in the mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE.  If omitted, these attributes each take on some default value.

· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well.  If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.

· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too.  If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length 48-byte “pre_master” secret with an embedded version number. This includes the Diffie-Hellman cipher suites, but excludes the RSA cipher suites.

1.1.6 Key and MAC derivation

Key, MAC and IV derivation in TLS 1.2, denoted CKM_TLS12_KEY_AND_MAC_DERIVE, is a mechanism used to derive the appropriate cryptographic keying material used by a "CipherSuite" from the "master_secret" key and random data. This mechanism returns the key handles for the keys generated in the process, as well as the IVs created.

It has a parameter, a CK_TLS12_KEY_MAT_PARAMS structure, which allows for the passing of random data as well as the characteristic of the cryptographic material for the given CipherSuite and a pointer to a structure which receives the handles and IVs which were generated.

This mechanism contributes to the creation of four distinct keys on the token and returns two IVs (if IVs are requested by the caller) back to the caller. The keys are all given an object class of CKO_SECRET_KEY. 

The two MACing keys ("client_write_MAC_secret" and "server_write_MAC_secret") (if present) are always given a type of CKK_GENERIC_SECRET. They are flagged as valid for signing and verification.

The other two keys ("client_write_key" and "server_write_key") are typed according to information found in the template sent along with this mechanism during a C_DeriveKey function call.  By default, they are flagged as valid for encryption anddecryption.

For CKM_TLS12_KEY_AND_MAC_DERIVE, IVs will be generated and returned if the ulIVSizeInBits field of the CK_TLS12_KEY_MAT_PARAMS field has a nonzero value.  If they are generated, their length in bits will agree with the value in the ulIVSizeInBits field. 

Note Well: CKM_TLS12_KEY_AND_MAC_DERIVE produces both private (key) and public (IV) data.  It is possible to "leak" private data by the simple expedient of decreasing the length of private data requested.  E.g. Setting ulMacSizeInBits and ulKeySizeInBits to 0 (or other lengths less than the key size) will result in the private key data being placed in the destination designated for the IV's.  Repeated calls with the same master key and same RandomInfo but with differing lengths for the private key material will result in different data being leaked.<

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key.  The template provided to C_DeriveKey may not specify values for any of these attributes which differ from those held by the base key.

Note that the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_TLS12_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be modified by the C_DeriveKey call.  In particular, the four key handle fields in the CK_SSL3_KEY_MAT_OUT structure will be modified to hold handles to the newly-created keys; in addition, the buffers pointed to by the CK_SSL3_KEY_MAT_OUT structure’s pIVClient and pIVServer fields will have IVs returned in them (if IVs are requested by the caller).  Therefore, these two fields must point to buffers with sufficient space to hold any IVs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a result of a successful completion. However, since the CKM_TLS12_KEY_AND_MAC_DERIVE mechanism returns all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to by the CK_TLS12_KEY_MAT_PARAMS structure specified as the mechanism parameter, the parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on the token.
1.1.7 CKM_TLS12_KEY_SAFE_DERIVE
CKM_TLS12_KEY_SAFE_DERIVE is identical to CKM_TLS12_KEY_AND_MAC_DERIVE except that it shall never produce IV data, and the  ulIvSizeInBits field of CK_TLS12_KEY_MAT_PARAMS is ignored and treated as 0.  All of the other conditions  and behavior described for CKM_TLS12_KEY_AND_MAC_DERIVE, with the exception of the black box warning, apply to this mechanism. 

CKM_TLS12_KEY_SAFE_DERIVE is provided as a separate mechanism to allow a client to control the export of IV material (and possible leaking of key material) through the use of the CKA_ALLOWED_MECHANISMS key attribute.

1.1.8 Generic Key Derivation using the TLS PRF
CKM_TLS_KDF is the mechanism defined in RFC5705. It uses the TLS key material and TLS PRF function to produce additional key material for protocols that want to leverage the TLS key negotiation mechanism.  CKM_TLS_KDF has a parameter of CK_TLS_KDF_PARAMS.  If the protocol using this mechanism does not use context information, the pContextData field shall be set to NULL_PTR and the ulContextDataLength field shall be set to 0.

To use this mechanism with TLS1.0 and TLS1.1, use CKM_TLS_PRF as the value for prfMechanism in place of a hash mechanism. Note: Although CKM_TLS_PRF is deprecated as a mechanism for C_DeriveKey, the manifest value is retained for use with this mechanism to indicate the use of the TLS1.0/1.1 pseudo-random function.

This mechanism can be used to derive multiple keys (e.g. similar to CKM_TLS12_KEY_AND_MAC_DERIVE) by first deriving the key stream as a CKK_GENERIC_SECRET of the necessary length and doing subsequent derives against that derived key stream using the CKM_EXTRACT_KEY_FROM_KEY mechanism to split the key stream into the actual operational keys.

The mechanism should not be used with the labels defined for use with TLS, but the token does not enforce this behavior.

This mechanism has the following rules about key sensitivity and extractability:
· If the original key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the derived key.  If not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied template or from the original key.
· Similarly, if the original key has its CKA_EXTRACTABLE attribute set to CK_FALSE, so does the derived key.  If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from the supplied template or from the original key.

· The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if and only if the original key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE.

· Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to CK_TRUE if and only if the original key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE.

#define CKM_TLS12_MASTER_KEY_DERIVE         0x000003E0

#define CKM_TLS12_KEY_AND_MAC_DERIVE        0x000003E1

#define CKM_TLS12_MASTER_KEY_DERIVE_DH      0x000003E2



#define CKM_TLS12_KEY_SAFE_DERIVE           0x000003E3
   #define CKM_TLS_MAC                         0x000003E4
#define CKM_TLS_KDF 



       0x000003E5
�AEAD ciphers don't use a MAC key.





pkcs11-curr-v2.40-wd02
Working Draft 02
5 July 2013
Standards Track Draft
Copyright © OASIS Open 2013. All Rights Reserved.
Page 8 of 9

