
[bookmark: _Toc437440478][bookmark: _Toc441162319][bookmark: _Toc319287676][bookmark: _Toc319313516][bookmark: _Toc319313709][bookmark: _Toc319315702][bookmark: _Toc322855302][bookmark: _Toc322945144][bookmark: _Toc323000711][bookmark: _Toc323024128][bookmark: _Toc323205462][bookmark: _Toc323610891][bookmark: _Toc383864898][bookmark: _Toc385057927][bookmark: _Toc405794747][bookmark: _Toc72656137][bookmark: _Toc235002355][bookmark: _Toc370634030][bookmark: _Toc391468821][bookmark: _Toc395183817][bookmark: _Toc437440594][bookmark: _Toc416959744][bookmark: _Toc441755807][bookmark: _Toc319287675][bookmark: _Toc319313515][bookmark: _Toc319313708][bookmark: _Toc319315701][bookmark: _Ref319839546]EDDSA proposal by introducing additional EC key types
draft 2, Nov 15, 2017
Author: Darren Johnson

Summary:
This is one of multiple proposals created to present possible options for including RFC 8032 (Ed25519 and Ed448) and RFC 7748 (Curve25519 and Curve 448) in PKCS #11
This proposal creates two additional key types. One key type for Edwards curves (RFC 8032) and one key type for Montgomery curves (RFC 7748), with the understanding that the existing EC framework is focussed on curves represented in Weierstrass form.

Utimaco comments and suggestions
U1: Curve and algorithm names
We suggest to strictly use the curve and algorithm names as defined in the RFCs:
· “curve25519”, “curve448”, “edwards25519” and “edwards448” (with lowercase initial) for curves in Montgomery / Edwards representation, as defined in RFC 7748.
· “Ed25519” and “Ed448” (with uppercase initial) for EdDSA algorithms as defined in RFC 8032.
[bookmark: _GoBack]I have updated the wording throughout the document where needed.

U2: Curve selection in CKA_EC_PARAMS
It is our understanding that none of the existing choices in CKA_EC_PARAMS can be used as is for Edwards/Montgomery curves:
· ecParameters does not fit for Edwards/Montgomery curves
· namedCurve specifies an Object Identifier, but there are currently no Object Identifier for Edwards/Montgomery curves
· implicilyCA must not be used
We would thus
· either need Object Identifier for “curve25519”, “curve448”, “edwards25519” and “edwards448” => add new OIDs in the OASIS tree of OIDs, or contact another organization to define such OIDs;
· or add another choice to CKA_EC_PARAMS, e.g. curveName being a string with the curve names as defined in RFC 7748. (Yet “curveName” can easily be confused with “namedCurve”). In this case, table 2 below (table 29 in the original standard) must be extended with a flag CKF_EC_CURVENAME.
When choosing to extend the CHOICE by “curveName”, all occurences of “Edwards/Montgomery EC public/private keys only support the use of the namedCurve selection” must be updated.

U3: Encoding
Should we explicitly mention that encoding of keys and messages must be in little endian format? Although this is specified in RFC 7748/8032, mentioning it in the PKCS#11 standard makes it more visible, as in other chapters that also explicitly mention endianness. Such explicit statement would apply to all definitions of CKA_EC_POINT for Edwards and Montgomery keys.

Revision History

	Revision
	Changes
	Author
	Date

	Draft 1
	Initial Draft
	Darren Johnson
	Jan 23, 2017

	Draft 2
	Finished missing/incomplete sections
	Darren Johnson
	Nov 15, 2017

[bookmark: _Toc228894659][bookmark: _Toc228807185][bookmark: _Toc72656228][bookmark: _Ref505595588][bookmark: _Ref505595426][bookmark: _Ref505595420][bookmark: _Ref407416671][bookmark: _Toc405794809][bookmark: _Toc385057988][bookmark: _Toc370634408][bookmark: _Toc391471125][bookmark: _Toc395187763][bookmark: _Toc437440527][bookmark: _Toc416960009][bookmark: _Toc441162368][bookmark: _Toc441850446]Elliptic Curve
The Elliptic Curve (EC) cryptosystem (also related to ECDSA) in this document was originally based on the one described in the ANSI X9.62 and X9.63 standards developed by the ANSI X9F1 working group.
The EC cryptosystem developed by the ANSI X9F1 working group was created at a time when EC curves were always represented in their Weierstrass form. Since that time, new curves represented in Edwards form (RFC 8032) and Montgomery form (RFC 7748) have become more common. To support these new curves, the EC cryptosystem in this document has been extended from the original. Additional key generation mechanisms have been added as well as an additional signature generation mechanism.

Table 128, Elliptic Curve Mechanisms vs. Functions
	
	Functions

	
Mechanism
	Encrypt
&
Decrypt
	Sign
&
Verify
	SR
&
VR1
	
Digest
	Gen.
 Key/
Key
Pair
	Wrap
&
Unwrap
	
Derive

	CKM_EC_KEY_PAIR_GEN (CKM_ECDSA_KEY_PAIR_GEN)
	
	
	
	
	
	
	

	CKM_EC_EDWARDS_KEY_PAIR_GEN
	
	
	
	
	
	
	

	CKM_EC_MONTGOMERY_KEY_PAIR_GEN
	
	
	
	
	
	
	

	CKM_ECDSA
	
	2
	
	
	
	
	

	CKM_ECDSA_SHA1
	
	
	
	
	
	
	

	CKM_EDDSA
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	CKM_ECDH1_DERIVE
	
	
	
	
	
	
	

	CKM_ECDH1_COFACTOR_DERIVE
	
	
	
	
	
	
	

	CKM_ECMQV_DERIVE
	
	
	
	
	
	
	

	CKM_ECDH_AES_KEY_WRAP
	
	
	
	
	
	
	

[bookmark: _Toc228807509]Table 229, Mechanism Information Flags
	CKF_EC_F_P
	0x00100000UL
	True if the mechanism can be used with EC domain parameters over Fp

	CKF_EC_F_2M
	0x00200000UL
	True if the mechanism can be used with EC domain parameters over F2m

	CKF_EC_ECPARAMETERS
	0x00400000UL
	True if the mechanism can be used with EC domain parameters of the choice ecParameters

	CKF_EC_NAMEDCURVE
	0x00800000UL
	True if the mechanism can be used with EC domain parameters of the choice namedCurve

	CKF_EC_UNCOMPRESS
	0x01000000UL
	True if the mechanism can be used with elliptic curve point uncompressed

	CKF_EC_COMPRESS
	0x02000000UL
	True if the mechanism can be used with elliptic curve point compressed

In these standards, there are two different varieties of EC defined:
1. EC using a field with an odd prime number of elements (i.e. the finite field Fp).
2. EC using a field of characteristic two (i.e. the finite field F2m).
An EC key in Cryptoki contains information about which variety of EC it is suited for. It is preferable that a Cryptoki library, which can perform EC mechanisms, be capable of performing operations with the two varieties of EC, however this is not required. The CK_MECHANISM_INFO structure CKF_EC_F_P flag identifies a Cryptoki library supporting EC keys over Fp whereas the CKF_EC_F_2M flag identifies a Cryptoki library supporting EC keys over F2m. A Cryptoki library that can perform EC mechanisms must set either or both of these flags for each EC mechanism.
In these specifications there are also three representation methods to define the domain parameters for an EC key. Only the ecParameters and the namedCurve choices are supported in Cryptoki. The CK_MECHANISM_INFO structure CKF_EC_ECPARAMETERS flag identifies a Cryptoki library supporting the ecParameters choice whereas the CKF_EC_NAMEDCURVE flag identifies a Cryptoki library supporting the namedCurve choice. A Cryptoki library that can perform EC mechanisms must set either or both of these flags for each EC mechanism.
[bookmark: _Hlt496500903]In these specifications, an EC public key (i.e. EC point Q) or the base point G when the ecParameters choice is used can be represented as an octet string of the uncompressed form or the compressed form. The CK_MECHANISM_INFO structure CKF_EC_UNCOMPRESS flag identifies a Cryptoki library supporting the uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki library supporting the compressed form. A Cryptoki library that can perform EC mechanisms must set either or both of these flags for each EC mechanism.
Note that an implementation of a Cryptoki library supporting EC with only one variety, one representation of domain parameters or one form may encounter difficulties achieving interoperability with other implementations.
If an attempt to create, generate, derive or unwrap an EC key of an unsupported curve is made, the attempt should fail with the error code CKR_CURVE_NOT_SUPPORTED. If an attempt to create, generate, derive, or unwrap an EC key with invalid or of an unsupported representation of domain parameters is made, that attempt should fail with the error code CKR_DOMAIN_PARAMS_INVALID. If an attempt to create, generate, derive, or unwrap an EC key of an unsupported form is made, that attempt should fail with the error code CKR_TEMPLATE_INCONSISTENT.
[bookmark: _Toc228894660][bookmark: _Toc228807186][bookmark: _Toc72656229][bookmark: _Ref44295942][bookmark: _Toc370634409][bookmark: _Toc391471126][bookmark: _Toc395187764][bookmark: _Toc437440528][bookmark: _Toc416960010][bookmark: _Toc441162369][bookmark: _Toc441850447][bookmark: _Toc471006064][bookmark: _Toc405794810][bookmark: _Toc385057989]EC Signatures
For the purposes of these mechanisms, an ECDSA signature is an octet string of even length which is at most two times nLen octets, where nLen is the length in octets of the base point order n. The signature octets correspond to the concatenation of the ECDSA values r and s, both represented as an octet string of equal length of at most nLen with the most significant byte first. If r and s have different octet length, the shorter of both must be padded with leading zero octets such that both have the same octet length. Loosely spoken, the first half of the signature is r and the second half is s. For signatures created by a token, the resulting signature is always of length 2nLen. For signatures passed to a token for verification, the signature may have a shorter length but must be composed as specified before.
If the length of the hash value is larger than the bit length of n, only the leftmost bits of the hash up to the length of n will be used. Any truncation is done by the token.
Note: For applications, it is recommended to encode the signature as an octet string of length two times nLen if possible. This ensures that the application works with PKCS#11 modules which have been implemented based on an older version of this document. Older versions required all signatures to have length two times nLen. It may be impossible to encode the signature with the maximum length of two times nLen if the application just gets the integer values of r and s (i.e. without leading zeros), but does not know the base point order n, because r and s can have any value between zero and the base point order n.
[bookmark: _Toc228894661][bookmark: _Toc228807187][bookmark: _Toc72656230][bookmark: _Toc370634410][bookmark: _Toc391471127][bookmark: _Toc395187765][bookmark: _Toc437440529][bookmark: _Toc416960011][bookmark: _Toc441162370][bookmark: _Toc441850448]Definitions
This section defines the key type “CKK_ECDSA”, and “CKK_EC”, “CKK_EC_EDWARDS” and “CKK_EC_MONTGOMERY” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
Note: CKM_ECDSA_KEY_PAIR_GEN is deprecated in v2.11
CKM_ECDSA_KEY_PAIR_GEN
CKM_EC_KEY_PAIR_GEN
CKM_ECDSA
CKM_ECDSA_SHA1
CKM_ECDH1_DERIVE
[bookmark: _Hlt494255338][bookmark: _Hlt494260222]CKM_ECDH1_COFACTOR_DERIVE
CKM_ECMQV_DERIVE
CKM_ECDH_AES_KEY_WRAP

CKD_NULL
CKD_SHA1_KDF
[bookmark: _Toc228894662][bookmark: _Toc228807188][bookmark: _Toc72656231][bookmark: _Toc370634411][bookmark: _Toc391471128][bookmark: _Toc395187766][bookmark: _Toc437440530][bookmark: _Toc416960012][bookmark: _Toc441162371][bookmark: _Toc441850449]ECDSA public key objects	Comment by Darren Johnson: Private keys are not called “ECDSA”, they are called “Elliptic Curve”. Public keys should have the same name.
	Comment by Dieter Bong: I agree. This should be fixed across all sections related to Elliptic Curves.
EC (also related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC or CKK_ECDSA) hold EC public keys. The following table defines the EC public key object attributes, in addition to the common attributes defined for this object class:
[bookmark: _Toc228807510]Table 330, Elliptic Curve Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,3 (CKA_ECDSA_PARAMS)
	Byte array
	DER-encoding of an ANSI X9.62 Parameters value

	CKA_EC_POINT1,4
	Byte array
	DER-encoding of ANSI X9.62 ECPoint value Q

- Refer to [PKCS #11-Base] table 10 for footnotes
The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {
 ecParameters	ECParameters,
 namedCurve	CURVES.&id({CurveNames}),
 implicitlyCA	NULL
}

This allows detailed specification of all required values using choice ecParameters, the use of a namedCurve as an object identifier substitute for a particular set of elliptic curve domain parameters, or implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere. The use of a namedCurve is recommended over the choice ecParameters. The choice implicitlyCA must not be used in Cryptoki.
The following is a sample template for creating an EC (ECDSA) public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “An EC public key object”;
CK_BYTE ecParams[] = {...};
CK_BYTE ecPoint[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
 {CKA_EC_POINT, ecPoint, sizeof(ecPoint)}
};

Elliptic curve private key objects
EC (also related to ECDSA) private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC or CKK_ECDSA) hold EC private keys. See Section 1.02.3 for more information about EC. The following table defines the EC private key object attributes, in addition to the common attributes defined for this object class:
Table 431, Elliptic Curve Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,4,6 (CKA_ECDSA_PARAMS)
	Byte array
	DER-encoding of an ANSI X9.62 Parameters value

	CKA_VALUE1,4,6,7
	Big integer
	ANSI X9.62 private value d

- Refer to [PKCS #11-Base] table 10 for footnotes
The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {
 ecParameters	ECParameters,
 namedCurve	CURVES.&id({CurveNames}),
 implicitlyCA	NULL
}

This allows detailed specification of all required values using choice ecParameters, the use of a namedCurve as an object identifier substitute for a particular set of elliptic curve domain parameters, or implicitlyCA to indicate that the domain parameters are explicitly defined elsewhere. The use of a namedCurve is recommended over the choice ecParameters. The choice implicitlyCA must not be used in Cryptoki.
Note that when generating an EC private key, the EC domain parameters are not specified in the key’s template. This is because EC private keys are only generated as part of an EC key pair, and the EC domain parameters for the pair are specified in the template for the EC public key.
The following is a sample template for creating an EC (ECDSA) private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “An EC private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE ecParams[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
 {CKA_VALUE, value, sizeof(value)}
};
Edwards Elliptic curve public key objects
Edwards EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC_EDWARDS) hold Edwards EC public keys. The following table defines the Edwards EC public key object attributes, in addition to the common attributes defined for this object class:
Table 5, Edwards Elliptic Curve Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,3
	Byte array
	DER-encoding of an ANSI X9.62 Parameters value

	CKA_EC_POINT1,4
	Byte array
	DER-encoding of the b-bit public key value as defined in RFC 8032

- Refer to [PKCS #11-Base] table 10 for footnotes
The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {
 ecParameters	ECParameters,
 namedCurve	CURVES.&id({CurveNames}),
 implicitlyCA	NULL
}
Edwards EC public keys only support the use of the namedCurve selection.
The following is a sample template for creating an Edwards EC public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “An Edwards EC public key object”;
CK_BYTE ecParams[] = {...};
CK_BYTE ecPoint[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
 {CKA_EC_POINT, ecPoint, sizeof(ecPoint)}
};
Edwards Elliptic curve private key objects
Edwards EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC_EDWARDS) hold Edwards EC private keys. See Section 1.0 for more information about EC. The following table defines the Edwards EC private key object attributes, in addition to the common attributes defined for this object class:
Table 6, Edwards Elliptic Curve Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,4,6
	Byte array
	DER-encoding of an ANSI X9.62 Parameters value

	CKA_VALUE1,4,6,7
	Big integer
	b-bit private key value as defined in RFC 8032

- Refer to [PKCS #11-Base] table 10 for footnotes
The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {
 ecParameters	ECParameters,
 namedCurve	CURVES.&id({CurveNames}),
 implicitlyCA	NULL
}
Edwards EC private keys only support the use of the namedCurve selection.	Comment by Dieter Bong: See general comment U2 at the top of this document.
Note that when generating an Edwards EC private key, the EC domain parameters are not specified in the key’s template. This is because Edwards EC private keys are only generated as part of an Edwards EC key pair, and the EC domain parameters for the pair are specified in the template for the Edwards EC public key.
The following is a sample template for creating an Edwards EC private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “An Edwards EC private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE ecParams[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
 {CKA_VALUE, value, sizeof(value)}
};
Montgomery Elliptic curve public key objects
Montgomery EC public key objects (object class CKO_PUBLIC_KEY, key type CKK_EC_MONTGOMERY) hold Montgomery EC public keys. The following table defines the Montgomery EC public key object attributes, in addition to the common attributes defined for this object class:
Table 7, Montgomery Elliptic Curve Public Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,3
	Byte array
	DER-encoding of an ANSI X9.62 Parameters value

	CKA_EC_POINT1,4
	Byte array
	DER-encoding of the public key value as defined in RFC 7748

- Refer to [PKCS #11-Base] table 10 for footnotes
The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {
 ecParameters	ECParameters,
 namedCurve	CURVES.&id({CurveNames}),
 implicitlyCA	NULL
}
Montgomery EC public keys only supported the use of the namedCurve selection.	Comment by Dieter Bong: See general comment U2 at the top of this document.
The following is a sample template for creating an Montgomery EC public key object:
CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “A Montgomery EC public key object”;
CK_BYTE ecParams[] = {...};
CK_BYTE ecPoint[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
 {CKA_EC_POINT, ecPoint, sizeof(ecPoint)}
};
Montgomery Elliptic curve private key objects
Montgomery EC private key objects (object class CKO_PRIVATE_KEY, key type CKK_EC_MONTGOMERY) hold Montgomery EC private keys. See Section 1.0 for more information about EC. The following table defines the Montgomery EC private key object attributes, in addition to the common attributes defined for this object class:
Table 8, Montgomery Elliptic Curve Private Key Object Attributes
	Attribute
	Data type
	Meaning

	CKA_EC_PARAMS1,4,6
	Byte array
	DER-encoding of an ANSI X9.62 Parameters value

	CKA_VALUE1,4,6,7
	Big integer
	Private key value as defined in RFC 7748

- Refer to [PKCS #11-Base] table 10 for footnotes
The CKA_EC_PARAMS attribute value is known as the “EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter representation methods with the following syntax:
Parameters ::= CHOICE {
 ecParameters	ECParameters,
 namedCurve	CURVES.&id({CurveNames}),
 implicitlyCA	NULL
}
Edwards EC private keys only support the use of the namedCurve selection.
Note that when generating a Montgomery EC private key, the EC domain parameters are not specified in the key’s template. This is because Montgomery EC private keys are only generated as part of a Montgomery EC key pair, and the EC domain parameters for the pair are specified in the template for the Montgomery EC public key.
The following is a sample template for creating a Montgomery EC private key object:
CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_EC;
CK_UTF8CHAR label[] = “A Montgomery EC private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE ecParams[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DERIVE, &true, sizeof(true)},
 {CKA_EC_PARAMS, ecParams, sizeof(ecParams)},
 {CKA_VALUE, value, sizeof(value)}
};

Elliptic curve key pair generation
The EC (also related to ECDSA) key pair generation mechanism, denoted CKM_EC_KEY_PAIR_GEN or CKM_ECDSA_KEY_PAIR_GEN, is a key pair generation mechanism for EC.
This mechanism does not have a parameter.
The mechanism generates EC public/private key pairs with particular EC domain parameters, as specified in the CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute of the template for the public key. Note that this version of Cryptoki does not include a mechanism for generating these EC domain parameters.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS or CKA_ECDSA_PARAMS and CKA_VALUE attributes to the new private key. Other attributes supported by the EC public and private key types (specifically, the flags indicating which functions the keys support) may also be specified in the templates for the keys, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
Edwards Elliptic curve key pair generation
The Edwards EC key pair generation mechanism, denoted CKM_EC_EDWARDS_KEY_PAIR_GEN, is a key pair generation mechanism for EC keys over curves represented in Edwards form.
This mechanism does not have a parameter.
The mechanism can only generate EC public/private key pairs over the curves edwards25519 and edwards448 as defined in RFC 8032. These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key using the namedCurve method. Attempts to generate keys over these curves using any other EC key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE attributes to the new private key. Other attributes supported by the Edwards EC public and private key types (specifically, the flags indicating which functions the keys support) may also be specified in the templates for the keys, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For this mechanism, the only allowed values are 255 and 448 as RFC 8032 only defines curves of these two sizes. A Cryptoki implementation may support one or both of these curves and should set the ulMinKeySize and ulMaxKeySize fields accordingly.
Montgomery Elliptic curve key pair generation
The Montgomery EC key pair generation mechanism, denoted CKM_EC_MONTGOMERY_KEY_PAIR_GEN, is a key pair generation mechanism for EC keys over curves represented in Montgomery form.
This mechanism does not have a parameter.
The mechanism can only generate Montgomery EC public/private key pairs over the curves curve25519 and curve448 as defined in RFC 7748. These curves can only be specified in the CKA_EC_PARAMS attribute of the template for the public key using the namedCurve method. Attempts to generate keys over these curves using any other EC key pair generation mechanism will fail with CKR_CURVE_NOT_SUPPORTED.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS and CKA_VALUE attributes to the new private key. Other attributes supported by the EC public and private key types (specifically, the flags indicating which functions the keys support) may also be specified in the templates for the keys, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For this mechanism, the only allowed values are 255 and 448 as RFC 7748 only defines curves of these two sizes. A Cryptoki implementation may support one or both of these curves and should set the ulMinKeySize and ulMaxKeySize fields accordingly.
[bookmark: _Hlt494608145]ECDSA without hashing
Refer section 1.0.12.3.1 for signature encoding.
The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for single-part signatures and verification for ECDSA. (This mechanism corresponds only to the part of ECDSA that processes the hash value, which should not be longer than 1024 bits; it does not compute the hash value.)
This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
Table 932, ECDSA: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign1
	ECDSA private key
	any3
	2nLen

	C_Verify1
	ECDSA public key
	any3, 2nLen 2
	N/A

1 Single-part operations only.
2 Data length, signature length.
3 Input the entire raw digest. Internally, this will be truncated to the appropriate number of bits.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between 2200 and 2300 elements (inclusive), then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
[bookmark: _Toc228894666][bookmark: _Toc228807192][bookmark: _Toc72656235][bookmark: _Toc471006066][bookmark: _Toc370634415][bookmark: _Toc391471132][bookmark: _Toc395187770][bookmark: _Toc437440534][bookmark: _Toc416960016][bookmark: _Toc441162375][bookmark: _Toc441850453]ECDSA with SHA-1
Refer to section 1.0.12.3.1 for signature encoding.
The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHA1, is a mechanism for single- and multiple-part signatures and verification for ECDSA. This mechanism computes the entire ECDSA specification, including the hashing with SHA-1.
This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:
[bookmark: _Toc228807513][bookmark: _Toc468937873]Table 1033, ECDSA with SHA-1: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	ECDSA private key
	any
	2nLen

	C_Verify
	ECDSA public key
	any, 2nLen 2
	N/A

2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only ECDSA using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
EdDSA
The EdDSA mechanism, denoted CKM_EDDSA, is a mechanism for single-part and multiplart signatures and verification for EdDSA. This mechanism implements the five EdDSA signature schemes defined in RFC 8032.
This mechanism has an optional parameter, a CK_EDDSA_PARAMS structure. The absence or presence of the parameter as well as its content is used to identify which signature scheme is to be used. Table 32 enumerates the five signature schemes defined in RFC 8032 and all supported permutations of the mechanism parameter and its content.
Table 11, Mapping to RFC 8032 Signature Schemes
	Signature Scheme
	Mechanism Param
	phFlag
	Context Data

	Ed25519
	Not Required
	N/A
	N/A

	Ed25519ctx
	Required
	False
	Optional

	Ed25519ph
	Required
	True
	Optional

	Ed448
	Required
	False
	Optional

	Ed448ph
	Required
	True
	Optional

Constraints on key types and the length of data are summarized in the following table:
Table 12, EdDSA: Key and Data Length
	Function
	Key type
	Input length
	Output length

	C_Sign
	CKK_EC_EDWARDS private key
	any
	2bLen

	C_Verify
	CKK_EC_EDWARDS public key
	any, 2bLen 2
	N/A

2 Data length, signature length.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For this mechanism, the only allowed values are 255 and 448 as RFC 7748 only defines curves of these two sizes. A Cryptoki implementation may support one or both of these curves and should set the ulMinKeySize and ulMaxKeySize fields accordingly.

[bookmark: _Hlt500652492][bookmark: _Toc72656236][bookmark: _Toc228807193][bookmark: _Toc228894667][bookmark: _Toc370634416][bookmark: _Toc391471133][bookmark: _Toc395187771][bookmark: _Toc437440535][bookmark: _Toc416960017][bookmark: _Toc441162376][bookmark: _Toc441850454]EC mechanism parameters
CK_EDDSA_PARAMS is a structure that provides the parameters for the CKM_EDDSA signature mechanism. The structure is defined as follows:
typedef struct CK_EDDSA_PARAMS {
	CK_BBOOL phFlag;
	CK_ULONG ulContextDataLen;
	CK_BYTE_PTR pContextData;
} CK_EDDSA_PARAMS;

The fields of the structure have the following meanings:
phFlag	a Boolean value which indicates if Prehashed variant of EdDSA should used
ulContextDataLen	the length in bytes of the context data where 0 <= ulContextDataLen <= 255.
	pContextData		context data shared between the signer and verifier
CK_EDDSA_PARAMS_PTR is a pointer to a CK_EDDSA_PARAMS.

· CK_EC_KDF_TYPE, CK_EC_KDF_TYPE_PTR
CK_EC_KDF_TYPE is used to indicate the Key Derivation Function (KDF) applied to derive keying data from a shared secret. The key derivation function will be used by the EC key agreement schemes. It is defined as follows:
typedef CK_ULONG CK_EC_KDF_TYPE;

The following table lists the defined functions.
[bookmark: _Toc228807514]Table 1334, EC: Key Derivation Functions
	Source Identifier

	CKD_NULL

	CKD_SHA1_KDF

	CKD_SHA224_KDF

	CKD_SHA256_KDF

	CKD_SHA384_KDF

	CKD_SHA512_KDF

The key derivation function CKD_NULL produces a raw shared secret value without applying any key derivation function whereas the key derivation function CKD_SHA1_KDF, which is based on SHA-1, derives keying data from the shared secret value as defined in ANSI X9.63.
CK_EC_KDF_TYPE_PTR is a pointer to a CK_EC_KDF_TYPE.
· CK_ECDH1_DERIVE_PARAMS, CK_ECDH1_DERIVE_PARAMS_PTR
CK_ECDH1_DERIVE_PARAMS is a structure that provides the parameters for the CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE key derivation mechanisms, where each party contributes one key pair. The structure is defined as follows:
typedef struct CK_ECDH1_DERIVE_PARAMS {
	CK_EC_KDF_TYPE kdf;
	CK_ULONG ulSharedDataLen;
	CK_BYTE_PTR pSharedData;
	CK_ULONG ulPublicDataLen;
	CK_BYTE_PTR pPublicData;
} CK_ECDH1_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	kdf	key derivation function used on the shared secret value
	ulSharedDataLen	the length in bytes of the shared info
	pSharedData	some data shared between the two parties
	ulPublicDataLen	the length in bytes of the other party’s EC public key
	pPublicData[footnoteRef:2]	pointer to other party’s EC public key value. A token MUST be able to accept this value encoded as a raw octet string (as per section A.5.2 of [ANSI X9.62]). A token MAY, in addition, support accepting this value as a DER-encoded ECPoint (as per section E.6 of [ANSI X9.62]) i.e. the same as a CKA_EC_POINT encoding. The calling application is responsible for converting the offered public key to the compressed or uncompressed forms of these encodings if the token does not support the offered form. [2: The encoding in V2.20 was not specified and resulted in different implementations choosing different encodings. Applications relying only on a V2.20 encoding (e.g. the DER variant) other than the one specified now (raw) may not work with all V2.30 compliant tokens.]

With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDataLen must be zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied, which consists of some data shared by the two parties intending to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDataLen must be zero.
CK_ECDH1_DERIVE_PARAMS_PTR is a pointer to a CK_ECDH1_DERIVE_PARAMS.

· CK_ECMQV_DERIVE_PARAMS, CK_ECMQV_DERIVE_PARAMS_PTR
CK_ECMQV_DERIVE_PARAMS is a structure that provides the parameters to the CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two key pairs. The structure is defined as follows:
typedef struct CK_ECMQV_DERIVE_PARAMS {
	CK_EC_KDF_TYPE kdf;
	CK_ULONG ulSharedDataLen;
	CK_BYTE_PTR pSharedData;
	CK_ULONG ulPublicDataLen;
	CK_BYTE_PTR pPublicData;
	CK_ULONG ulPrivateDataLen;
	CK_OBJECT_HANDLE hPrivateData;
	CK_ULONG ulPublicDataLen2;
	CK_BYTE_PTR pPublicData2;
	CK_OBJECT_HANDLE publicKey;
} CK_ECMQV_DERIVE_PARAMS;

The fields of the structure have the following meanings:
	kdf	key derivation function used on the shared secret value
	ulSharedDataLen	the length in bytes of the shared info
	pSharedData	some data shared between the two parties
	ulPublicDataLen	the length in bytes of the other party’s first EC public key
	pPublicData	pointer to other party’s first EC public key value. Encoding rules are as per pPublicData of CK_ECDH1_DERIVE_PARAMS
	ulPrivateDataLen	the length in bytes of the second EC private key
	hPrivateData	key handle for second EC private key value
	ulPublicDataLen2	the length in bytes of the other party’s second EC public key
	pPublicData2	pointer to other party’s second EC public key value. Encoding rules are as per pPublicData of CK_ECDH1_DERIVE_PARAMS
	publicKey	Handle to the first party’s ephemeral public key
With the key derivation function CKD_NULL, pSharedData must be NULL and ulSharedDataLen must be zero. With the key derivation function CKD_SHA1_KDF, an optional pSharedData may be supplied, which consists of some data shared by the two parties intending to share the shared secret. Otherwise, pSharedData must be NULL and ulSharedDataLen must be zero.
CK_ECMQV_DERIVE_PARAMS_PTR is a pointer to a CK_ECMQV_DERIVE_PARAMS.
[bookmark: _Toc228894668][bookmark: _Toc228807194][bookmark: _Toc72656237][bookmark: _Toc370634417][bookmark: _Toc391471134][bookmark: _Toc395187772][bookmark: _Toc437440536][bookmark: _Toc416960018][bookmark: _Toc441162377][bookmark: _Toc441850455]Elliptic curve Diffie-Hellman key derivation
[bookmark: _Hlt500132816]The elliptic curve Diffie-Hellman (ECDH) key derivation mechanism, denoted CKM_ECDH1_DERIVE, is a mechanism for key derivation based on the Diffie-Hellman version of the elliptic curve key agreement scheme, as defined in ANSI X9.63, where each party contributes one key pair all using the same EC domain parameters.
It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
Constraints on key types are summarized in the following table:
Table 14, ECDH: Allowed Key Types
	Function
	Key type

	C_Derive
	CKK_EC or CKK_EC_MONTGOMERY

[bookmark: _Toc228894669][bookmark: _Toc228807195][bookmark: _Toc72656238][bookmark: _Toc370634418][bookmark: _Toc391471135][bookmark: _Toc395187773][bookmark: _Toc437440537][bookmark: _Toc416960019][bookmark: _Toc441162378][bookmark: _Toc441850456]Elliptic curve Diffie-Hellman with cofactor key derivation
The elliptic curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism, denoted CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation based on the cofactor Diffie-Hellman version of the elliptic curve key agreement scheme, as defined in ANSI X9.63, where each party contributes one key pair all using the same EC domain parameters. Cofactor multiplication is computationally efficient and helps to prevent security problems like small group attacks.
It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
Constraints on key types are summarized in the following table:
Table 15, ECDH with Cofactor: Allowed Key Types
	Function
	Key type

	C_Derive
	CKK_EC or CKK_EC_MONTGOMERY

[bookmark: _Toc228894670][bookmark: _Toc228807196][bookmark: _Toc72656239][bookmark: _Toc370634419][bookmark: _Toc391471136][bookmark: _Toc395187774][bookmark: _Toc437440538][bookmark: _Toc416960020][bookmark: _Toc441162379][bookmark: _Toc441850457]Elliptic curve Menezes-Qu-Vanstone key derivation
The elliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version of the elliptic curve key agreement scheme, as defined in ANSI X9.63, where each party contributes two key pairs all using the same EC domain parameters.
It has a parameter, a CK_ECMQV_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the minimum and maximum supported number of bits in the field sizes, respectively. For example, if a Cryptoki library supports only EC using a field of characteristic 2 which has between 2200 and 2300 elements, then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the number 2200 consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 2300 is a 301-bit number).
Constraints on key types are summarized in the following table:
Table 16, ECDH MQV: Allowed Key Types
	Function
	Key type

	C_Derive
	CKK_EC

[bookmark: _Toc370634420][bookmark: _Toc391471137][bookmark: _Toc395187775][bookmark: _Toc437440539][bookmark: _Toc416960021][bookmark: _Toc441162380][bookmark: _Toc441850458]ECDH AES KEY WRAP
The ECDH AES KEY WRAP mechanism, denoted CKM_ECDH_AES_KEY_WRAP, is a mechanism based on elliptic curve public-key crypto-system and the AES key wrap mechanism. It supports single-part key wrapping; and key unwrapping.
It has a parameter, a CK_ECDH_AES_KEY_WRAP_PARAMS structure.

The mechanism can wrap and un-wrap an asymmetric target key of any length and type using an EC key.
· A temporary AES key is derived from a temporary EC key and the wrapping EC key using the CKM_ECDH1_DERIVE mechanism.
· The derived AES key is used for wrapping the target key using the CKM_AES_KEY_WRAP_PAD mechanism.

For wrapping, the mechanism -
· Generates a temporary random EC key (transport key) having the same parameters as the wrapping EC key (and domain parameters). Saves the transport key public key material.
· Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDataLen and pSharedData using the private key of the transport EC key and the public key of wrapping EC key and gets the first ulAESKeyBits bits of the derived key to be the temporary AES key
· Wraps the target key with the temporary AES key using CKM_AES_KEY_WRAP_PAD (RFC5649).
· Zeroizes the temporary AES key and EC transport private key
· Concatenates public key material of the transport key and output the concatenated blob.

The recommended format for an asymmetric target key being wrapped is as a PKCS8 PrivateKeyInfo

The use of Attributes in the PrivateKeyInfo structure is OPTIONAL. In case of conflicts between the object attribute template, and Attributes in the PrivateKeyInfo structure, an error should be thrown.

For unwrapping, the mechanism -
· Splits the input into two parts. The first part is the public key material of the transport key and the second part is the wrapped target key. The length of the first part is equal to the length of the public key material of the unwrapping EC key
Note: since the transport key and the wrapping EC key share the same domain, the length of the public key material of the transport key is the same length of the public key material of the unwrapping EC key.
· Performs ECDH operation using CKM_ECDH1_DERIVE with parameters of kdf, ulSharedDataLen and pSharedData using the private part of unwrapping EC key and the public part of the transport EC key and gets first ulAESKeyBits bits of the derived key to be the temporary AES key
· Un-wraps the target key from the second part with the temporary AES key using CKM_AES_KEY_WRAP_PAD (RFC5649).
· Zeroizes the temporary AES key

Table 1735, CKM_ECDH_AES_KEY_WRAP Mechanisms vs. Functions
	
	Functions

	
Mechanism
	Encrypt
&
Decrypt
	Sign
&
Verify
	SR
&
VR1
	
Digest
	Gen.
Key/
Key
Pair
	Wrap
&
Unwrap
	
Derive

	CKM_ECDH_AES_KEY_WRAP
	
	
	
	
	
	
	

	1SR = SignRecover, VR = VerifyRecover

Constraints on key types are summarized in the following table:
Table 18, ECDH AES Key Wrap: Allowed Key Types
	Function
	Key type

	C_Derive
	CKK_EC or CKK_EC_MONTGOMERY

[bookmark: _Toc370634421][bookmark: _Toc391471138][bookmark: _Toc395187776][bookmark: _Toc437440540][bookmark: _Toc416960022][bookmark: _Toc441162381][bookmark: _Toc441850459]ECDH AES KEY WRAP mechanism parameters
· CK_ECDH_AES_KEY_WRAP_PARAMS; CK_ECDH_AES_KEY_WRAP_PARAMS_PTR
CK_ECDH_AES_KEY_WRAP_PARAMS is a structure that provides the parameters to the CKM_ECDH_AES_KEY_WRAP mechanism. It is defined as follows:

typedef struct CK_ECDH_AES_KEY_WRAP_PARAMS {
CK_ULONG ulAESKeyBits;
CK_EC_KDF_TYPE		kdf;
CK_ULONG			ulSharedDataLen;
CK_BYTE_PTR 		pSharedData;
} CK_ECDH_AES_KEY_WRAP_PARAMS;

The fields of the structure have the following meanings:

ulAESKeyBits	length of the temporary AES key in bits. Can be only 128, 192 or 256.
Kdf 	key derivation function used on the shared secret value to generate AES key.
ulSharedDataLen	the length in bytes of the shared info
pSharedData	Some data shared between the two parties

CK_ECDH_AES_KEY_WRAP_PARAMS_PTR is a pointer to a CK_ECDH_AES_KEY_WRAP_PARAMS.

[bookmark: _Toc370634422][bookmark: _Toc391471139][bookmark: _Toc395187777][bookmark: _Toc437440541][bookmark: _Toc416960023][bookmark: _Toc441162382][bookmark: _Toc441850460]FIPS 186-4	Comment by Darren Johnson: I recall that FIPS related sections were discussed. What was the result of that discussion? Is this getting removed or moved to the guidance docs?

Regardless, I updated this with the latest FIPS standpoint on this topic. If this has been moved to the guidance docs, we should push this over there.
If this has been dropped altogether, we can ignore this update.

NIST is updating 186-5, and we have requrested that include RFC 8032, but haven’t received a final answer.
When using elliptic curve mechanisms for ECDSA and ECDH in a FIPS mode of operation, any curve may be used. The only requirement NIST has is that at least one NIST recommended curve is supported for the purpose of Cryptographic Algorithm Validation Program (CAVP) testing.

CKM_EDDSA may not be used in a FIPS mode of operation. NIST has not yet approved the use of the Edwards-Curve Digital Signature (EdDSA) signature algorithm.

